1887

Chapter 7 : Coaggregation and Distance-Critical Communication

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Coaggregation and Distance-Critical Communication, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap07-2.gif

Abstract:

Interactions between and among bacterial species within a microcommunity occur in an environment that is distinct from the surrounding space. Interactions among species within one community are likely to be distinct from those within a different community. The context of mixed-species communities discussed in this chapter is primarily the human oral cavity, and the chapter focuses on the concept of distance-critical communication and its role in mediating commensalism as well as pathogenesis. The exhibition of extensive coaggregation partnerships by oral plaque bacteria suggests that distance-critical communication typically occurs within the tightly packed microcommunities known to characterize human dental plaque. Coaggregates formed among , butyrate-oxidizing , and acetate-oxidizing , indicating that coaggregations are relevant to interspecies hydrogen transfer among several syntrophic methanogenic consortia. Coaggregation and adhesion to host cells are primary characteristics of all oral fusobacteria. Fusobacteria coaggregate with all early and late oral colonizers. In place of producing strong toxins and enzymes, fusobacteria enhance their virulence functions through their ability to interact with other cell types. Many oral streptococci produce IgA1 proteases, which assist the community in evading the principal mediator of adaptive immunity.

Citation: Kolenbrander P, Jakubovics N, Chalmers N, Bachrach G. 2007. Coaggregation and Distance-Critical Communication, p 89-100. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch7

Key Concept Ranking

Tumor Necrosis Factor alpha
0.47724676
Streptococcus mitis
0.42474964
Streptococcus oralis
0.42474964
Streptococcus mitis
0.42474964
0.47724676
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Visual assay for coaggregation ( ). Homogeneous suspensions of cell types A and B are shown before mixing (tubes 1 and 2, respectively) and immediately after the mixing of equal volumes (tube 3). Within seconds, coaggregates settle to the bottom of the tube, leaving a clear supernatant (tube 4). The addition of a sugar inhibitor reverses the interaction (tube 5).

Citation: Kolenbrander P, Jakubovics N, Chalmers N, Bachrach G. 2007. Coaggregation and Distance-Critical Communication, p 89-100. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Diffusion characteristics of small-molecule signals in open (A) and closed (B) systems. (A) In a flowing system, the distance-critical induction of the amylase promoter ( transcriptional fusion) by a diffusible small-molecule signal requires the juxtaposition of PK1910 and DL1(p). In a flow cell, the diffusible signal is removed from the system, but its concentration is highest in the immediate vicinity of the signal-producing species, PK1910. (B) In a closed system, such as a culture flask or a beaker containing a dialysis bag with the signal-producing species inside, the species do not need to be juxtaposed. The diffusible signal accumulates inside the closed vessel, and interspecies communication occurs without cell-cell contact. The right two panels show flow cytometric analysis of -directed GFP expression. No fluorescence is shown in the right-hand panel (empty box R1), when the dialysis tubing contains sterile medium, whereas the left-hand panel (partially filled box R1), when the signal-producing species is inside the dialysis tubing, shows increased fluorescence. Fluorescence (FL1-Height) is graphed logarithmically on the axis. Forward scatter ( axis) is indicative of particle size.

Citation: Kolenbrander P, Jakubovics N, Chalmers N, Bachrach G. 2007. Coaggregation and Distance-Critical Communication, p 89-100. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815851.ch07
1. Aas, J. A.,, B. J. Paster,, L. N. Stokes,, I. Olsen, and, F. E. Dewhirst. 2005. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43:57215732.
2. Bachrach, G.,, S. K. Haake,, A. Glick,, R. Hazan,, R. Naor,, R. N. Andersen, and, P. E. Kolenbrander. 2004. Characterization of the novel Fusobacterium nucleatum plasmid pKH9 and evidence of an addiction system. Appl. Environ. Microbiol. 70:69576962.
3. Bachrach, G.,, C. Ianculovici,, R. Naor, and, E. I. Weiss. 2005. Fluorescence based measurements of Fusobacterium nucleatum coaggregation and of fusobacterial attachment to mammalian cells. FEMS Microbiol. Lett. 248:235240.
4. Bachrach, G.,, G. Rosen,, M. Bellalou,, R. Naor, and, M. N. Sela. 2004. Identification of a Fusobacterium nucleatum 65 kDa serine protease. Oral Microbiol. Immunol. 19:155159.
5. Bos, R.,, H. C. van der Mei, and, H. Busscher. 1995. A quantitative method to study co-adhesion of microorganisms in a parallel plate flow chamber. II. Analysis of the kinetics of co-adhesion. J. Microbiol. Methods 23:169182.
6. Bos, R.,, H. C. van der Mei, and, H. J. Busscher. 1996. Co-adhesion of oral microbial pairs under flow in the presence of saliva and lactose. J. Dent. Res. 75:809815.
7. Chan, E. C.,, A. Klitorinos,, S. Gharbia,, S. D. Caudry,, M. D. Rahal, and, R. Siboo. 1996. Characterization of a 4.2-kb plasmid isolated from periodontopathic spirochetes. Oral Microbiol. Immunol. 11:365368.
8. Chen, X.,, S. Schauder,, N. Potier,, A. Van Dorsselaer,, I. Pelczer,, B. L. Bassler, and, F. M. Hughson. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545549.
9. Darveau, R. P.,, C. M. Belton,, R. A. Reife, and, R. J. Lamont. 1998. Local chemokine paralysis, a novel pathogenic mechanism for Porphyromonas gingivalis. Infect. Immun. 66:16601665.
10. Demuth, D. R.,, R. Savary,, E. Golub, and, B. J. Shenker. 1996. Identification and analysis of fipA, a Fusobacterium nucleatum immunosuppressive factor gene. Infect. Immun. 64:13351341.
11. Duerre, J. A.,, D. J. Baker, and, L. Salisbury. 1971. Structure elucidation of a carbohydrate derived from S-ribosylhomocysteine by enzymatic cleavage. Fed. Proc. 30:1067.
12. Egland, P. G.,, R. J. Palmer, Jr., and, P. E. Kolenbrander. 2004. Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc. Natl. Acad. Sci. USA 101:1691716922.
13. Foster, J. S., and, P. E. Kolenbrander. 2004. Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl. Environ. Microbiol. 70:43404348.
14. Frias, J.,, E. Olle, and, M. Alsina. 2001. Periodontal pathogens produce quorum sensing signal molecules. Infect. Immun. 69:34313434.
15. Gendron, R.,, P. Plamondon, and, D. Grenier. 2004. Binding of pro-matrix metalloproteinase 9 by Fusobacterium nucleatum subsp. nucleatum as a mechanism to promote the invasion of a reconstituted basement membrane. Infect. Immun. 72:61606163.
16. Gibbons, R. J.,, D. I. Hay,, J. O. Cisar, and, W. B. Clark. 1988. Adsorbed salivary proline-rich protein 1 and statherin: receptors for type 1 fimbriae of Actinomyces viscosus T14V-J1 on apatitic surfaces. Infect. Immun. 56:29902993.
17. Grenier, D., and, L. Grignon. 2006. Response of human macrophage-like cells to stimulation by Fusobacterium nucleatum ssp. nucleatum lipopolysaccharide. Oral Microbiol. Immunol. 21:190196.
18. Guo, M.,, Y. W. Han,, A. Sharma, and, E. De Nardin. 2000. Identification and characterization of human immunoglobulin G Fc receptors of Fusobacterium nucleatum. Oral Microbiol. Immunol. 15:119123.
19. Haake, S. K.,, S. C. Yoder,, G. Attarian, and, K. Podkaminer. 2000. Native plasmids of Fuso-bacterium nucleatum: characterization and use in development of genetic systems. J. Bacteriol. 182:11761180.
20. Haffajee, A. D.,, R. P. Teles, and, S. S. Socransky. 2006. Association of Eubacterium nodatum and Treponema denticola with human periodontitis lesions. Oral Microbiol. Immunol. 21:269282.
21. Han, Y. W.,, A. Ikegami,, N. F. Bissada,, M. Herbst,, R. W. Redline, and, G. G. Ashmead. 2006. Transmission of an uncultivated Bergeyella strain from the oral cavity to amniotic fluid in a case of preterm birth. J. Clin. Microbiol. 44:14751483.
22. Han, Y. W.,, A. Ikegami,, C. Rajanna,, H. I. Kawsar,, Y. Zhou,, M. Li,, H. T. Sojar,, R. J. Genco,, H. K. Kuramitsu, and, C. X. Deng. 2005. Identification and characterization of a novel adhesin unique to oral fusobacteria. J. Bacteriol. 187:53305340.
23. Han, Y. W.,, R. W. Redline,, M. Li,, L. Yin,, G. B. Hill, and, T. S. McCormick. 2004. Fuso-bacterium nucleatum induces premature and term stillbirths in pregnant mice: implication of oral bacteria in preterm birth. Infect. Immun. 72:22722279.
24. Han, Y. W.,, W. Shi,, G. T. Huang,, S. Kinder Haake,, N. H. Park,, H. Kuramitsu, and, R. J. Genco. 2000. Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect. Immun. 68:31403146.
25. Hill, G. B. 1998. Preterm birth: associations with genital and possibly oral microflora. Ann. Periodontol. 3:222232.
26. Hsu, S. D.,, J. O. Cisar,, A. L. Sandberg, and, M. Kilian. 1994. Adhesive properties of viridans streptococcal species. Microb. Ecol. 7:125137.
27. Ishii, S.,, T. Kosaka,, K. Hori,, Y. Hotta, and, K. Watanabe. 2005. Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl. Environ. Microbiol. 71:78387845.
28. Ishii, S.,, T. Kosaka,, Y. Hotta, and, K. Watanabe. 2006. Simulating the contribution of coaggregation to interspecies hydrogen fluxes in syntrophic methanogenic consortia. Appl. Environ. Microbiol. 72:50935096.
29. Jewett, A.,, W. R. Hume,, H. Le,, T. N. Huynh,, Y. W. Han,, G. Cheng, and, W. Shi. 2000. Induction of apoptotic cell death in peripheral blood mononuclear and polymorphonuclear cells by an oral bacterium, Fusobacterium nucleatum. Infect. Immun. 68:18931898.
30. Kaplan, C. W.,, R. Lux,, T. Huynh,, A. Jewett,, W. Shi, and, S. K. Haake. 2005. Fusobacterium nucleatum apoptosis-inducing outer membrane protein. J. Dent. Res. 84:700704.
31. Kolenbrander, P. E. 1988. Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Annu. Rev. Microbiol. 42:627656.
32. Kolenbrander, P. E.,, R. N. Andersen,, D. S. Blehert,, P. G. Egland,, J. S. Foster, and, R. J. Palmer, Jr. 2002. Communication among oral bacteria. Microbiol. Mol. Biol. Rev. 66:486505.
33. Kolenbrander, P. E.,, R. N. Andersen, and, L. V. H. Moore. 1990. Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface. Appl. Environ. Microbiol. 56:38903894.
34. Kolenbrander, P. E.,, Y. Inouye, and, L. V. Holdeman. 1983. New Actinomyces and Streptococcus coaggregation groups among human oral isolates from the same site. Infect. Immun. 41:501506.
35. Kolenbrander, P. E., and, J. London. 1993. Adhere today, here tomorrow: oral bacterial adherence. J. Bacteriol. 175:32473252.
36. Kuramitsu, H. K., and, V. Trapa. 1984. Genetic exchange between oral streptococci during mixed growth. J. Gen. Microbiol. 130:24972500.
37. Li, Y. H.,, P. C. Lau,, J. H. Lee,, R. P. Ellen, and, D. G. Cvitkovitch. 2001. Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol. 183:897908.
38. Mercer, D. K.,, K. P. Scott,, C. M. Melville,, L. A. Glover, and, H. J. Flint. 2001. Transformation of an oral bacterium via chromosomal integration of free DNA in the presence of human saliva. FEMS Microbiol. Lett. 200:163167.
39. Miller, S. T.,, K. B. Xavier,, S. R. Campagna,, M. E. Taga,, M. F. Semmelhack,, B. L. Bassler, and, F. M. Hughson. 2004. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell 15:677687.
40. Moore, W. E. C., and, L. V. H. Moore. 1994. The bacteria of periodontal diseases. Periodontol. 2000 5:6677.
41. Nørskov-Lauritsen, N., and, M. Kilian. 2006. Reclassification of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Haemophilus paraphrophilus, and Haemophilus segnis as Aggregatibacter actinomycetemcomitans gen. nov., comb. nov., Aggregatibacter aphrophilus comb. nov., and Aggregatibacter segnis comb. nov., and emended description of Aggregatibacter aphrophilus to include V factor-dependent and V factor-independent isolates. Int. J. Syst. Evol. Microbiol. 56:21352146.
42. Nyvad, B., and, M. Kilian. 1990. Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res. 24:267272.
43. Nyvad, B., and, M. Kilian. 1987. Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand. J. Dent. Res. 95:369380.
44. Offenbacher, S.,, V. Katz,, G. Fertik,, J. Collins,, D. Boyd,, G. Maynor,, R. McKaig, and, J. Beck. 1996. Periodontal infection as a possible risk factor for preterm low birth weight. J. Periodontol. 67:11031113.
45. Palmer, R. J., Jr.,, S. M. Gordon,, J. O. Cisar, and, P. E. Kolenbrander. 2003. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J. Bacteriol. 185:34003409.
46. Palmer, R. J., Jr.,, K. Kazmerzak,, M. C. Hansen, and, P. E. Kolenbrander. 2001. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect. Immun. 69:57945804.
47. Rickard, A. H.,, R. J. Palmer, Jr.,, D. S. Blehert,, S. R. Campagna,, M. F. Semmelhack,, P. G. Egland,, B. L. Bassler, and, P. E. Kolenbrander. 2006. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol. Microbiol. 60:14461456.
48. Rogers, A. H.,, P. S. Zilm,, N. J. Gully,, A. L. Pfennig, and, P. D. Marsh. 1991. Aspects of the growth and metabolism of Fusobacterium nucleatum ATCC 10953 in continuous culture. Oral Microbiol. Immunol. 6:250255.
49. Schauder, S.,, K. Shokat,, M. G. Surette, and, B. L. Bassler. 2001. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41:463476.
50. Schink, B., and, R. K. Thauer. 1988. Energetics of syntrophic methane formation and the influence of aggregation, p. 517. In G. Lettinga,, A. J. B. Zehnder,, J. T. C. Grotenhuis, and, L. W. Hulshoff Pol (ed.), Granular Anaerobic Sludge: Microbiology and Technology. Pudoc, Wageningen, The Netherlands.
51. Semmelhack, M. F.,, S. R. Campagna,, M. J. Federle, and, B. L. Bassler. 2005. An expeditious synthesis of DPD and boron binding studies. Org. Lett. 7:569572.
52. Socransky, S. S.,, A. D. Haffajee,, M. A. Cugini,, C. Smith, and, R. L. Kent, Jr. 1998. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25:134144.
53. Spellerberg, B.,, D. R. Cundell,, J. Sandros,, B. J. Pearce,, I. Idanpaan-Heikkila,, C. Rosenow, and, H. R. Masure. 1996. Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae. Mol. Microbiol. 19:803813.
54. Takenouchi-Ohkubo, N.,, L. M. Mortensen,, K. R. Drasbek,, M. Kilian, and, K. Poulsen. 2006. Horizontal transfer of the immunoglobulin A1 protease gene (iga) from Streptococcus to Gemella haemolysans. Microbiology 152:21712180.
55. Uehara, Y.,, K. Agematsu,, K. Kikuchi,, S. Matsuzaki,, S. Imai,, M. Takamoto,, K. Sugane,, T. Sugiura,, Y. Konishi,, N. Yoshino,, S. Takeuchi,, H. Seo,, S. Kuramoto, and, M. Sugai. 2006. Secretory IgA, salivary peroxidase, and catalase-mediated microbicidal activity during hydrogen peroxide catabolism in viridans streptococci: pathogen coaggregation. J. Infect. Dis. 194:98107.
56. Uitto, V. J.,, D. Baillie,, Q. Wu,, R. Gendron,, D. Grenier,, E. E. Putnins,, A. Kanervo, and, J. D. Firth. 2005. Fusobacterium nucleatum increases collagenase 3 production and migration of epithelial cells. Infect. Immun. 73:11711179.
57. Wang, B. Y.,, B. Chi, and, H. K. Kuramitsu. 2002. Genetic exchange between Treponema denticola and Streptococcus gordonii in biofilms. Oral Microbiol. Immunol. 17:108112.
58. Weiss, E. I.,, B. Shaniztki,, M. Dotan,, N. Ganeshkumar,, P. E. Kolenbrander, and, Z. Metzger. 2000. Attachment of Fusobacterium nucleatum PK1594 to mammalian cells and its coaggregation with periodontopathogenic bacteria are mediated by the same galactose-binding adhesin. Oral Microbiol. Immunol. 15:371377.
59. Zambon, J. J.,, C. DeLuca,, J. Slots, and, R. J. Genco. 1983. Studies of leukotoxin from Actinobacillus actinomycetemcomitans using the promyelocytic HL-60 cell line. Infect. Immun. 40:205212.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error