1887

Chapter 8 : Commensal Bacteria in Health and Disease

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Commensal Bacteria in Health and Disease, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap08-2.gif

Abstract:

Commensal gut bacteria have received a small fraction of the research effort that has been accorded to pathogens. The importance of commensal bacteria for normal gut function and health is increasingly being recognized. These bacteria play crucial roles in the metabolism of dietary components and the supply of energy to the gut mucosa and other host tissues, and influence the gut environment. They provide protection against pathogens through effective competition for growth requirements and binding sites while also participating in genetic exchange. Analyses of 16S rRNA genes amplified from gut and fecal samples have demonstrated remarkable diversity within the microbial communities of the gastrointestinal tract. Lactate is produced by a wide range of commensal gut bacteria but is not normally detected at concentrations above 2 mM in the feces of healthy individuals, although it is detected at much higher concentrations in patients with ulcerative colitis. Several low- G+C-content gram-positive species, including , have been shown to be acetogenic and can both consume hydrogen and supply acetate when in coculture with the butyrate producer . Bacterial attachment must play a key role in the colonization of insoluble substrates. The impact of diet on susceptibility to pathogen infection may therefore be exerted partly through the effects of diet on the balance of commensal species and metabolic activity, as discussed in this chapter. In addition, poor diet is considered to contribute to long-term gut disorders, including inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer.

Citation: Kolenbrander P, Flint H, Louis P, Scott K, Duncan S. 2007. Commensal Bacteria in Health and Disease, p 101-115. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch8

Key Concept Ranking

Denaturing Gradient Gel Electrophoresis
0.42447838
0.42447838
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Phylogenetic tree based on 16S rRNA sequences of butyrate-producing anaerobic bacteria isolated from human feces, indicating strains recognized by the two probes referred to in the legend to Fig. 2 . Two butyrate-nonproducing species from clostridial cluster XIVa are also included in the tree. Strains shown in bold were screened for butyrate kinase; those possessing amplifiable butyrate kinase genes and activity are indicated by arrows ( ). Strains designated only by letters and numbers belong to species yet to be defined.

Citation: Kolenbrander P, Flint H, Louis P, Scott K, Duncan S. 2007. Commensal Bacteria in Health and Disease, p 101-115. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Abundance of clostridial cluster XIVa-related bacteria and of the cluster XIVa subgroup comprising relatives of and , in fecal samples from 10 healthy human subjects. Abundance was estimated by FISH with the 16S rRNA-targeted probes Erec482 (detecting cluster XIVa) and Rrec584, which recognizes most members of the and group ( ). Counts are expressed relative to those obtained with the broad-spectrum bacterial probe Eub338.

Citation: Kolenbrander P, Flint H, Louis P, Scott K, Duncan S. 2007. Commensal Bacteria in Health and Disease, p 101-115. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Growth rates of three species of and four species of gram-positive butyrate-producing bacteria from the human colon in anaerobic pure cultures at different initial medium pH (data are from Walker et al. [ ]).

Citation: Kolenbrander P, Flint H, Louis P, Scott K, Duncan S. 2007. Commensal Bacteria in Health and Disease, p 101-115. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Growth rates of two O157 strains (ec22 and 12900) in LuriaBertani medium with or without the addition of 100 mM short-chain fatty acids (10:2:1 mix of acetate, propionate, and butyrate) at two different initial pHs. Asterisks indicate that the growth rate was <0.15 h. Under anaerobic (an) conditions, growth was slightly reduced at pH 7, but it was abolished at pH 6 by these concentrations of short-chain fatty acids (scfa). ae, aerobic; an, anaerobic. (Adapted from reference .)

Citation: Kolenbrander P, Flint H, Louis P, Scott K, Duncan S. 2007. Commensal Bacteria in Health and Disease, p 101-115. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815851.ch08
1. Aminov, R. I.,, A. W. Walker,, S. H. Duncan,, H. J. M. Harmsen,, G. W. Welling, and, H. J. Flint. 2006. Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Appl. Environ. Microbiol. 72:63716376.
2. Anderson K. L., and, A. A. Salyers. 1989. Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes. J. Bacteriol. 171:31923198.
3. Barcenilla, A.,, S. E. Pryde,, J. C. Martin,, S. H. Duncan,, C. S. Stewart, and, H. J. Flint. 2000. Phylogenetic relationships of dominant butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol.66:16541661.
4. Belenguer, A.,, S. H. Duncan,, G. Calder,, G. Holtrop,, P. Louis,, G. E. Lobley, and, H. J. Flint. 2006. Two routes of metabolic cross-feeding between bifidobacteria and butyrate-producing anaerobes from the human gut. Appl. Environ. Microbiol. 72:35933599.
5. Bobik, T. A.,, G. D. Havemann,, R. J. Busch,, D. S. Williams, and, H. C. Aldrich. 1999. The propanediol utilization operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral bodies involved in coenzyme B12-dependent 1,2-propanediol degradation. J. Bacteriol. 181:59675975.
6. Bourriaud, C.,, R. J. Robins,, L. Martin,, F. Kozlowski,, E. Tenaileau,, C. Cherbut, and, C. Michel. 2005. Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J. Appl. Bacteriol. 99:201212.
7. Bown, R. L.,, J. A. Gibson,, G. E. Sladen,, B. Hicks, and, A. M. Dawson. 1974. Effects of lactulose and other laxatives on ileal and colonic pH as measured by a radiotelemetry device. Gut 15:9991004.
8. Bry L.,, P. G. Falk,, T. Midvedt, and, J. I. Gordon. 1996. A model of host-microbial interactions in an open mammalian ecosystem. Science 273:13801383.
9. Campieri, M., and, P. Gionchetti. 2001. Bacteria as the cause of ulcerative colitis. Gut 48:132135.
10. Charrier, C.,, G. J. Duncan,, M. D. Reid,, G. J. Rucklidge,, D. Henderson,, P. Young,, V. J. Russell,, R. I. Aminov,, H. J. Flint, and, P. Louis. 2006. A novel class of CoA-transferase involved in short-chain fatty acid metabolism in butyrate-producing human colonic bacteria. Microbiology 152:179185.
11. Chassard, C., and, A. Bernalier-Donadille. 2006. H2 and acetate transfers during xylan fermentation between a butyrate-producing xylanolytic species and hydrogenotrophic microorganisms from the human gut. FEMS Microbiol. Lett. 254:116122.
12. Counotte, G. H. M.,, R. A. Prins,, R. H. A. M. Jansen, and, M. J. A. De Bie. 1981. Role of Megasphaera elsdenii in the fermentation of DL-lactate in the rumen of dairy cattle. Appl. Environ. Microbiol. 42:649655.
13. Dabard, J.,, C. Bridonneau,, C. Phillipe,, P. Anglade,, D. Molle,, M. Nardi,, M. Ladire,, H. Griardin,, F. Marcille,, A. Gomez, and, M. Fons. 2001. Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavus strain isolated from human feces. Appl. Environ. Microbiol. 67:41114118.
14. Derrien, M.,, E. E. Vaughan,, C. M. Plugge, and, W. M. de Vos. 2004. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin degrading bacterium. Int. J. Syst. Evol. Microbiol. 54:14691476.
15. Devillard, E.,, F. M. McIntosh,, S. H. Duncan, and, R. J. Wallace. 2007. Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. J. Bacteriol. 189:25662570.
16. Duchmann, R.,, E. May,, M. Heike,, P. Knolle,, M. Neurath, and, K.-H. Meyer zum Buschenfelde. 1999. T cell specificity and cross-reactivity towards enterobacteria, Bacteroides, Bifidobacterium and antigens from resident intestinal flora in humans. Gut 44:812818.
17. Duncan, S. H.,, R. I. Aminov,, K. P. Scott,, P. Louis,, T. B. Stanton, and, H. J. Flint. 2006. Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov., and Roseburia inulinivorans sp. nov., based on isolates from human faeces. Int. J. Syst. Evol. Microbiol. 56:24372441.
18. Duncan, S. H.,, H. J. Flint, and, C. S. Stewart. 1998. Inhibitory activity of gut bacteria against Escherichia coli O157 mediated by dietary plant metabolites. FEMS Microbiol. Lett. 164:283288.
19. Duncan, S. H.,, G. L. Hold,, A. Barcenilla,, C. S. Stewart, and, H. J. Flint. 2002. Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int. J. Syst. Evol. Microbiol. 52:16.
20. Duncan, S. H.,, G. Holtrop,, G. E. Lobley,, G. Calder,, C. S. Stewart, and, H. J. Flint. 2004. Contribution of acetate to butyrate formation by human faecal bacteria. Br. J. Nutr. 91:915923.
21. Duncan, S. H.,, P. Louis, and, H. J. Flint. 2004. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl. Environ. Microbiol. 70:58105817.
22. Duncan, S. H. 2001. Effects of rumen and gut microorganisms and their metabolites on the growth and survival of Escherichia coli O157. Ph.D. thesis. University of Aberdeen, Aberdeen, United Kingdom.
23. Eckburg, P. B.,, E. M. Bik,, C. N. Bernstein,, E. Purdom,, L. Dethlefsen,, M. Sargent,, S. R. Gill,, K. E. Nelson, and, D. A. Relman. 2005. Diversity of the human intestinal microbial flora. Science 308:16351638.
24. Finegold, S. M.,, V. L. Sutter, and, G. E. Mathison. 1983. Normal indigenous flora, p. 331. In D. J. Hentges (ed.), Human Intestinal Microbiology in Health and Disease. Academic Press, New York, NY.
25. Flint, H. J. 2006. The significance of prokaryote diversity in the human gastrointestinal tract, p. 6590. In N. A. Logan,, H. M. Lappin-Scott, and, P. C. F. Oyston (ed.), Society for General Micro biology Symposia, vol. 66. Prokaryotic Diversity: Mechanisms and Significance. Cambridge Uniersity Press, Cambridge, United Kingdom.
26. Florin, T. H. F.,, G. Zhu,, K. M. Kirk, and, N. G. Martin. 2000. Shared and unique environmental factors determine the ecology of methanogens in humans and rats. Am. J. Gastroenterol. 95:28722879.
27. Furrie, E.,, S. Macfarlane,, A. Kennedy,, J. H. Cummings,, S. V. Walsh,, D. O’Neil, and, G. T. Macfarlane. 2005. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 54:242249.
28. Gibson, G. R., and, M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota—introducing the concept of prebiotics. J. Nutr. 125:14011412.
29. Gill, C. I. R., and, I. R. Rowland. 2002. Diet and cancer: assessing the risk. Br. J. Nutr. 88(Suppl.1):S73S87.
30. Harmsen, H. J. M.,, G. C. Raangs,, T. He,, J. E. Degener, and, G. W. Welling. 2002. Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl. Environ. Microbiol. 68:29822990.
31. Hold, G. L.,, S. E. Pryde,, V. J. Russell,, E. Furrie, and, H. J. Flint. 2002. Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol. Ecol. 39:3339.
32. Hold, G. L.,, A. Schwiertz,, R. I. Aminov,, M. Blaut, and, H. J. Flint. 2003. Oligonucleotide probes that detect quantitatively significant groups of butyrate producing bacteria in human feces. Appl. Environ. Microbiol. 69:43204324.
33. Hooper, L. V., and, J. I. Gordon. 2001. Commensal host-bacterial relationships in the gut. Science 292:11151118.
34. Hoskins, L. C. 1993. Mucin degradation in the human gastrointestinal tract and its significance to enteric microbial ecology. Eur. J. Gastroenterol. Hepatol. 5:205213.
35. Jordan, S. L.,, J. Glover,, L. Malcolm,, F. M. Thomson-Carter,, I. R. Booth, and, S. F. Park. 1999. Augmentation of killing of Escherichia coli O157 by combinations of lactate, ethanol, and low pH conditions. Appl. Environ. Microbiol. 65:13081311.
36. Kalmakoff, M. L.,, D. Lu,, M. F. Whitford, and, R. M. Teather. 1999. Evidence for production of a new lantibiotic (butyrivibriocin OR79A) by the ruminal anaerobe Butyrivibrio fibrisolvens OR79: characterization of the structural gene encoding butyrivibriocin OR79A. Appl. Environ. Microbiol. 65:21282135.
37. Kazimierczak, K. A.,, H. J. Flint, and, K. P. Scott. 2006. Comparative analysis of sequences flanking tet (W) resistance genes in multiple species of gut bacteria. Antimicrob. Agents Chemother. 50:26322639.
38. Larue, R.,, Z. Yu,, V. A. Parisi,, A. R. Egan, and, M. Morrison. 2005. Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environ. Microbiol. 7:530543.
39. Lin, C. Z., and, D. A. Stahl. 1995. Taxonspecific probes for the cellulolytic genus Fibrobacter reveal abundant and novel equine-associated populations. Appl. Environ. Microbiol. 61:13481351.
40. Louis, P.,, S. H. Duncan,, S. I. McCrae,, J. Millar,, M. S. Jackson, and, H. J. Flint. 2004. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J. Bacteriol. 186:20992106.
41. Macfarlane, G. T., and, G. R. Gibson. 1995. Carbohydrate fermentation, energy transduction and gas metabolism in the human large intestine, p. 269318. In R. I. Mackie and, B. A. White (ed.), Gastrointestinal Microbiology, vol. 1. Chapman and Hall, New York, NY.
42. Malinen, E.,, T. Rintilla,, K. Kajander,, J. Matto,, A. Kassinen,, L. Krogius,, M. Saarela,, R. Korpela, and, A. Palva. 2005. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real time PCR. Am. J. Gastroenterol. 100:373382.
43. Mangin, I.,, R. Bonnet,, P. Seksik,, L. Rigottier Gois,, M. Sutren,, Y. Bouhnik,, C. Neut,, M. D. Collins,, J.-F. Colombel,, P. Marteau, and, J. Doré. 2004. Molecular inventory of faecal microflora in patients with Crohn’s disease. FEMS Microbiol. Ecol. 50:2536.
44. Manichanh, C.,, L. Rigottier-Gois,, E. Bonnaud,, K. Gloux,, E. Pelletier,, L. Frangeul,, R. Nalin,, C. Jarrin,, P. Chardon,, P. Marteau,, J. Roca, and, J. Dore. 2005. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55:205211.
45. Martin, H. M., and, J. M. Rhodes. 2000. Bacteria and inflammatory bowel disease. Curr. Opin. Infect. Dis. 13:503509.
46. McIntyre, A.,, P. R. Gibson, and, G. P. Young. 1993. Butyrate production from dietary fiber and protection against large bowel cancer in a rat model. Gut 34:386391.
47. Miyazaki, K.,, J. C. Martin,, R. Marinsek Logar, and, H. J. Flint. 1997. Degradation and utilization of xylans by the rumen anaerobe Prevotella bryantii (formerly P. ruminicola subsp. brevis B14). Anaerobe 3:373381.
48. Moore, W. E. C., and, L. H. Moore. 1995. Intestinal floras of populations that have a high risk of colon cancer. Appl. Environ. Microbiol. 61:32023207.
49. Mueller, S.,, K. Saunier,, C. Hanisch,, E. Norin,, L. Alm,, T. Midvedt,, A. Cresci,, S. Silvi,, C. Orpianesi,, M. C. Verdenelli,, T. Calvel,, C. Koebnick,, H.-J. F. Zunft,, J. Dore, and, M. Blaut. 2006. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl. Environ. Microbiol. 72:10271033.
50. Pryde, S. E.,, S. H. Duncan,, G. L. Hold,, C. S. Stewart, and, H. J. Flint. 2002. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217:133139.
51. Ramsay, A. G.,, K. P. Scott,, J. C. Martin,, M. T. Rincon, and, H. J. Flint. 2006. Cell-associated α amylases of butyrate-producing Firmicute bacteria from the human colon. Microbiology 152:32813290.
52. Reeves, A. R.,, G. R. Wang, and, A. A Salyers. 1997. Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J. Bacteriol. 179:643649.
53. Rincon, M. T.,, T. Cepelnik,, J. C. Martin,, R. Lamed,, E. A. Bayer, and, H. J. Flint. 2005. Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the bacterial cell wall. J. Bacteriol. 187:75697578.
54. Robert, C., and, A. Bernalier-Donadille. 2003. The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane excreting subjects. FEMS Microbiol. Ecol. 46:8189.
55. Roe, A. J.,, C. O’Byrne,, D. McLaggan, and, I. R. Booth. 2002. Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology 148:22152222.
56. Romling, U. 2002. Molecular biology of cellulose production in bacteria. Res. Microbiol. 153:205212.
57. Saarela, M.,, G. Mogensen,, R. Fonden,, J. Matto, and, T. Mattila-Sandholm. 2000. Probiotic bacteria: safety, functional properties and technological properties. J. Biotechnol. 84:197215.
58. Salyers, A. A.,, S. E. H. West,, J. R. Vercellotti, and, T. D. Wilkins. 1977. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl. Environ. Microbiol. 34:529533.
59. Salyers, A. A.,, J. R. Vercellotti,, S. E. H. West, and, T. D. Wilkins. 1977. Fermentation of mucins and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. Microbiol. 33:319322.
60. Schell, M. A.,, M. Karmirantzou,, B. Snel,, D. Vilanova,, B. Berger,, G. Pessi,, M.-C. Zwaheln,, F. Desiere,, P. Bork,, M. Delley,, R. D. Pridmore, and, F. Arigoni. 2002. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. USA 99:1442214427.
61. Scott, K. P.,, J. C. Martin,, G. Campbell,, C.-D. Mayer, and, H. J. Flint. 2006. Whole genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium Roseburia inulinivorans. J. Bacteriol. 188:43404349.
62. Sijpestein, A. K. 1951. On Ruminococcus flavefaciens, a cellulose-decomposing bacterium from the rumen of sheep and cattle. J. Gen. Microbiol. 5:869879.
63. Simmering, R.,, H. Pforte,, G. Jacobasch, and, M. Blaut. 2002. The growth of the flavonoid-degrading intestinal bacterium, Eubacterium ramulus, is stimulated by dietary flavonoids. FEMS Microbiol. Ecol. 40:243248.
64. Stanton, T. B., and, D. C. Savage. 1983. Rose-buria cecicola gen. nov., sp. nov., a motile, obligately anaerobic bacterium from a mouse cecum. Int. J. Syst. Bacteriol. 33:618627.
65. Stanton, T. B.,, J. S. McDowell, and, M. A. Rasmussen. 2004. Diverse tetracyline resistance genotypes of Megasphaera elsdenii strains selectively cultured from swine feces. Appl. Environ. Microbiol. 70:37543757.
66. Suau, A.,, R. Bonnet,, M. Sutren,, J. J. Godon,, G. R. Gibson,, M. D. Collins, and, J. Dore. 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 24:47994807.
67. Swidsinski, A.,, J. Weber,, V. Loening-Baucke,, L. P. Hale, and, H. Lochs. 2005. Spatial organisation and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 43:33803389.
68. Tajima, K.,, R. I. Aminov,, T. Nagamine,, K. Ogata,, M. Nakamura,, H. Matsui, and, Y. Benno. 1999. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol. Ecol. 29:159169.
69. Topping, D. L., and, P. M. Clifton. 2001. Short chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81:10311064.
70. Vernia, P.,, R. Caprilli,, G. Latella,, F. Barbetti,, F. M. Magliocca, and, M. Cittadini. 1988. Fecal lactate and ulcerative colitis. Gastroenterology 95:15641568.
71. Walker, A. W. 2006. Influence of substrate and environmental factors on human gut microbial ecology and metabolism. Ph.D. thesis. University of Aberdeen, Aberdeen, United Kingdom.
72. Walker, A. W.,, S. H. Duncan,, E. C. McWilliam Leitch,, M. W. Child, and, H. J. Flint. 2005. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl. Environ. Microbiol. 71:36923700.
73. Wells, J. E., and, P. B. Hylemon. 2000. Identification and characterization of a bile acid 7α-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7α-dehydroxylating strain isolated from human feces. Appl. Environ. Microbiol. 66:11071113.
74. Wolin, M. J. 1969. Volatile fatty acids and the inhibition of Escherichia coli growth by rumen fluid. Appl. Microbiol. 17:8387.
75. Xu, J.,, M. K. Bjursell,, J. Himrod,, S. Deng,, L. K. Carmichael,, H. C. Chiang,, L. V. Hooper, and, J. I. Gordon. 2003. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299:20742076.
76. Zoetendal, E. G.,, A. D. L. Akkermans,, W. M. Akkermans-van-Vliet,, J. A. G. M. de Vissar, and, W. M. de Vos. 2001. The host genotype affects the bacterial community in the human gastrointestinal tract. Microbiol. Health Dis. 13:129134.
77. Zoetendal, E. G.,, E. E. Vaughan, and, W. M. de Vos. 2006. A microbial world within us. Mol. Microbiol. 59:16391650.

Tables

Generic image for table
TABLE 1

Frequency of different phylogenetic groups of bacteria in feces from healthy human subjects, estimated by FISH

Citation: Kolenbrander P, Flint H, Louis P, Scott K, Duncan S. 2007. Commensal Bacteria in Health and Disease, p 101-115. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch8
Generic image for table
TABLE 2

Detection of bacteria from the and group in human feces by direct amplification of 16S rRNA genes and by cultivation

Citation: Kolenbrander P, Flint H, Louis P, Scott K, Duncan S. 2007. Commensal Bacteria in Health and Disease, p 101-115. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch8
Generic image for table
TABLE 3

Potential interactions between commensal and pathogenic bacteria in the gastrointestinal tract

Citation: Kolenbrander P, Flint H, Louis P, Scott K, Duncan S. 2007. Commensal Bacteria in Health and Disease, p 101-115. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error