1887

Chapter 9 : Free-Living and Host-Associated Protozoa as Training Camps for Intracellular Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Free-Living and Host-Associated Protozoa as Training Camps for Intracellular Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap09-2.gif

Abstract:

Protozoa ingest bacteria as a nutrient source, while macrophages do the same except as a defensive mechanism for the host. There is extensive evidence for a symbiotic relationship between protozoa and bacteria in which bacteria are ingested but remain inside the protozoa and survive without damaging the protozoa. The ability to survive within protozoa is dependent upon warding off the insults within the phagolysosome. Survival within and self-liberation from protozoa create new opportunities for the pathogen. The first of these is gene acquisition, whereby surviving bacteria can acquire the DNA of bacteria that have succumbed to digestive processes inside protozoa. Secondly, the constant insult to the pathogen can lead to new gene expression patterns in which some genes are overexpressed, repressed genes become expressed, and cryptic genes yield novel gene products. The bulk of this chapter is devoted to these possibilities, with enterica serving as a new model pathogen and rumen protozoa (RPz) functioning as the conduit for changes in the pathogen. The original protozoan-pathogen model was based on free-living protozoa that were inhaled. The model for a detergent is dioctylsulfosuccinate (DSS), although this compound has a narrow therapeutic index for some species. The expression of invasin has little impact upon virulence, but the possibility remains that this type of transfer could occur. Eliminating amoebae, including pathogenic ones such as and , is of benefit to society, while removing RPz is at the very least not harmful to ruminants.

Citation: Carlson S, Franklin S, Rasmussen M. 2007. Free-Living and Host-Associated Protozoa as Training Camps for Intracellular Pathogens, p 117-132. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch9

Key Concept Ranking

Salmonella enterica
0.69401634
Legionella pneumophila
0.6014808
0.69401634
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Cartoon depiction of the mechanistic basis of the enhancement of the virulence of DT104 bacteria engulfed by RPz. The left side represents DT104 while the right side represents serovar Typhimurium lacking SGI1. (A) Bacteria are ingested by protozoa and engulfed within the phagosome. (B) Within the phagosome, expression is activated by a low oxygen concentration and/or SO13. HilA promotes the production of virulence proteins. (C) Following bacterial egress from the protozoa, the pathogens can invade the ileum and eventually enter extraintestinal destinations. (D) As depicted, more DT104 bacteria can navigate through this maze and enter the systemic circulation. Not drawn to scale.

Citation: Carlson S, Franklin S, Rasmussen M. 2007. Free-Living and Host-Associated Protozoa as Training Camps for Intracellular Pathogens, p 117-132. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Cartoon depiction of the intraprotozoan transfer of plasmids between and protozoan-sensitive pathogens. The left side depicts the transfer of a ceftriaxone resistance plasmid from (K) to strain DT104 (D), as recently documented ( ). The right side illustrates a proposed scenario in which pathogen X transfers a virulence plasmid to (A) Bacteria are ingested by protozoa and engulfed within the phagosome. (B) Within the phagosome, the pathogens are crowded together. (C) The protozoan-sensitive pathogen is lysed and donates its plasmid to (D) Following egress from the protozoa, now expresses either a cephamycinase (Cmy) that can neutralize ceftriaxone (Cftrx) (left side) or a new virulence protein (Vp) (right side). Not drawn to scale.

Citation: Carlson S, Franklin S, Rasmussen M. 2007. Free-Living and Host-Associated Protozoa as Training Camps for Intracellular Pathogens, p 117-132. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815851.ch09
1. Abu Kwaik, Y.,, L. Gao,, B. Stone,, C. Venkataraman, and, O. Harb. 1998. Invasion of protozoa by Legionella pneumophila, and its role in bacterial ecology and pathogenesis. Appl. Environ. Microbiol. 64:31273133.
2. Abu Kwaik, Y.,, C. Venkataraman,, O. S. Harb, and, L.-Y. Gao. 1998. Signal transduction in the protozoan host Hartmannella vermiformis upon attachment and invasion by Legionella micdadei. Appl. Environ. Microbiol. 64:31343139.
3. Akinyemi, K.,, U. Mendie,, S. Smith,, A. Oyefolu, and, A. Coker. 2005. Screening of some medicinal plants used in south-west Nigerian traditional medicine for anti-Salmonella typhi activity. J. Herb. Pharmacother. 5:4560.
4. Allen, C.,, P. Fedorka-Cray,, A. Vazquez-Torres,, M. Suyemoto,, C. Altier,, L. Ryder,, F. Fang, and, S. Libby. 2001. In vitro and in vivo assessment of Salmonella enterica serovar Typhimurium DT104 virulence. Infect. Immun. 69:46734677.
5. Andra, J.,, R. Herbst, and, M. Leippe. 2003. Amoebapores, archaic effector peptides of protozoan origin, are discharged into phagosomes and kill bacteria by permeabilizing their membranes. Dev. Comp. Immunol. 27:291304.
6. Basu, M.,, S. Czinn, and, T. Blanchard. 2004. Absence of catalase reduces long-term survival of Helicobacter pylori in macrophage phagosomes. Helicobacter 9:211216.
7. Baxter, M.,, T. Fahlen,, R. Wilson, and, B. Jones. 2003. HilE interacts with HilD and negatively regulates hilA transcription and expression of the Salmonella enterica serovar Typhimurium invasive phenotype. Infect. Immun. 71:12951305.
8. Bolton, L. F.,, L. C. Kelley,, M. D. Lee,, P. J. Fedorka-Cray, and, J. J. Maurer. 1999. Detection of multidrug-resistant Salmonella enterica serotype Typhimurium DT104 based on a gene which confers cross-resistance to florfenicol and chloramphenicol. J. Clin. Microbiol. 37:13481351.
9. Boyd, D.,, G. Peters,, A. Cloeckaert,, K. Boumedine,, E. Chaslus-Dancla,, H. Imberechts, and, M. Mulvey. 2001. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J. Bacteriol. 183:57255732.
10. Boyd, D.,, G. Peters,, L. Ng, and, M. Mulvey. 2000. Partial characterization of a genomic island associated with the multidrug resistance region of Salmonella enterica Typhymurium DT104. FEMS Microbiol. Lett. 189:285291.
11. Bozue, J. A., and, W. Johnson. 1996. Interaction of Legionella pneumophila with Acanthamoeba castellanii: uptake by coiling phagocytosis and inhibition of phagosome-lysosome fusion. Infect. Immun. 64:668673.
12. Briggs, C. E., and, P. M. Fratamico. 1999. Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob. Agents Chemother. 43:846849.
13. Bukharin, O.,, M. Taigunov,, A. Zurochka,, I. Dolgushin,, Z. Gabidullin,, S. Sibiriak,, G. Aznabaev, and, A. Bulgakov. 2002. Phenomenon of apoptosis in the survival of enterobacteria in the parasite-host system. Zh. Mikrobiol. Epidemiol. Immunobiol. 2002:7984.
14. Bye, W.,, C. Allan, and, J. Trier. 1984. Structure, distribution, and origin of M cells in Peyer’s patches of mouse ileum. Gastroenterology 86:789801.
15. Campbell, J.,, J. Mohle-Boetani,, R. Reporter,, S. Abbott,, J. Farrar,, M. Brandl,, R. Mandrell, and, S. Werner. 2001. An outbreak of Salmonella serotype Thompson associated with fresh cilantro. J. Infect. Dis. 183:984987.
16. Carlson, S.,, Z. McCuddin,, M. Rasmussen,, S. Franklin, and, V. Sharma. 2007. Involvement of a Salmonella genomic island 1 gene in the rumen protozoan-mediated enhancement of invasion for multiple-antibiotic-resistant Salmonella enterica serovar Typhimurium. Infect. Immun. 75:792800.
17. Carlson, S.,, D. Meyerholz,, T. Stabel, and, B. Jones. 2002. Secretion of a putative cytotoxin in multiple antibiotic resistant Salmonella enterica serotype Typhimurium phagetype DT104. Microb. Pathog. 31:201204.
18. Carlson, S.,, M. Wu,, Z. P. McCuddin, and, V. K. Sharma. 2005. SlyA partially regulates the collagenase-mediated cytopathic phenotype specific for multiresistant Salmonella enterica serotype Typhimurium phagetype DT104. Microb. Pathog. 38:181187.
19. Carlson, S. A.,, L. F. Bolton,, C. E. Briggs,, H. S. Hurd,, V. K. Sharma,, P. Fedorka-Cray, and, B. D. Jones. 1999. Detection of Salmonella typhimurium DT104 using multiplex and fluorogenic PCR. Mol. Cell. Probes 13:213222.
20. Carlson, S. A.,, M. Browning,, K. E. Ferris, and, B. D. Jones. 2000. Identification of diminished tissue culture invasiveness among multiple antibiotic resistant Salmonella typhimurium DT104. Microb. Pathog. 28:3744.
21. Carlson, S. A.,, T. A. Casey,, M. T. Wu,, B. D. Hammes, and, B. D. Jones. 2002. A high-throughput genetic system for assessing the inhibition of proteins: identification of antibiotic resistance and virulence targets and their cognate inhibitors in Salmonella. Anal. Biochem. 310:7283.
22. Carlson, S. A., and, B. D. Jones. 1998. Inhibition of Salmonella typhimurium invasion by host cell expression of secreted bacterial invasion proteins. Infect. Immun. 66:52955300.
23. Carlson, S. A.,, R. M. Willson,, A. J. Crane, and, K. E. Ferris. 2000. Evaluation of invasion-conferring genotypes and antibiotic-induced hyperinvasive phenotypes in multiple antibiotic resistant Salmonella typhimurium DT104. Microb. Pathog. 28:373378.
24. Chang, K. 1975. Reduced growth of Blast-ocrithidia culicis and Crithidia oncopelti freed of intra-cellular symbiotes by chloramphenicol. J. Protozool. 22:271276.
25. Cirillo, J.,, S. Falkow,, L. Tompkins, and, L. Bermudez. 1997. Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect. Immun. 65:37593767.
26. Cirillo, J. D.,, S. Falkow, and, L. S. Tompkins. 1994. Growth of Legionella in Acanthamoeba castellanii enhances invasion. Infect. Immun. 62:32543261.
27. Clark, M. A.,, M. A. Jepson,, N. L. Simmons, and, B. H. Hirst. 1994. Preferential interaction of Salmonella typhimurium with mouse Peyer’s patch M cells. Res. Microbiol. 145:543552.
28. Cobbold, R.,, D. Rice,, M. Davis,, T. Besser, and, D. Hancock. 2006. Long-term persistence of multi-drug-resistant Salmonella enterica serovar Newport in two dairy herds. J. Am. Vet. Med. Assoc. 228:585591.
29. Coleman, G., and, F. Hall. 1984. The uptake and utilization of Entodinium caudatum, bacteria, free amino acids and glucose by the rumen ciliate Entodinium bursa. J. Appl. Bacteriol. 56:283294.
30. Cutter, C. 1999. Combination spray washes of saponin with water or acetic acid to reduce aerobic and pathogenic bacteria on lean beef surfaces. J. Food Prot. 62:280283.
31. D’Aoust, J.,, E. Daley,, M. Crozier, and, A. Sewell. 1990. Pet turtles: a continuing international threat to public health. Am. J. Epidemiol. 132:233238.
32. Dawson, R., and, P. Kemp. 1969. The effect of defaunation on the phospholipids and on the hydrogenation of unsaturated fatty acids in the rumen. Biochem. J. 115:351352.
33. Del Campo, J.,, M. Amiot, and, C. Nguyen-The. 2000. Antimicrobial effect of rosemary extracts. J. Food Prot. 63:13591368.
34. del Cerro-Vadillo, E.,, F. Madrazo-Toca,, E. Carrasco-Marin,, L. Fernandez-Prieto,, C. Beck,, F. Leyva-Cobian,, P. Saftig, and, C. Alvarez-Dominguez. 2006. Cutting edge: a novel nonoxidative phagosomal mechanism exerted by cathepsin-D controls Listeria monocytogenes intracellular growth. J. Immunol. 176:13211325.
35. Doublet, B.,, D. Boyd,, M. R. Mulvey, and, A. Cloeckaert. 2005. The Salmonella genomic island 1 is an integrative mobilizable element. Mol. Microbiol. 55:19111924.
36. Doublet, B.,, R. Lailler,, D. Meunier,, A. Brisabois,, D. Boyd,, M. R. Mulvey,, E. Chaslus Dancla, and, A. Cloeckaert. 2003. Variant Salmonella genomic island 1 antibiotic resistance gene cluster in Salmonella enterica serovar Albany. Emerg. Infect. Dis. 9:585591.
37. Doublet, B.,, F. X. Weill,, L. Fabre,, E. Chaslus Dancla, and, A. Cloeckaert. 2004. Variant Salmonella genomic island 1 antibiotic resistance gene cluster containing a novel 3′-N-aminoglycoside acetyltransferase gene cassette, aac (3)-Id, in Salmonella enterica serovar Newport. Antimicrob. Agents Chemother. 48:38063812.
38. do Vale, A.,, F. Marques, and, M. Silva. Apoptosis of sea bass (Dicentrarchus labrax L.) neutrophils and macrophages induced by experimental infection with Photobacterium damselae subsp. piscicida. Fish Shellfish Immunol. 15:129144.
39. Ebner, P.,, K. Garner, and, A. Mathew. 2004. Class 1 integrons in various Salmonella enterica serovars isolated from animals and identification of genomic island SGI1 in Salmonella enterica var. Meleagridis. J. Antimicrob. Chemother. 53:10041009.
40. Evans, S., and, R. Davies. 1996. Case control study of multiple-resistant Salmonella typhimurium DT104 infection of cattle in Great Britain. Vet. Rec. 139:557558.
41. Fields, P. I.,, R. V. Swanson,, C. G. Haidaris, and, F. Heffron. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA 83:51895193.
42. Finlay, B. B., and, S. Falkow. 1989. Salmonella as an intracellular parasite. Mol. Microbiol. 3:18331841.
43. Finlay, B. B., and, S. Falkow. 1997. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61:136169.
44. Flaoyen, A.,, A. Wilkins, and, M. Sandvik. 2002. Ruminal metabolism in sheep of saponins from Yucca schidigera. Vet. Res. Commun. 26:159169.
45. Franklin, S.,, S. Carlson, and, M. Rasmussen. 2005. Rumen defaunation using essential oils, p. 35. In Proceedings from the Conference on Gastrointestinal Function, Chicago, IL.
46. Fraser, D.,, T. Tsai,, W. Orenstein,, W. Parkin,, H. Beecham,, R. Sharrar,, J. Harris,, G. Mallison,, S. Martin,, J. McDade,, C. Shepard, and, P. Brachman. 1977. Legionnaires’ disease: description of an epidemic of pneumonia. N. Engl. J. Med. 297:11891197.
47. Frey, A.,, K. Giannasca,, R. Weltzin,, P. Giannasca,, H. Reggio,, W. Lencer, and, M. Neutra. 1996. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J. Exp. Med. 184:10451059.
48. Gao, L.,, O. Harb, and, Y. Abu Kwaik. 1997. Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolutionarily distant host cells, mammalian macrophages and protozoa. Infect. Immun. 65:47384746.
49. Gao, L., and, Y. Kwaik. 2000. The mechanism of killing and exiting the protozoan host Acanthamoeba polyphaga by Legionella pneumophila. Environ. Microbiol. 2:7990.
50. Garcia-del Portillo, F., and, B. Finlay. 1995. The varied lifestyles of intracellular pathogens within eukaryotic vacuolar compartments. Trends Microbiol. 3:373380.
51. Gianella, R. A.,, O. Washington,, P. Gemski, and, S. B. Formal. 1973. Invasion of HeLa cells by Salmonella typhimurium: a model for study of invasiveness of Salmonella. J. Infect. Dis. 128:6975.
52. Ginsburg, I. 2004. Bactericidal cationic peptides can also function as bacteriolysis-inducing agents mimicking beta-lactam antibiotics; it is enigmatic why this concept is consistently disregarded. Med. Hypotheses 62:367374.
53. Glynn, M. K.,, C. Bopp,, W. Dewitt,, P. Dabney,, M. Molktar, and, F. J. Angulo. 1998. Emergence of multidrug-resistant Salmonella enterica serotype typhimurium DT104 infections in the United States. N. Engl. J. Med. 338:13331338.
54. Goormachtig, S.,, W. Capoen, and, M. Holsters. 2004. Rhizobium infection: lessons from the versatile nodulation behaviour of water-tolerant legumes. Trends Plant Sci. 9:518522.
55. Goren, M.,, P. D’Arcy Hart,, M. Young, and, J. Armstrong. 1976. Prevention of phagosomelysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 73:25102514.
56. Hagele, S.,, J. Hacker, and, B. Brand. 1998. Legionella pneumophila kills human phagocytes but not protozoan host cells by inducing apoptotic cell death. FEMS Microbiol. Lett. 169:5158.
57. Hayashi, T.,, A. Catanzaro, and, S. Rao. 1997. Apoptosis of human monocytes and macrophages by Mycobacterium avium sonicate. Infect. Immun. 65:52625271.
58. Hildebrand, H.,, G. Kempka,, G. Schluter, and, M. Schmidt. 1993. Chondrotoxicity of quinolones in vivo and in vitro. Arch. Toxicol. 67:411415.
59. Isberg, R. R.,, D. L. Voorhis, and, S. Falkow. 1987. Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell 50:769778.
60. Jacobs, T., and, M. Leippe. 1995. Purification and molecular cloning of a major antibacterial protein of the protozoan parasite Entamoeba histolytica with lysozyme-like properties. Eur. J. Biochem. 231:831838.
61. Jeon, K. 1972. Development of cellular dependence on infective organisms: micrurgical studies in amoebas. Science 176:11221123.
62. Jeon, K., and, I. J. Lorch. 1967. Unusual intra-cellular bacterial infection in large, free-living amoebae. Exp. Cell Res. 48:236240.
63. Jeon, K., and, M. Jeon. 1976. Endosymbiosis in amoebae: recently established endosymbionts have become required cytoplasmic components. J. Cell. Physiol. 89:337344.
64. Jones, B. D., and, S. Falkow. 1994. Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization. Infect. Immun. 62:37453752.
65. Kayouli, C.,, C. van Nevel,, R. Dendooven, and, D. Demeyer. 1986. Effect of defaunation and refaunation of the rumen on rumen fermentation and N-flow in the duodenum of sheep. Arch. Tierernahr. 36:827837.
66. Kim, E., and, T. Aoki. 1993. Drug resistance and broad geographical distribution of identical R plasmids of Pasteurella piscicida isolated from cultured yellowtail in Japan. Microbiol. Immunol. 37:103109.
67. Kim, E., and, T. Aoki. 1996. Sequence analysis of the florfenicol resistance gene encoded in the transferable R-plasmid of a fish pathogen, Pasteurella piscicida. Microbiol. Immunol. 40:665669.
68. Kim, E., and, T. Aoki. 1996. Sulfonamide resistance gene in a transferable R plasmid of Pasteurella piscicida. Microbiol. Immunol. 40:397399.
69. Kirkup, B. C., and, M. A. Riley. 2004. Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428:412414.
70. Kubo, I.,, K. Fujita,, A. Kubo,, K. Nihei, and, T. Ogura. 2004. Antibacterial activity of coriander volatile compounds against Salmonella choleraesuis. J. Agric. Food Chem. 52:33293332.
71. Lee, C. A.,, B. D. Jones, and, S. Falkow. 1992. Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. Proc. Natl. Acad. Sci. USA 89:18471851.
72. Lerner, S.,, B. Schmitt,, R. Seligsohn, and, G. Matz. 1986. Comparative study of ototoxicity and nephrotoxicity in patients randomly assigned to treatment with amikacin or gentamicin. Am. J. Med. 80:98104.
73. LeVier, K.,, R. Phillips,, V. Grippe,, R. I. Roop, and, G. Walker. 2000. Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science 287:24922493.
74. Lyczak, J. B. 2003. Commensal bacteria increase invasion of intestinal epithelium by Salmonella enterica serovar Typhi. Infect. Immun. 71:66106614.
75. Machmuller, A.,, C. Soliva, and, M. Kreuzer. 2003. Effect of coconut oil and defaunation treatment on methanogenesis in sheep. Reprod. Nutr. Dev. 43:4155.
76. Magarinos, B.,, Y. Santos,, J. Romalde,, C. Rivas,, J. Barja, and, A. Toranzo. 1992. Pathogenic activities of live cells and extracellular products of the fish pathogen Pasteurella piscicida. J. Gen. Microbiol. 138:24912498.
77. Mauel, J. 1982. Macrophage activation and effector mechanisms against microbes. Adv. Exp. Med. Biol. 155:675686.
78. McCuddin, Z. P.,, S. A. Carlson, and, V. K. Sharma. 24 February 2007, posting date. Experimental reproduction of bovine Salmonella encephalopathy using a norepinephrine-based stress model. Vet. J. doi:10.1016/j.tvjl.2006.12.014.
79. McCuddin, Z. P.,, S. A. Carlson,, M. A. Rasmussen, and, S. K. Franklin. 2006. Klebsiella to Salmonella gene transfer within rumen protozoa: implications for antibiotic resistance and rumen defaunation. Vet. Microbiol. 114:275284.
80. Mendoza, G.,, R. Britton, and, R. Stock. 1993. Influence of ruminal protozoa on site and extent of starch digestion and ruminal fermentation. J. Anim. Sci. 71:15721578.
81. Meunier, D.,, D. Boyd,, M. R. Mulvey,, S. Baucheron,, C. Mammina,, A. Nastasi,, E. Chaslus-Dancla, and, A. Cloeckaert. 2002. Salmonella enterica serotype Typhimurium DT 104 antibiotic resistance genomic island 1 in serotype Paratyphi B. Emerg. Infect. Dis. 8:430433.
82. Miner, J. 1999. Alternatives to minimize the environmental impact of large swine production units. J. Anim. Sci. 77:440444.
83. Miyake, M.,, T. Watanabe,, H. Koike,, M. Molmeret,, Y. Imai, and, Y. Abu Kwaik. 2005. Characterization of Legionella pneumophila pmiA, a gene essential for infectivity of protozoa and macrophages. Infect. Immun. 73:62726782.
84. Mizobuchi, N.,, K. Yokoigawa,, T. Harumoto,, H. Fujisawa, and, Y. Takagi. 2003. Catalase is the bacteria-derived detoxifying substance against paramecia-killing toxin in wheat grasspowder infusion. J. Eukaryot. Microbiol. 50:299303.
85. Owen, R. 1977. Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer’s patches in the normal unobstructed mouse intestine: an ultrastructural study. Gastroenterology 72:440451.
86. Pardon, P.,, R. Sanchis,, J. Marly,, F. Lantier,, L. Guilloteau,, D. Buzoni-Gatel,, I. Oswald,, M. Pepin,, B. Kaeffer,, P. Berthon, et al. 1990. Experimental ovine salmonellosis (Salmonella abortusovis): pathogenesis and vaccination. Res. Microbiol. 141:945953.
87. Penheiter, K. L.,, N. Mathur,, D. Giles,, T. Fahlen, and, B. D. Jones. 1997. Non-invasive Salmonella typhimurium mutants are avirulent because of an inability to enter and destroy M cells of ileal Peyer’s patches. Mol. Microbiol. 24:697709.
88. Peracino, B.,, C. Wagner,, A. Balest,, A. Balbo,, B. Pergolizzi,, A. Noegel,, M. Steinert, and, S. Bozzaro. 2006. Function and mechanism of action of Dictyostelium Nramp1 (Slc11a1) in bacterial infection. Traffic 7:2238.
89. Perez-Diaz, J. C., and, R. C. Clowes. 1980. Physical characterization of plasmids determining synthesis of a microcin which inhibits methionine synthesis in Escherichia coli. J. Bacteriol. 141:10151023.
90. Que, X.,, L. Brinen,, P. Perkins,, S. Herdman,, K. Hirata,, B. Torian,, H. Rubin,, J. McKerrow, and, S. Reed. 2002. Cysteine proteinases from distinct cellular compartments are recruited to phagocytic vesicles by Entamoeba histolytica. Mol. Biochem. Parasitol. 119:2332.
91. Rasmussen, M.,, S. A. Carlson,, S. K. Franklin,, M. T. Wu,, Z. P. McCuddin, and, V. K. Sharma. 2005. Exposure to rumen protozoa leads to enhancement of invasion and pathogenicity for multiple-antibiotic-resistant Salmonella bearing SGI-1. Infect. Immun. 73:46684675.
92. Rowbotham, T. 1980. Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J. Clin. Pathol. 33:11791183.
93. Schmieger, H., and, P. Schicklmaier. 1999. Transduction of multiple drug resistance of Salmonella enterica serovar typhimurium DT104. FEMS Microbiol. Lett. 170:251256.
94. Schnupf, P.,, D. Portnoy, and, A. Decatur. 2006. Phosphorylation, ubiquitination and degradation of listeriolysin O in mammalian cells: role of the PEST-like sequence. Cell. Microbiol. 8:353364.
95. Small, P.,, L. Ramakrishnan, and, S. Falkow. 1994. Remodeling schemes of intracellular pathogens. Science 263:637639.
96. Small, P. L.,, R. R. Isberg, and, S. Falkow. 1987. Comparison of the ability of enteroinvasive Escherichia coli, Salmonella typhimurium, Yersinia pseudotuberculosis, and Yersinia enterocolitica to enter and replicate within HEp-2 cells. Infect. Immun. 55:16741679.
97. Steinbach, G.,, L. Lauterbach, and, U. Methner. 2000. Studies of the phenomenon of host adaptation in Salmonella. J. Vet. Med. B 47:707719.
98. Sturgill-Koszycki, S.,, P. Schlesinger,, P. Chakraborty,, P. Haddix,, H. Collins,, A. Fok,, R. Allen,, S. Gluck,, J. Heuser, and, D. G. Russell. 1994. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678681.
99. Swanson, M. S., and, R. R. Isberg. 1995. Formation of the Legionella pneumophila replicative phagosome. Infect. Agents Dis. 2:269271.
100. Tenant, R., and, L. Bermudez. 2006. Mycobacterium avium genes upregulated upon infection of Acanthamoeba castellanii demonstrate a common response to the intracellular environment. Curr. Microbiol. 52:128133.
101. Towne, G.,, T. Nagaraja,, R. J. Brandt, and, K. Kemp. 1990. Dynamics of ruminal ciliated protozoa in feedlot cattle. Appl. Environ. Microbiol. 56:31743178.
102. Uzzau, S.,, D. Brown,, T. Wallis,, S. Rubino,, G. Leori,, S. Bernard,, J. Casadesus,, D. Platt, and, J. Olsen. 2000. Host adapted serotypes of Salmonella enterica. Epidemiol. Infect. 125:229255.
103. Wall, P.,, D. Morgan,, K. Lamden,, M. Ryan,, M. Griffin,, E. Threlfall,, L. Ward, and, B. Rowe. 1994. A case control study of infection with an epidemic strain of multiresistant Salmonella typhimurium DT104 in England and Wales. Commun. Dis. Rep. CDR Rev. 4:R130R135.
104. Wang, Y.,, T. McAllister,, L. Yanke, and, P. Cheeke. 2000. Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes. J. Appl. Microbiol. 88:887896.
105. Williams, A. G., and, G. S. Coleman. 1992. The Rumen Protozoa, p. 441. Springer-Verlag, New York, NY.
106. Williams, A. G., and, G. S. Coleman. 1997. The rumen protozoa, p. 73139. In P. N. Holoson and, C. S. Stewart (ed.), The Rumen Microbial Ecosystem. Chapman and Hall, London, United Kingdom.
107. Wu, M. T.,, S. A. Carlson, and, D. K. Meyerholz. 2002. Cytopathic effects observed upon expression of a repressed collagenase gene present in Salmonella and related pathogens: mimicry of a cytotoxin from multiple antibiotic-resistant Salmonella enterica serotype Typhimurium phagetype DT104. Microb. Pathog. 32:19.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error