1887

Chapter 10 : Attachment and Colonization of the Respiratory Mucosa

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Attachment and Colonization of the Respiratory Mucosa, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap10-2.gif

Abstract:

Mycoplasmas are remarkable bacteria distinguished most notably by the complete lack of a cell wall, which is reflected by their grouping in the taxonomic class . infections are typically transmitted by the aerosol route, with the most common manifestations being bronchitis and atypical, or “walking,” pneumonia. Extrapulmonary consequences are reported for about 25% of infections. The small size and minimal genome of belies an unexpectedly complex cellular architecture that includes a novel cytoskeleton and a differentiated polar structure, or terminal organelle. By combining mutant analysis with the digital imaging of growing cultures, significant headway is being realized in assigning functions to certain terminal organelle components with respect to gliding motility and cell development. As the leading end in gliding motility, the terminal organelle is likely to initiate the recognition and binding of host cell receptors. The authors speculate that gliding motility may contribute to colonization and pathogenesis in the respiratory tract in at least three ways. Researchers have begun to utilize a normal human bronchial epithelial (NHBE) cell model system to explore directly the interaction of cells with the mucosal epithelium in the early stages of infection. The reduced attachment to NHBE cells by the P200 mutant makes a compelling, though not definitive, case for a role for gliding motility in the colonization of the respiratory mucosa.

Citation: Krause D, Jordan J, How-Yi C, Hyun Kyung P, Krunkosky T. 2007. Attachment and Colonization of the Respiratory Mucosa, p 135-147. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch10

Key Concept Ranking

Upper Respiratory Tract Infections
0.6865289
Infectious Diseases
0.4306788
Gliding Motility
0.42411146
0.6865289
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Scanning electron micrograph of cells. Arrows, terminal organelle; bar, 1.0 μm. Photo courtesy of S. R. Bose.

Citation: Krause D, Jordan J, How-Yi C, Hyun Kyung P, Krunkosky T. 2007. Attachment and Colonization of the Respiratory Mucosa, p 135-147. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic illustration of airway epithelium. Ciliated, goblet, and basal cells are indicated, as are the mucus and periciliary layers of the airway surface liquid.

Citation: Krause D, Jordan J, How-Yi C, Hyun Kyung P, Krunkosky T. 2007. Attachment and Colonization of the Respiratory Mucosa, p 135-147. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Laser confocal microscopy image of infected NHBE cells. NHBE cells were incubated with wild-type for 30 min, washed, and probed with antibodies to tubulin to indicate cilia and specific antibodies. Mycoplasmas are seen as fluorescent spots which are associated primarily with the ciliated cells. Bar, 20 μm.

Citation: Krause D, Jordan J, How-Yi C, Hyun Kyung P, Krunkosky T. 2007. Attachment and Colonization of the Respiratory Mucosa, p 135-147. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815851.ch10
1. Alvarez, R. A.,, M. W. Blaylock, and, J. B. Baseman. 2003. Surface localized glyceraldehyde-3-phosphate dehydrogenase of Mycoplasma genitalium binds mucin. Mol. Microbiol. 48:14171425.
2. Balish, M. F.,, T.-W. Hahn,, P. L. Popham, and, D. C. Krause. 2001. Stability of Mycoplasma pneumoniae cytadherence-accessory protein HMW1 correlates with its association with the triton shell. J. Bacteriol. 183:36803688.
3. Balish, M. F., and, D. C. Krause. 2002. Cytoskeletal structure and function in Mycoplasma pneumoniae, p. 491518. In S. Razin and, R. Herrmann (ed.), Molecular Biology and Pathogenicity of Mycoplasmas. Kluwer Academic-Plenum Publishers, New York, NY.
4. Baseman, J. B.,, R. M. Cole,, D. C. Krause, and, D. K. Leith. 1982. Molecular basis for cytadsorption of Mycoplasma pneumoniae. J. Bacteriol. 151:15141522.
5. Baseman, J. B.,, J. Morrison-Plummer,, D. Drouillard,, B. Puleo-Scheppke,, V. V. Tryon, and, S. C. Holt. 1987. Identification of a 32-kilo-dalton protein of Mycoplasma pneumoniae associated with hemadsorption. Isr. J. Med. Sci. 23:474479.
6. Biberfeld, G., and, P. Biberfeld. 1970. Ultrastructural features of Mycoplasma pneumoniae. J. Bacteriol. 102:855861.
7. Bredt, W. 1968. Motility and multiplication of Mycoplasma pneumoniae. A phase contrast study. Pathol. Microbiol. 32:321326.
8. Brown, D. R.,, L. A. Zacher,, L. D. Wendland, and, M. B. Brown. 2005. Emerging mycoplas-moses in wildlife, p. 383414. In A. Blanchard and, G. Browning (ed.), Mycoplasmas: Molecular Biology, Pathogenicity, and Strategies for Control. Horizon Bioscience, Wymondham, United Kingdom.
9. Casarett, L. J. 1960. Physical and physiological factors controlling the fate of inhaled substances. II. Retention. Health Phys. 2:379386.
10. Chu, H. W.,, S. Jeyaseelan,, J. G. Rino,, D. R. Voelker,, R. B. Wexler,, K. Campbell,, R. J. Har-beck, and, R. J. Martin. 2005. TLR2 signaling is critical for Mycoplasma pneumoniae-induced airway mucin expression. J. Immunol. 174:57135719.
11. Collier, A. M., and, W. A. Clyde, Jr. 1974. Appearance of Mycoplasma pneumoniae in lungs of experimentally infected hamsters and sputum from patients with natural disease. Am. Rev. Respir. Dis. 110:765773.
12. Collier, A. M.,, W. A. Clyde, Jr., and, F. W. Denny. 1971. Mycoplasma pneumoniae in hamster tracheal organ culture: immunofluorescent and electron microscopic studies. Proc. Soc. Exp. Biol. Med. 136:569573.
13. Dallo, S. F., and, J. B. Baseman. 2000. Intra-cellular DNA replication and long-term survival of pathogenic mycoplasmas. Microb. Pathog. 29:301309.
14. Dallo, S. F.,, T. R. Kannan,, M. W. Blaylock, and, J. B. Baseman. 2002. Elongation factor Tu and E1 beta subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol. Microbiol. 46:10411051.
15. Dirksen, L. B.,, K. Krebes, and, D. C. Krause. 1994. Phosphorylation of cytadherence-accessory proteins in Mycoplasma pneumoniae. J. Bacteriol. 176:74997505.
16. Feldner, J.,, U. Göbel, and, W. Bredt. 1982. Mycoplasma pneumoniae adhesion localized to tip structure by monoclonal antibody. Nature 298:765767.
17. Frey, J. 2002. Mycoplasmas of animals, p. 7390. In S. Razin and, R. Herrmann (ed.), Molecular Biology and Pathogenicity of Mycoplasmas. Kluwer Academic-Plenum Publishers, New York, NY.
18. Gabridge, M. G. 1983. Attachment of Mycoplasma pneumoniae to tracheal monolayer outgrowths. Yale J. Biol. Med. 56:657663.
19. Göbel, U.,, V. Speth, and, W. Bredt. 1981. Filamentous structures in adherent Mycoplasma pneumoniae cells treated with nonionic detergents. J. Cell Biol. 91:537543.
20. Gray, T. E.,, K. Guzman,, C. W. Davis,, L. H. Abdullah, and, P. Nettesheim. 1996. Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 14:104112.
21. Hasselbring, B. M.,, J. L. Jordan, and, D. C. Krause. 2005. Mutant analysis reveals a specific requirement for protein P30 in Mycoplasma pneumoniae gliding motility. J. Bacteriol. 187:62816289.
22. Hasselbring, B. M.,, J. L. Jordan,, R. W. Krause, and, D. C. Krause. 2006. Terminal organelle development in the cell wall-less prokaryote Mycoplasma pneumoniae. Proc. Natl. Acad. Sci. USA 103:1647816483.
23. Hasselbring, B. M., and, D. C. Krause. 2007. Cytoskeletal protein P41 is required to anchor the terminal organelle in the wall-less prokaryote Mycoplasma pneumoniae. Mol. Microbiol. 63:4453.
24. Hasselbring, B. M.,, C. A. Page,, E. S. Sheppard, and, D. C. Krause. 2006. Transposon mutagenesis identifies genes associated with Mycoplasma pneumoniae gliding motility. J. Bacteriol. 188:63356345.
25. Hegermann, J.,, F. Mayer, and, R. Herrmann. 2002. Cytoskeletal elements in the bacterium Mycoplasma pneumoniae. Naturwissenschaften 89:453458.
26. Henderson, G. P., and, G. J. Jensen. 2006. Three-dimensional structure of Mycoplasma pneumoniae’s attachment organelle and a model for its role in gliding motility. Mol. Microbiol. 60:376385.
27. Hu, P. C.,, R. M. Cole,, Y. S. Huang,, J. A. Graham,, D. E. Gardner,, A. M. Collier, and, W. A. J. Clyde. 1982. Mycoplasma pneumoniae infection: role of a surface protein in the attachment organelle. Science 216:313315.
28. Jordan, J. L.,, K. M. Berry,, M. F. Balish, and, D. C. Krause. 2001. Stability and subcellular localization of cytadherence-associated protein P65 in Mycoplasma pneumoniae. J. Bacteriol. 183:73877391.
29. Jordan, J. L.,, H.-Y. Chang,, M. F. Balish,, L. S. Holt,, S. R. Bose,, B. M. Hasselbring,, R. H. Waldo III,, T. M. Krunkosky, and, D. C. Krause. 2007. P200 is dispensable for Mycoplasma pneumoniae hemadsorption but not gliding motility or colonization of differentiated bronchial epithelium. Infect. Immun. 75:518522.
30. Kannan, T. R.,, D. Provenzano,, J. R. Wright, and, J. B. Baseman. 2005. Identification and characterization of human surfactant protein A binding protein of Mycoplasma pneumoniae. Infect. Immun. 73:28282834.
31. Kenri, T.,, S. Seto,, A. Horino,, Y. Sasaki,, T. Sasaki, and, M. Miyata. 2004. Use of fluorescent-protein tagging to determine the subcellular localization of Mycoplasma pneumoniae proteins encoded by the cytadherence regulatory locus. J. Bacteriol. 186:69446955.
32. Krause, D. C., and, M. F. Balish. 2004. Cellular engineering in a minimal microbe: structure and assembly of the terminal organelle of Mycoplasma pneumoniae. Mol. Microbiol. 51:917924.
33. Krause, D. C., and, J. B. Baseman. 1983. Inhibition of Mycoplasma pneumoniae hemadsorption and adherence to respiratory epithelium by antibodies to a membrane protein. Infect. Immun. 39:11801186.
34. Krause, D. C.,, D. K. Leith,, R. M. Wilson, and, J. B. Baseman. 1982. Identification of Mycoplasma pneumoniae proteins associated with hemadsorption and virulence. Infect. Immun. 35:809817.
35. Krunkosky, T. M.,, J. L. Jordan,, E. Chambers, and, D. C. Krause. 2007. Mycoplasma pneumoniae host-pathogen studies in an air-liquid culture of differentiated human airway epithelial cells. Microb. Pathog. 42:98103.
36. Layh-Schmitt, G., and, R. Herrmann. 1994. Spatial arrangement of gene products of the P1 operon in the membrane of Mycoplasma pneumoniae. Infect. Immun. 62:974979.
37. Loveless, R. W.,, S. Griffiths,, P. R. Fryer,, C. Blauth, and, T. Feizi. 1992. Immunoelectron microscopic studies reveal differences in distribution of sialo-oligosaccharide receptors for Mycoplasma pneumoniae on the epithelium of human and hamster bronchi. Infect. Immun. 60:40154023.
38. Meng, K. E., and, R. M. Pfister. 1980. Intra-cellular structures of Mycoplasma pneumoniae revealed after membrane removal. J. Bacteriol. 144:390399.
39. Muse, K. E.,, D. A. Powell, and, A. M. Collier. 1976. Mycoplasma pneumoniae in hamster tracheal organ culture studied by scanning electron microscopy. Infect. Immun. 13:229237.
40. Pich, O. Q.,, R. Burgos,, M. Ferrer-Navarro,, E. Querol, and, J. Piñol. 2006. Mycoplasma genitalium mg200 and mg386 genes are involved in gliding motility but not in cytadherence. Mol. Microbiol. 60:15091519.
41. Proft, T.,, H. Hilbert,, H. Plagens, and, R. Herrmann. 1996. The P200 protein of Mycoplasma pneumoniae shares common features with the cytadherence associated proteins HMW1 and HMW3. Gene 171:7982.
42. Randell, S. H., and, R. C. Boucher. 2006. Effective mucus clearance is essential for respiratory health. Am. J. Respir. Cell Mol. Biol. 35:2028.
43. Razin, S. 1992. Mycoplasma taxonomy and ecology, p. 322. In J. Maniloff,, R. N. McElhaney,, L. R. Finch, and, J. B. Baseman (ed.), Mycoplasmas: Molecular Biology and Pathogenesis. American Society for Microbiology, Washington, DC.
44. Regula, J. T.,, G. Boguth,, A. Gorg,, J. Hegermann,, F. Mayer,, R. Frank, and, R. Herrmann. 2001. Defining the mycoplasma ‘cytoskeleton’: the protein composition of the Triton X-100 insoluble fraction of the bacterium Mycoplasma pneumoniae determined by 2-D gel electrophoresis and mass spectrometry. Microbiology 147:10451057.
45. Rocha, E. P. C., and, A. Blanchard. 2002. Genomic repeats, genome plasticity, and the dynamics of Mycoplasma evolution. Nucleic Acids Res. 30:20312042.
46. Romero-Arroyo, C. E.,, J. Jordan,, S. J. Peacock,, M. J. Willby,, M. A. Farmer, and, D. C. Krause. 1999. Mycoplasma pneumoniae protein P30 is required for cytadherence and associated with proper cell development. J. Bacteriol. 181:10791087.
47. Roomans, G. M.,, I. Kozlova,, H. Nilsson,, V. Vanthanouvong,, B. Button, and, R. Tarran. 2004. Measurements of airway surface liquid height and mucus transport by fluorescence microscopy, and of ion composition by X-ray microanalysis. J. Cyst. Fibros. 3:135139.
48. Samet, J. M., and, P.-W. Cheng. 2005. The role of airway mucus in pulmonary toxicology. Environ. Health Perspect. 102(Suppl. 2):89103.
49. Seto, S.,, G. Layh-Schmitt,, T. Kenri, and, M. Miyata. 2001. Visualization of the attachment organelle and cytadherence proteins of Mycoplasma pneumoniae by immunofluorescence microscopy. J. Bacteriol. 183:16211630.
50. Seto, S.,, A. Uenoyama, and, M. Miyata. 2005. Identification of a 521-kilodalton protein (Gli521) involved in force generation or force transmission for Mycoplasma mobile gliding. J. Bacteriol. 187:35023510.
51. Seybert, A.,, R. Herrmann, and, A. S. Fran gakis. 2006. Structural analysis of Mycoplasma pneumoniae by cryo-electron tomography. J. Struct. Biol. 156:342354.
52. Sobeslavsky, O.,, B. Prescott, and, R. M. Chanock. 1968. Adsorption of Mycoplasma pneumoniae to neuraminic acid receptors of various cells and possible role in virulence. J. Bacteriol. 96:695705.
53. Tarran, R. 2004. Regulation of airway surface liquid volume and mucus transport by active ion transport. Proc. Am. Thorac. Soc. 1:4246.
54. Uenoyama, A.,, A. Kusumoto, and, M. Miyata. 2004. Identification of a 349-kilodalton protein (Gli349) responsible for cytadherence and glass binding during gliding of Mycoplasma mobile. J. Bacteriol. 186:15371545.
55. Uenoyama, A., and, M. Miyata. 2005. Identification of a 123-kilodalton protein (Gli123) involved in machinery for gliding motility of Mycoplasma mobile. J. Bacteriol. 187:55785584.
56. Waites, K. B., and, D. F. Talkington. 2004. Mycoplasma pneumoniae and its role as a human pathogen. Clin. Microbiol. Rev. 17:697728.
57. Waites, K. B., and, D. F. Talkington. 2005. New developments in human diseases due to mycoplasmas, p. 289354. In A. Blanchard and, G. Browning (ed.), Mycoplasmas: Molecular Biology, Pathogenicity and Strategies for Control. Horizon Bioscience, Wymondham, United Kingdom.
58. Waldo, R. H., III, and, D. C. Krause. 2006. Synthesis, stability, and function of cytadhesin P1 and accessory protein B/C complex of Mycoplasma pneumoniae. J. Bacteriol. 188:569575.
59. Widdicombe, J. H.,, S. J. Bastacky,, D. X.-Y. Wu, and, C. Y. Lee. 1997. Regulation of depth and composition of airway surface liquid. Eur. Respir. J. 10:28922897.
60. Winton, H. L.,, H. Wan,, M. B. Cannell,, D. C. Gruenert,, P. J. Thompson,, D. R. Garrod,, G. A. Stewart, and, C. Robinson. 1998. Cell lines of pulmonary and non-pulmonary origin as tools to study the effects of house dust mite proteinases on the regulation of epithelial permeability. Clin. Exp. Allergy 28:12731285.
61. Yavlovitch, A.,, M. Tarshis, and, S. Rottem. 2004. Internalization and intracellular survival of Mycoplasma pneumoniae by non-phagocytic cells. FEMS Microbiol. Lett. 233:241246.

Tables

Generic image for table
TABLE 1

Representative mycoplasma diseases in domestic animals, wildlife, and humans

Citation: Krause D, Jordan J, How-Yi C, Hyun Kyung P, Krunkosky T. 2007. Attachment and Colonization of the Respiratory Mucosa, p 135-147. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch10
Generic image for table
TABLE 2

Comparison of gliding velocities and attachment to glass, erythrocytes, and NHBE cells by wild-type and P30 and P200 mutants

Citation: Krause D, Jordan J, How-Yi C, Hyun Kyung P, Krunkosky T. 2007. Attachment and Colonization of the Respiratory Mucosa, p 135-147. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error