1887

Chapter 13 : The Role of Flagella in Virulence

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The Role of Flagella in Virulence, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap13-2.gif

Abstract:

This chapter summarizes our present state of understanding of the role of flagella in campylobacter pathogenesis. The flagellar filament of species is composed of two flagellin subunits. Prokaryotic protein glycosylation was at one time thought to be uncommon, but flagellins from all polarly flagellated bacteria that have been examined thus far are glycosylated. Flagellin glycosylation is required for filament assembly in both of these pathogens. Flagella isolated from this mutant showed increased solubility in detergent, suggesting that changes in the glycan composition affected subunit interactions within the filament. Spontaneous autoagglutination (AAG) of campylobacters has long been recognized as a problem in serotyping schemes. The differences can be visualized using green fluorescent protein (GFP)-labeled bacteria. A proteomic comparison of biofilm-grown and planktonic cells indicated the up-regulation of a number of flagellar proteins in biofilm cells, and mutational studies also suggested that flagella (and FlaC expression) are critical to biofilm development. At least one (and likely more) virulence factor appears to be regulated along with the flagellar regulon. Additionally, the flagellin structure appears to have evolved in ways that allow the pathogen to avoid the innate immune response and form aggregates that are critical to virulence.

Citation: Patricia G. 2007. The Role of Flagella in Virulence, p 197-206. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch13

Key Concept Ranking

Type III Secretion System
0.4352901
0.4352901
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

A) Autoagglutination of cells were suspended to an OD of 1.0 and allowed to incubate at room temperature overnight. Left, wild-type 81-176; right, a nonflagellated mutant. (B) Scanning electron micrograph of aggregated 81–176 cells.

Citation: Patricia G. 2007. The Role of Flagella in Virulence, p 197-206. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Microcolony of 81–176 labeled with GFP on a monolayer of INT407 cells. A monolayer of INT407 cells was inoculated with 81-176 expressing GFP and incubated at 37°C for 24 h ( ). The fluorescent image is shown enhanced in black and white. A dense microcolony is visible with chains of fluorescent bacteria extending from the colony.

Citation: Patricia G. 2007. The Role of Flagella in Virulence, p 197-206. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815851.ch13
1. Allos, B. M. 1997. Association between Campylobacter infection and Guillain Barre syndrome. J. Infect. Dis. 176(Suppl 2):S125S128.
2. Andersen-Nissen, E.,, K. D. Smith,, K. L. Strobe,, S. L. R. Barrett,, B. T. Cookson,, S. M. Logan, and, A. Aderem. 2005. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc. Natl. Acad. Sci. USA 102:92479252.
3. Ang, C. W.,, J. D. Laman,, H. J. Willison,, E. R. Wagner,, H. P. Endtz,, M. A. DeKlerk,, A. P. Tio-Gillen,, N. Van den Braak,, B. C. Jacobs, and, P. A. Van Doorn. 2002. Structure of Campylobacter jejuni lipopolysaccharide determines antiganglioside specificity and clinical features of Guillain-Barré and Miller Fisher patients. Infect. Immun. 70:12021208.
4. Bacon, D. J.,, C. M. Szymanski,, D. H. Burr,, R. P. Silver,, R. A. Alm, and, P. Guerry. 2001. A phase variable capsule is involved in virulence of Campylobacter jejuni 81-176. Mol. Microbiol. 40:769777.
5. Bacon, D. J.,, R. A. Alm,, L. Hu,, T. E. Hickey,, C. P. Ewing,, R. A. Batchelor,, T. J. Trust, and, P. Guerry. 2002. DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81-176. Infect. Immun. 70:62426250.
6. Black, R. E.,, M. M. Levine,, M. L. Clements,, T. P. Hughes, and, M. J. Blaser. 1988. Experimental Campylobacter jejuni infection in humans. J. Infect. Dis. 157:472479.
7. Bremell, T.,, A. Bjell, and, A. Svedhem. 1991. Reiter’s syndrome after Campylobacter jejuni enteritis. Arthritis Rheum. 23:948950.
8. Caldwell, M. B.,, P. Guerry,, E. C. Lee,, J. P. Burans, and, R. I. Walker. 1985. Reversible expression of flagella in Campylobacter jejuni. Infect. Immun. 50:941943.
9. Carrillo, C. D.,, E. Taboada,, J. H. Nash,, P. H. Lanthier,, J. Kelly,, P. C. Lau,, R. Verhulp,, O. Mykytczuk,, J. Sy,, W. A. Findlay,, K. Amoako,, S. Gomis,, P. Willson,, J. W. Austin,, A. Potters,, L. Babiuk,, B. Allan, and, C. M. Szymanski. 2004. Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J. Biol. Chem. 279:2032720338.
10. Chang, C., and, J. F. Miller. 2006. Campylobacter jejuni colonization of mice with limited enteric flora. Infect. Immun. 74:52615271.
11. Chou, W. K.,, S. Dick,, W. W. Wararchuk, and, M. E. Tanner. 2005. Identification and characterization of NeuB3 from Campylobacter jejuni as a pseudaminic acid synthase. J. Biol. Chem. 280:3592235928.
12. Clark, C. G.,, L. Price,, R. Ahmed,, D. L. Woodward,, P. L. Melito,, F. G. Rodgers,, F. Jamieson,, B. Ciebin,, A. Li, and, A. Ellis. 2003. Characterization of waterborne-outbreak associated Campylobacter jejuni, Walkerton, Ontario. Emerg. Infect. Dis. 9:12321241.
13. Endtz, H. P.,, C. W. Ang,, N. van den Braak,, B. Duim,, A. Rigter,, L. J. Price,, D. L. Woodward,, F. G. Rodgers,, W. M. Johnson,, J. A. Wagenaar,, B. C. Jacobs,, H. A. Verbaugh, and, A. van Belkum. 2000. Molecular characterization of Campylobacter jejuni from patients with Guillain Barre and Miller Fisher syndromes. J. Clin. Microbiol. 38:22972301.
14. Ferrero, R. L., and, A. Lee. 1988. Motility of Campylobacter jejuni in a viscous environment: comparison with conventional rod shaped bacteria. J. Gen. Microbiol. 134:5359.
15. Friedman, C. R.,, J. Neimann,, H. C. Wegener, and, R. V. Tauxe. 2000. Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations, p. 121138. In I. Nachamkin and, M. J. Balser (ed.), Campylobacter, 2nd ed. ASM Press, Washington, DC.
16. Gilbert, M.,, M.-F. Karwaski,, S. Bernatchez,, N. M. Young,, E. Taboada,, J. Michniewicz,, A. M. Cunningham, and, W. W. Wararchuk. 2002. The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen Campylobacter jejuni. J. Biol. Chem. 277:327337.
17. Golden, N. J., and, D. W. K. Acheson. 2002. Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect. Immun. 70:17611771.
18. Goon, S.,, C. P. Ewing,, M. Lorenzo,, D. Pattarini,, G. Majam, and, P. Guerry. 2006. A σ28-regulated nonflagellar gene contributes to virulence of Campylobacter jejuni 81–176. Infect. Immun. 74:769772.
19. Goon, S.,, J. F. Kelly,, S. M. Logan,, C. P. Ewing, and, P. Guerry. 2003. Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol. Microbiol. 50:659671.
20. Guerry, P.,, R. A. Alm,, M. E. Power,, S. M. Logan, and, T. J. Trust. 1991. Role of two genes in Campylobacter motility. J. Bacteriol. 173:47574764.
21. Guerry, P.,, C. M. Szymanski,, M. M. Prendergast,, T. E. Hickey,, C. P. Ewing,, D. L. Pattarini, and, A. P. Moran. 2001. Phase variation of Campylobacter jejuni 81–176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro. Infect. Immun. 70:787793.
22. Guerry, P.,, C. P. Ewing,, M. Schirm,, M. Lorenzo,, J. Kelly,, D. Pattarini,, G. Majam,, P. Thibault, and, S. M. Logan. 2006. Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol. Microbiol. 60:299311.
23. Guerry, P.,, P. Doig,, R. A. Alm,, D. H. Burr,, N. Kinsella, and, T. J. Trust. 1996. Identification and characterization of genes required for post-translational modification of Campylobacter coli VC167 flagellin. Mol. Microbiol. 19:369378.
24. Hendrixson, D. R. 2006. A phase-variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalism. Mol. Microbiol. 61:16461659.
25. Hendrixson, D. R.,, B. J. Akerley, and, V. J. DiRita. 2001. Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol. Microbiol. 40:214224.
26. Hendrixson, D. R., and, V. J. DiRita. 2004. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52:471484.
27. Hendrixson, D. R., and, V. J. DiRita. 2003. Transcription of sigma54-dependent but not sigma28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol. Microbiol. 50:687702.
28. Jagannathan, A. C. C., and, C. W. Penn. 2001. Roles of rpoN, fliA, and flgR in expression of flagella in Campylobacter jejuni. J. Bacteriol. 183:29372942.
29. Johnsen, K.,, M. Ostensen,, A. C. Melbye, and, K. Melby. 1983. HLA-B27-negative arthritis related to Campylobacter jejuni enteritis in three children and two adults. Acta Med. Scand. 214:165168.
30. Kakuda, T., and, V. J. DiRita. 2006. Cj1496c encodes a Campylobacter jejuni glycoprotein that influences invasion of human epithelial cells and colonization of the chick gastrointestinal tract. Infect. Immun. 74:47154723.
31. Kalmokoff, M.,, P. Lanthier,, T. L. Tremblay,, M. Foss,, P. C. Lau,, G. Snaders,, J. Austin,, J. Kelly, and, C. M. Szymanski. 2006. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveal a role for the motility complex in biofilm formation. J. Bacteriol. 188:43124320.
32. Karlyshev, A. V.,, D. Linton,, N. A. Gregson,, A. J. Lastovica, and, B. W. Wren. 2000. Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol. Microbiol. 35:529541.
33. Kinsella, N.,, P. Guerry,, J. Cooney, and, T. J. Trust. 1997. The flgE gene of Campylobacter coli is under the control of the alternate sigma factor σ54. J. Bacteriol. 179:46474653.
34. Konkel, M. E.,, J. D. Klena,, V. Rivera-Amill,, M. R. Monteville,, D. Biswas,, B. Raphael, and, J. Mickelson. 2004. Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J. Bacteriol. 186:32963303.
35. Konkel, M. E.,, B. J. Kim,, V. Rivera-Amill, and, S. G. Garvis. 1999. Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells. Mol. Microbiol. 32:691701.
36. Korlath, J. A.,, M. T. Osterholm,, L. A. Judy,, J. C. Forfang, and, R. A. Robinson. 1985. A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J. Infect. Dis. 152:592596.
37. Lara-Tejero, M., and, J. Galan. 2002. Cytolethal distending toxin: limited damage as a strategy to modulate cellular functions. Trends Microbiol. 10:147152.
38. Lazazzera, B. A. 2005. Lessons from DNA microarray analysis: the gene expression profile of biofilms. Curr. Opin. Microbiol. 8:222227.
39. Lee, A.,, J. L. O’Rourke,, P. J. Barrington, and, T. J. Trust. 1986. Mucus colonization as a determinant of pathogenicity in intestinal infection by Campylobacter jejuni: a mouse cecal model. Infect. Immun. 51:536546.
40. Lee, R. B.,, D. C. Hassane,, D. L. Cottle, and, C. L. Pickett. 2003. Interactions of Campylobacter jejuni cytolethal distending toxin subunits with CdtA and CdtC with HeLa cells. Infect. Immun. 71:48834890.
41. Linton, D.,, M. Gilbert,, P. G. Hitchen,, A. Dell,, H. R. Morris,, W. W. Wakarchuk,, N. A. Gregson, and, B. W. Wren. 2000. Phase variation of a β-1,3 galactosyltransferase involved in generation of the ganglioside GM1-like lipooligosaccharide of Campylobacter jejuni. Mol. Microbiol. 37:501514.
42. Liu, F., and, M. E. Tanner. 2006. PseG of pseudaminic acid biosynthesis: a UDP-sugar hydrolase as a masked glycosyltransferase. J. Biol. Chem. 281:2090220909.
43. Logan, S. M. 2006. Flagellar glycosylation—a new component of the motility repertoire? Microbiology 152:12491262.
44. Logan, S. M.,, J. F. Kelly,, P. Thibault,, C. P. Ewing, and, P. Guerry. 2002. Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Mol. Microbiol. 46:587597.
45. Martin, P. M.,, J. Mathiot,, J. Ipero,, M. Kirimat,, A. J. Georges, and, M. C. Georges-Courbot. 1989. Immune response to Campylobacter jejuni and Campylobacter coli in a cohort of children from birth to two years of age. Infect. Immun. 57:25422546.
46. Matilla, L.,, A. Siitonen,, H. Kyronseppa,, I. Simula,, P. Oksanen,, M. Stenvik,, P. Salo,, H. Peltola, and the Finnish-Moroccan Study Group. 1992. Seasonal variation in etiology of travellers’ diarrhea. J. Infect. Dis. 165:385388.
47. Misawa, N., and, M. J. Blaser. 2000. Detection and characterization of autoagglutination activity by Campylobacter jejuni. Infect. Immun. 68:61686175.
48. Morooka, T.,, A. Umeda, and, K. Amako. 1985. Motility as an intestinal colonization factor for Campylobacter jejuni. J. Gen. Microbiol. 131:19731980.
49. Nachamkin, I.,, X. H. Yang, and, N. J. Stern. 1993. Role of Campylobacter jejuni flagella as colonization factors for three-day old chicks: analysis with flagellar mutants. Appl. Environ. Microbiol. 59:12691273.
50. Newell, D. G. 1986. Monoclonal antibodies directed against the flagella of Campylobacter jejuni: production, characterization and lack of effect on colonization of infant mice. J. Hyg. 96:131141.
51. Nuijten, P. J. M.,, N. M. C. BleuminkPluym,, W. Gaastra, and, B. A. M. van der Zeijst. 1989. Flagellin expression in Campylobacter jejuni is regulated at the transcriptional level. Infect. Immun. 57:10841088.
52. Oberhelman, R. A., and, D. N. Taylor. 2000. Campylobacter infections in developing countries, p. 139154. In I. Nachamkin and, M. J. Blaser (ed.), Campylobacter, 2nd ed. ASM Press, Washington, DC.
53. Ottemann, K. M., and, J. F. Miller. 1997. Roles for motility in bacterial-host interactions. Mol. Microbiol. 24:11091117.
54. Park, S. F.,, D. Purdy, and, S. Leach. 2000. Localized reversible frameshift mutation in the flhA gene confers phase variability to flagellin expression in Campylobacter coli. J. Bacteriol. 182:207210.
55. Parkhill, J.,, B. W. Wren,, K. Mungall,, J. M. Ketley,, C. Churcher,, D. Basham,, T. Chillingworth,, R. M. Davies,, T. Feltwell,, S. Holroyd,, K. Jagels,, A. V. Karlyshev,, S. Moule,, M. J. Pallen,, C. W. Penn,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, A. H. M. van Vliet,, S. Whitehead, and, B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable tracts. Nature 403:665668.
56. Pavlovskis, O. R.,, D. M. Rollins,, R. L. Haberberger,, A. E. Green,, L. Habash,, S. Stroko, and, R. I. Walker. 1991. Significance of flagella in colonization resistance of rabbits immunized with Campylobacter spp. Infect. Immun. 59:22592264.
57. Power, M. E.,, P. Guerry,, W. D. McCubbin,, C. M. Kay, and, T. J. Trust. 1994. Structural and antigenic characteristics of Campylobacter coli FlaA flagellin. J. Bacteriol. 176:33033313.
58. Purdy, D.,, C. M. Buswell,, A. E. Hodgson,, K. McAlpine,, I. Henderson, and, S. A. Leach. 2000. Characterization of cytolethal distending toxin (CDT) mutants of Campylobacter jejuni. J. Med. Microbiol. 49:473479.
59. Rivera-Amill, V.,, B. J. Kim,, J. Keshu, and, M. E. Konkel. 2001. Secretion of the virulence-associated Campylobacter invasion antigens from Campylobacter jejuni requires a stimulatory signal. J. Infect. Dis. 183:16071616.
60. Schirm, M.,, E. C. Soo,, A. J. Aubry,, J. Austin,, P. Thibault, and, S. M. Logan. 2003. Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori. Mol. Microbiol. 48:15791592.
61. Schirm, M.,, I. C. Schoenhofen,, S. M. Logan,, K. C. Waldron, and, P. Thibault. 2005. Identification of unusual bacterial glycosylation by tandem mass spectrometry analyses using intact proteins. Anal. Chem. 77:77747782.
62. Schoenhofen, I. C.,, D. J. McNally,, E. Vinogradov,, D. Whitfield,, N. M. Young,, S. Dick,, W. W. Wararchuk,, J. R. Brisson, and, S. M. Logan. 2006. Functional characterization of dehydratase/aminotransferase pairs from Helicobacter and Campylobacter: enyzmes distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways. J. Biol. Chem. 281:723732.
63. Schoenhofen, I. C.,, V. V. Lunin,, J. P. Julien,, Y. Li,, E. Ajamian,, A. Matte,, M. Cygler,, J. R. Brisson,, A. Aubry,, S. M. Logan,, S. Bhatia,, W. W. Wakarchuk, and, N. M. Young. 2006. Structural and functional characterization of PseC, an aminotransferase involved in the biosynthesis of pseudaminic acid, an essential flagellar modification in Helicobacter pylori. J. Biol. Chem. 281:89078916.
64. Smith, K. D.,, E. Andersen-Nissen,, F. Hayashi,, K. Strobe,, M. A. Bergman,, S. L. R. Barrett,, B. T. Cookson, and, A. Aderem. 2003. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4:12471253.
65. Song, Y. C.,, S. Jin,, H. Louie,, D. Ng,, R. Lau,, Y. Zhang,, R. Weerasekera,, S. A. Rashid,, L. A. Ward,, S. D. Der, and, V. L. Chan. 2004. FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol. Microbiol. 53:541553.
66. Speelman, P.,, M. J. Streulens,, S. C. Sanyal, and, R. I. Glass. 1983. Detection of Campylobacter jejuni and other potential pathogens in travellers’ diarrhoea in Bangladesh. Scand. J. Gastroenterol. Suppl. 84:1923.
67. Takata, T.,, S. Fujimoto, and, S. Amako. 1992. Isolation of nonchemotactic mutants of Campylobacter jejuni and their colonization of the mouse intestinal tract. Infect. Immun. 60:35963600.
68. Taylor, D., and, P. Echeverria. 1986. Etiology and epidemiology of travellers’ diarrhea in Asia. Rev. Infect. Dis. 8(Suppl. 2):S136S141.
69. Thibault, P.,, S. M. Logan,, J. F. Kelly,, J.-R. Brisson,, C. P. Ewing,, T. J. Trust, and, P. Guerry. 2001. Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem. 276:3486234870.
70. Wassenaar, T. M.,, B. A. M. van der Zeijst,, R. Aryling, and, D. N. Newell. 1993. Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J. Gen. Microbiol. 139:11711175.
71. Wassenaar, T. M.,, N. M. C. Bleumink Pluym, and, B. A. M. van der Zeijst. 1991. Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO J. 10:20552061.
72. Wosten, M. M. S. M.,, J. A. Wagenaar, and, J. P. M. van Putten. 2004. The flgS/flgR two component signal transduction system regulates the fla operon in Campylobacter jejuni. J. Biol. Chem. 279:1621416222.
73. Yao, R.,, D. H. Burr, and, P. Guerry. 1997. CheY mediated modulation of Campylobacter jejuni virulence. Mol. Microbiol. 23:10211032.
74. Yao, R.,, D. H. Burr,, P. Dogi,, T. J. Trust,, H. Niu, and, P. Guerry. 1994. Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol. Microbiol. 14:883893.
75. Yuki, N.,, K. Susuki,, M. Koga,, Y. Nishimoto,, M. Odaka,, K. Hirata,, K. Taguchi,, T. Miyatake,, K. Furukawa,, T. Kobata, and, M. Yamada. 2004. Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome. Proc. Natl. Acad. Sci. USA 101:1140411409.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error