1887

Chapter 16 : Shiga Toxins (Stxs): Multifaceted Pathogenicity Determinants

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Shiga Toxins (Stxs): Multifaceted Pathogenicity Determinants, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap16-2.gif

Abstract:

The Shiga toxins (Stxs) (also known as Vero toxins and formerly called Shiga-like toxins) constitute a family of toxins that features Stx from type 1 as the prototype. Among bacterial toxins, the Stxs are particularly potent poisons that are estimated to be as toxic per unit of weight as tetanus toxin and second only to botulinum toxin in potency. The major difference among the Stxs is reflected in the division of the Stx family into two groups, Stx/Stx1 and Stx2, based on the capacity of antitoxin to neutralize the cytotoxic activity of each member of the homologous but not the heterologous group. The Stx-producing (STEC) bacteria grow within the colon and elaborate Stx1 and/or Stx2. The toxin crosses the intestinal barrier and enters the bloodstream. Once in the bloodstream, the toxin may bind to polymorphonuclear cells and circulate. The major target organ of the Stxs is the kidney, although sites within the central nervous system may also be affected. The interaction of Stx and bacterial lipopolysaccharide with cells of the immune system and locally within the kidney may lead to increased cytokine and chemokine expression. Some epidemiological evidence suggests that STEC strains that produce Stx2 cause more severe disease than STEC strains that make Stx1 or both Stx1 and Stx2.

Citation: Melton-Celsa A, Robinson C, Smith M, O’Brien A. 2007. Shiga Toxins (Stxs): Multifaceted Pathogenicity Determinants, p 239-251. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch16

Key Concept Ranking

Immune Systems
0.52799916
Amino Acids
0.50465494
Hemolytic Uremic Syndrome
0.44830114
Bacterial Toxins
0.41053453
0.52799916
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Crystal structures of Stx and Stx2. The A subunits (gray) rise above the B pentamers at the bottom of each image. The A peptides are depicted in black, as are the active sites in the A peptides. Note how the N-terminal end of the A peptide hovers near the active site of the toxin.The program DeepView/Swiss-PDB Viewer was used to model X-ray crystallo-graphic coordinates of the Stx and Stx2 holotoxins. The Protein Data Bank accession numbers for the Stx and Stx2 crystal structures shown are 1R4Q and 1R4P, respectively.

Citation: Melton-Celsa A, Robinson C, Smith M, O’Brien A. 2007. Shiga Toxins (Stxs): Multifaceted Pathogenicity Determinants, p 239-251. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Steps in the pathogenesis of STEC. After the Stx-expressing bacteria are ingested, they colonize the host large intestine (through intimin for EHEC bacteria, and possibly aided by Stx expression), the Stxs enter the bloodstream, and the toxin, most likely in combination with lipopolysaccharide (LPS), causes increased levels of chemokines and cytokines. The toxin directly damages glomerular endothelial cells in the kidney, and that damage in the presence of the chemokines and cytokines creates a prothrombotic environment that leads to the HUS.

Citation: Melton-Celsa A, Robinson C, Smith M, O’Brien A. 2007. Shiga Toxins (Stxs): Multifaceted Pathogenicity Determinants, p 239-251. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Model of the mechanism by which Stx2 may aid STEC colonization. Stx2 produced by adherent EHEC is internalized, travels in a retrograde manner through the cell, and halts protein synthesis. Through a yet-to-be-defined mechanism, nucleolin localization at the cell surface is increased, thus providing a greater number of nucleolin receptors available for initial localized adherence. The net result is enhanced microcolony formation and intestinal colonization as demonstrated in the mouse. TGN, trans-Golgi network; ER, endoplasmic reticulum.

Citation: Melton-Celsa A, Robinson C, Smith M, O’Brien A. 2007. Shiga Toxins (Stxs): Multifaceted Pathogenicity Determinants, p 239-251. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815851.ch16
1. Acheson, D. W., and, G. T. Keusch. 1994. The shigella paradigm and colitis due to enterohaemorrhagic Escherichia coli. Gut 35:872874.
2. Acheson, D. W.,, J. Reidl,, X. Zhang,, G. T. Keusch,, J. J. Mekalanos, and, M. K. Waldor. 1998. In vivo transduction with Shiga toxin 1-encoding phage. Infect. Immun. 66:44964498.
3. Andreoli, S. P.,, H. Trachtman,, D. W. Acheson,, R. L. Siegler, and, T. G. Obrig. 2002. Hemolytic uremic syndrome: epidemiology, pathophysiology, and therapy. Pediatr. Nephrol. 17:293298.
4. [Reference deleted.]
5. Boerlin, P.,, S. A. McEwen,, F. Boerlin Petzold,, J. B. Wilson,, R. P. Johnson, and, C. L. Gyles. 1999. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J. Clin. Microbiol. 37:497503.
6. Calderwood, S. B.,, D. W. K. Acheson,, G. T. Keusch,, T. J. Barrett,, P. M. Griffin,, N. A. Strockbine,, B. Swaminathan,, J. B. Kaper,, M. M. Levine,, B. S. Kaplan,, H. Karch,, A. D. O’Brien,, T. G. Obrig,, Y. Takeda,, P. I. Tarr, and, I. K. Wachsmuth. 1996. Proposed new nomenclature for SLT (VT) family. ASM News 62:118119.
7. Calderwood, S. B., and, J. J. Mekalanos. 1987. Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J. Bacteriol. 169:47594764.
8. Centers for Disease Control and Prevention and Office of the Inspector General, Department of Health and Human Services. 2002. Possession, use, and transfer of select agents and toxins, interim final rule. Fed. Regist. 240:7688676905.
9. Conradi, H. 1903. Uber Iosliche, durch asptische Autolyse erhaltene Giftstoffe vonRuhrund Typhus-Bazillen. Dtsch. Med. Wochenschr. 29:2628.
10. Cornick, N. A.,, A. F. Helgerson,, V. Mai,, J. M. Ritchie, and, D. W. Acheson. 2006. In vivo transduction of an Stx-encoding phage in ruminants. Appl. Environ. Microbiol. 72:50865088.
11. De Grandis, S.,, H. Law,, J. Brunton,, C. Gyles, and, C. A. Lingwood. 1989. Globotetraosylceramide is recognized by the pig edema disease toxin. J. Biol. Chem. 264:1252012525.
12. Deresiewicz, R. L.,, P. R. Austin, and, C. J. Hovde. 1993. The role of tyrosine-114 in the enzymatic activity of the Shiga-like toxin I A-chain. Mol. Gen. Genet. 241:467473.
13. Deresiewicz, R. L.,, S. B. Calderwood,, J. D. Robertus, and, R. J. Collier. 1992. Mutations affecting the activity of the Shiga-like toxin I A-chain. Biochemistry 31:32723280.
14. Dowling, T. C.,, P. A. Chavaillaz,, D. G. Young,, A. Melton-Celsa,, A. O’Brien,, C. Thuning-Roberson,, R. Edelman, and, C. O. Tacket. 2005. Phase 1 safety and pharmacokinetic study of chimeric murine-human monoclonal antibody castx2 administered intravenously to healthy adult volunteers. Antimicrob. Agents Chemother. 49:18081812.
15. Dubos, R. J., and, J. W. Geiger. 1946. Preparation and properties of Shiga toxin and toxoid. J. Exp. Med. 84:143156.
16. Dziva, F.,, P. M. van Diemen,, M. P. Stevens,, A. J. Smith, and, T. S. Wallis. 2004. Identification of Escherichia coli O157:H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiology 150:36313645.
17. Edwards, A. C.,, A. R. Melton-Celsa,, K. Arbuthnott,, J. R. Stinson,, C. K. Schmitt,, H. C. Wong, and, A. D. O’Brien. 1998. Vero cell neutralization and mouse protective efficacy of humanized monoclonal antibodies against Escherichia coli toxins Stx1 and Stx2, p. 388392. In J. B. Kaper and, A. D. O’Brien (ed.), Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains. ASM Press, Washington, DC.
18. Endo, Y.,, K. Mitsui,, M. Motizuki, and, K. Tsurugi. 1987. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J. Biol. Chem. 262:59085912.
19. Fontaine, A.,, J. Arondel, and, P. J. Sansonetti. 1988. Role of Shiga toxin in the pathogenesis of bacillary dysentery, studied by using a Tox mutant of Shigella dysenteriae 1. Infect. Immun. 56:30993109.
20. Franchini, M.,, M. Zaffanello, and, D. Veneri. 2006. Advances in the pathogenesis, diagnosis and treatment of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Thromb. Res. 118:117184.
21. Fraser, M. E.,, M. M. Chernaia,, Y. V. Kozlov, and, M. N. James. 1994. Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 Å resolution. Nat. Struct. Biol. 1:5964.
22. Fraser, M. E.,, M. Fujinaga,, M. M. Cherney,, A. R. Melton-Celsa,, E. M. Twiddy,, A. D. O’Brien, and, M. N. James. 2004. Structure of Shiga toxin type 2 (Stx2) from Escherichia coli O157:H7. J. Biol. Chem. 279:2751127517.
23. Gamage, S. D.,, A. K. Patton,, J. E. Strasser,, C. L. Chalk, and, A. A. Weiss. 2006. Commensal bacteria influence Escherichia coli O157: H7 persistence and Shiga toxin production in the mouse intestine. Infect. Immun. 74:19771983.
24. Gamage, S. D.,, J. E. Strasser,, C. L. Chalk, and, A. A. Weiss. 2003. Nonpathogenic Escherichia coli can contribute to the production of Shiga toxin. Infect. Immun. 71:31073115.
25. Garg, A. X.,, R. S. Suri,, N. Barrowman,, F. Rehman,, D. Matsell,, M. P. Rosas Arellano,, M. Salvadori,, R. B. Haynes, and, W. F. Clark. 2003. Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA 290:13601370.
26. Griffin, P. M. 1995. Escherichia coli O157:H7 and other enterohemorrhagic Escherichia coli, p. 739761. In M. J. Blaser,, P. D. Smith,, J. I. Ravdin,, H. B. Greenberg, and, R. L. Guerrant (ed.), Infections of the Gastrointestinal Tract. Raven Press, Ltd., New York, NY.
27. Hehnly, H.,, D. Sheff, and, M. Stamnes. 2006. Shiga toxin facilitates its retrograde transport by modifying microtubule dynamics. Mol. Biol. Cell 17:43794389.
28. Henikoff, S., and, J. G. Henikoff. 1992. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89:1091510919.
29. Houdouin, V.,, C. Doit,, P. Mariani,, N. Brahimi,, C. Loirat,, A. Bourrillon, and, E. Bingen. 2004. A pediatric cluster of Shigella dysenteriae serotype 1 diarrhea with the hemolytic uremic syndrome in 2 families in France. Clin. Infect. Dis. 38:e96e99.
30. Hovde, C. J.,, S. B. Calderwood,, J. J. Mekalanos, and, R. J. Collier. 1988. Evidence that glutamic acid 167 is an active-site residue of Shiga-like toxin I. Proc. Natl. Acad. Sci. USA 85:25682572.
31. Jelacic, S.,, C. L. Wobbe,, D. R. Boster,, M. A. Ciol,, S. L. Watkins,, P. I. Tarr, and, A. E. Stapleton. 2002. ABO and P1 blood group antigen expression and stx genotype and outcome of childhood Escherichia coli O157:H7 infections. J. Infect. Dis. 185:214219.
32. Jerse, A. E., and, J. B. Kaper. 1991. The eae gene of enteropathogenic Escherichia coli encodes a 94-kilodalton membrane protein, the expression of which is influenced by the EAF plasmid. Infect. Immun. 59:43024309.
33. Judge, N. A.,, H. S. Mason, and, A. D. O’Brien. 2004. Plant cell-based intimin vaccine given orally to mice primed with intimin reduces time of Escherichia coli O157:H7 shedding in feces. Infect. Immun. 72:168175.
34. Kaplan, B. S.,, T. G. Cleary, and, T. G. Obrig. 1990. Recent advances in understanding the pathogenesis of the hemolytic uremic syndromes. Pediatr. Nephrol. 4:276283.
35. Karmali, M. A.,, M. Petric,, C. Lim,, P. C. Fleming,, G. S. Arbus, and, H. Lior. 1985. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J. Infect. Dis. 151:775782.
36. Karmali, M. A.,, B. T. Steele,, M. Petric, and, C. Lim. 1983. Sporadic cases of haemolyticuraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet 1:619620.
37. Khine, A. A., and, C. A. Lingwood. 1994. Capping and receptor-mediated endocytosis of cell-bound verotoxin (Shiga-like toxin). 1. Chemical identification of an amino acid in the B subunit necessary for efficient receptor glycolipid binding and cellular internalization. J. Cell. Physiol. 161:319332.
38. Koch, C.,, S. Hertwig,, R. Lurz,, B. Appel, and, L. Beutin. 2001. Isolation of a lysogenic bacteriophage carrying the stx1OX3 gene, which is closely associated with Shiga toxin-producing Escherichia coli strains from sheep and humans. J. Clin. Microbiol. 39:39923998.
39. Lauvrak, S. U.,, S. Walchli,, T. G. Iversen,, H. H. Slagsvold,, M. L. Torgersen,, B. Spilsberg, and, K. Sandvig. 2006. Shiga toxin regulates its entry in a Syk-dependent manner. Mol. Biol. Cell 17:10961109.
40. Levine, M. M.,, H. L. Dupont,, S. B. Formal,, R. B. Hornick,, A. Takeuchi,, E. J. Gangarosa,, M. J. Snyder, and, J. P. Libonati. 1973. Pathogenesis of Shigella dysenteriae 1 (Shiga) dysentery. J. Infect. Dis. 127:261270.
41. Lindgren, S. W.,, A. R. Melton, and, A. D. O’Brien. 1993. Virulence of enterohemorrhagic Escherichia coli O91:H21 clinical isolates in an orally infected mouse model. Infect. Immun. 61:38323842.
42. Lingwood, C. A.,, M. Mylvaganam,, S. Arab,, A. A. Khine,, G. Magnusson,, S. Grinstein, and, P. G. Nyholm. 1998. Shiga toxin (verotoxin) binding to its receptor glycolipid, p. 129139. In J. B. Kaper and, A. D. O’Brien (ed.), Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains. ASM Press, Washington, DC.
43. Louise, C. B., and, T. G. Obrig. 1995. Specific interaction of Escherichia coli O157:H7–derived Shiga-like toxin II with human renal endothelial cells. J. Infect. Dis. 172:13971401.
44. McDonough, M. A., and, J. R. Butterton. 1999. Spontaneous tandem amplification and deletion of the Shiga toxin operon in Shigella dysenteriae 1. Mol. Microbiol. 34:10581069.
45. Melton-Celsa, A. R.,, S. C. Darnell, and, A. D. O’Brien. 1996. Activation of Shiga-like toxins by mouse and human intestinal mucus correlates with virulence of enterohemorrhagic Escherichia coli O91:H21 isolates in orally infect ed, streptomycin-treated mice. Infect. Immun. 64:15691576.
46. Melton-Celsa, A. R.,, J. F. Kokai-Kun, and, A. D. O’Brien. 2002. Activation of Shiga toxin type 2d (Stx2d) by elastase involves cleavage of the C-terminal two amino acids of the A2 peptide in the context of the appropriate B pentamer. Mol. Microbiol. 43:207215.
47. Melton-Celsa, A. R., and, A. D. O’Brien. 2000. Shiga toxins of Shigella dysenteriae and Escherichia coli, p. 385406. In K. Aktories and, I. Just (ed.), Handbook of Experimental Pharmacology, vol. 145. Bacterial Protein Toxins. Springer-Verlag, Berlin, Germany.
48. Myers, E. W., and, W. Miller. 1988. Optimal alignments in linear space. Comput. Appl. Biosci. 4:1117.
49. Nataro, J. P., and, J. B. Kaper. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11:142201.
50. Neisser, M., and, K. Shiga. 1903. Ueber freie Recptoren von Typhus- und Dysenterue-Bazillen und ueber das Dysenterie Toxin. Dtsch. Med. Wochenschr. 29:6162.
51. Ohmura-Hoshino, M.,, S. T. Ho,, H. Kurazono,, K. Igarashi,, S. Yamasaki, and, Y. Takeda. 2003. Genetic and immunological analysis of a novel variant of Shiga toxin 1 from bovine Escherichia coli strains and development of bead-ELISA to detect the variant toxin. Microbiol. Immunol. 47:717725.
52. Ostroff, S. M.,, P. I. Tarr,, M. A. Neill,, J. H. Lewis,, N. Hargrett-Bean, and, J. M. Kobayashi. 1989. Toxin genotypes and plasmid profiles as determinants of systemic sequelae in Escherichia coli O157:H7 infections. J. Infect. Dis. 160:994998.
53. Paton, A. W.,, L. Beutin, and, J. C. Paton. 1995. Heterogeneity of the amino-acid sequences of Escherichia coli Shiga-like toxin type-I operons. Gene 153:7174.
54. Paton, A. W.,, A. J. Bourne,, P. A. Manning, and, J. C. Paton. 1995. Comparative toxicity and virulence of Escherichia coli clones expressing variant and chimeric Shiga-like toxin type II operons. Infect. Immun. 63:24502458.
55. Paton, A. W.,, J. C. Paton,, M. W. Heuzenroeder,, P. N. Goldwater, and, P. A. Manning. 1992. Cloning and nucleotide sequence of a variant Shiga-like toxin II gene from Escherichia coli OX3: H21 isolated from a case of sudden infant death syndrome. Microb. Pathog. 13:225236.
56. Paton, A. W.,, J. C. Paton, and, P. A. Manning. 1993. Polymerase chain reaction amplification, cloning and sequencing of variant Escherichia coli Shiga-like toxin type II operons. Microb. Pathog. 15:7782.
57. Phalipon, A., and, P. J. Sansonetti. 2003. Shigellosis: innate mechanisms of inflammatory destruction of the intestinal epithelium, adaptive immune response, and vaccine development. Crit. Rev. Immunol. 23:371401.
58. Pierard, D.,, G. Muyldermans,, L. Moriau,, D. Stevens, and, S. Lauwers. 1998. Identification of new verocytotoxin type 2 variant B-subunit genes in human and animal Escherichia coli isolates. J. Clin. Microbiol. 36:33173322.
59. Richardson, S. E.,, M. A. Karmali,, L. E. Becker, and, C. R. Smith. 1988. The histopathology of the hemolytic uremic syndrome associated with verocytotoxin-producing Escherichia coli infections. Hum. Pathol. 19:11021108.
60. Robinson, C. M.,, J. F. Sinclair,, M. J. Smith, and, A. D. O’Brien. 2006. Shiga toxin of enterohemorrhagic Escherichia coli type O157:H7 promotes intestinal colonization. Proc. Natl. Acad. Sci. USA 103:96679672.
61. Samuel, J. E.,, L. P. Perera,, S. Ward,, A. D. O’Brien,, V. Ginsburg, and, H. C. Krivan. 1990. Comparison of the glycolipid receptor specificities of Shiga-like toxin type II and Shiga-like toxin type II variants. Infect. Immun. 58:611618.
62. Sandvig, K.,, O. Garred,, K. Prydz,, J. V. Kozlov,, S. H. Hansen, and, B. van Deurs. 1992. Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature 358:510512.
63. Sandvig, K.,, B. Spilsberg,, S. U. Lauvrak,, M. L. Torgersen,, T. G. Iversen, and, B. van Deurs. 2004. Pathways followed by protein toxins into cells. Int. J Med. Microbiol. 293:483490.
64. Schmidt, H.,, M. Montag,, J. Bockemuhl,, J. Heesemann, and, H. Karch. 1993. Shiga-like toxin II-related cytotoxins in Citrobacter freundii strains from humans and beef samples. Infect. Immun. 61:534543.
65. Schmitt, C. K.,, M. L. McKee, and, A. D. O’Brien. 1991. Two copies of Shiga-like toxin II-related genes common in enterohemorrhagic Escherichia coli strains are responsible for the antigenic heterogeneity of the O157:H- strain E32511. Infect. Immun. 59:10651073.
66. Scotland, S. M.,, B. Rowe,, H. R. Smith,, G. A. Willshaw, and, R. J. Gross. 1988. Vero cytotoxin-producing strains of Escherichia coli from children with haemolytic uraemic syndrome and their detection by specific DNA probes. J. Med. Microbiol. 25:237243.
67. Scotland, S. M.,, G. A. Willshaw,, H. R. Smith, and, B. Rowe. 1987. Properties of strains of Escherichia coli belonging to serogroup O157 with special reference to production of Vero cytotoxins VT1 and VT2. Epidemiol. Infect. 99:613624.
68. Sheng, H.,, J. Y. Lim,, H. J. Knecht,, J. Li, and, C. J. Hovde. 2006. Role of Escherichia coli O157:H7 virulence factors in colonization at the bovine terminal rectal mucosa. Infect. Immun. 74:46854693.
69. Siegler, R. L.,, T. G. Obrig,, T. J. Pysher,, V. L. Tesh,, N. D. Denkers, and, F. B. Taylor. 2003. Response to Shiga toxin 1 and 2 in a baboon model of hemolytic uremic syndrome. Pediatr. Nephrol. 18:9296.
70. Siegler, R. L.,, T. J. Pysher,, R. Lou,, V. L. Tesh, and, F. B. Taylor, Jr. 2001. Response to Shiga toxin-1, with and without lipopolysaccharide, in a primate model of hemolytic uremic syndrome. Am. J. Nephrol. 21:420425.
71. Sjogren, R.,, R. Neill,, D. Rachmilewitz,, D. Fritz,, J. Newland,, D. Sharpnack,, C. Colleton,, J. Fondacaro,, P. Gemski, and, E. Boedeker. 1994. Role of Shiga-like toxin I in bacterial enteritis: comparison between isogenic Escherichia coli strains induced in rabbits. Gastroenterology 106:306317.
72. Smith, M. J.,, L. D. Teel,, H. M. Carvalho,, A. R. Melton-Celsa, and, A. D. O’Brien. 2006. Development of a hybrid Shiga holotoxoid vaccine to elicit heterologous protection against Shiga toxins types 1 and 2. Vaccine 24:41224129.
73. Teel, L. D.,, A. R. Melton-Celsa,, C. K. Schmitt, and, A. D. O’Brien. 2002. One of two copies of the gene for the activatable Shiga toxin type 2d in Escherichia coli O91:H21 strain B2F1 is associated with an inducible bacteriophage. Infect. Immun. 70:42824291.
74. Tesh, V. L.,, J. A. Burris,, J. W. Owens,, V. M. Gordon,, E. A. Wadolkowski,, A. D. O’Brien, and, J. E. Samuel. 1993. Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infect. Immun. 61:33923402.
75. U.S. Army Medical Research Institute of Infectious Diseases. 1998. Medical Management of Biological Casualties: Handbook. U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD.
76. van Heyningen, W. E., and, G. P. Gladstone. 1953. The neurotoxin of Shigella shigae. 3. The effect of iron on production of the toxin. Br. J. Exp. Pathol. 34:221229.
77. Wen, S. X.,, L. D. Teel,, N. A. Judge, and, A. D. O’Brien. 2006. A plant-based oral vaccine to protect against systemic intoxication by Shiga toxin type 2. Proc. Natl. Acad. Sci. USA 103:70827087.
78. Wen, S. X.,, L. D. Teel,, N. A. Judge, and, A. D. O’Brien. 2006. Genetic toxoids of Shiga toxin types 1 and 2 protect mice against homologous but not heterologous toxin challenge. Vaccine 24:11421148.
79. Yamasaki, S.,, M. Furutani,, K. Ito,, K. Igarashi,, M. Nishibuchi, and, Y. Takeda. 1991. Importance of arginine at position 170 of the A subunit of Vero toxin 1 produced by enterohemorrhagic Escherichia coli for toxin activity. Microb. Pathog. 11:19.
80. Zhang, W.,, M. Bielaszewska,, T. Kuczius, and, H. Karch. 2002. Identification, characterization, and distribution of a Shiga toxin 1 gene variant (stx1c)) in Escherichia coli strains isolated from humans. J. Clin. Microbiol. 40:14411446.

Tables

Generic image for table
TABLE 1

Similarities and differences among the Stxs

Citation: Melton-Celsa A, Robinson C, Smith M, O’Brien A. 2007. Shiga Toxins (Stxs): Multifaceted Pathogenicity Determinants, p 239-251. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch16
Generic image for table
TABLE 2

Comparison of the levels of amino acid similarity of the A and B subunits among the Stxs

Citation: Melton-Celsa A, Robinson C, Smith M, O’Brien A. 2007. Shiga Toxins (Stxs): Multifaceted Pathogenicity Determinants, p 239-251. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error