Chapter 17 : Role of Pattern Recognition Receptors in Modulating Intestinal Immune Responses and Potential Therapeutic Implications for Inflammatory Bowel Diseases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Role of Pattern Recognition Receptors in Modulating Intestinal Immune Responses and Potential Therapeutic Implications for Inflammatory Bowel Diseases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap17-2.gif


The intestinal mucosal barrier must exert a highly defined process of discrimination, excluding potential pathogens while allowing host-beneficial substances (e.g., nutrients) to permeate. Imbalance within this complex network of cell and microbial interactions appears to play a key role in the pathogenesis of inflammatory bowel diseases (IBD) and other gastrointestinal disorders. Toll-like receptors (TLRs) comprise a class of transmembrane pattern recognition receptors (PRRs) which play a key role in microbial recognition, the induction of antimicrobial responses, and the control of adaptive immune responses. TLRs and CARD4 and CARD15 are widely expressed by various cell types of the gastrointestinal mucosa. Recent studies have greatly advanced the understanding of the mechanisms through which the gastrointestinal innate immune system mediates the recognition and sorting of the broad luminal spectrum of microbial products. These studies have also suggested that alteration in mammalian TLR and CARD expression and function plays key roles in the pathophysiology of IBD, opening a multitude of anti-inflammatory therapeutic opportunities which are discussed in this chapter. The authors recently found that trypsin, which is abundantly secreted in intestinal inflammation, leads to the proteolysis of MD-2, an essential coreceptor of TLR4 required for optimal LPS recognition and signaling. It is likely that TLR pathways need to be differentially exploited by fine-tuned combinations of distinct TLRx agonists in conjunction with specific TLRy antagonists at different stages of disease in order to induce salutary immune responses in acute versus chronic IBD.

Citation: Elke C, Podolsky D. 2007. Role of Pattern Recognition Receptors in Modulating Intestinal Immune Responses and Potential Therapeutic Implications for Inflammatory Bowel Diseases, p 255-264. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch17

Key Concept Ranking

Tumor Necrosis Factor alpha
Transforming Growth Factor beta
Immune Response
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Abbott, D. W.,, A. Wilkins,, J. M. Asara, and, L. C. Cantley. 2004. The Crohn’s disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr. Biol. 14: 22172227.
2. Abreu, M. T.,, E. T. Arnold,, L. S. Thomas,, R. Gonsky,, Y. Zhou,, B. Hu, and, M. Arditi. 2002. TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J. Biol. Chem. 277: 2043120437.
3. Agrawal, S.,, A. Agrawal,, B. Doughty,, A. Gerwitz,, J. Blenis,, T. Van Dyke, and, B. Pulendran. 2003. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J. Immunol. 171: 49844989.
4. Barnich, N.,, J. E. Aguirre,, H. C. Reinecker,, R. Xavier, and, D. K. Podolsky. 2005. Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-κB activation in muramyl dipeptide recognition. J. Cell Biol. 170: 2126.
5. Barnich, N.,, T. Hisamatsu,, J. E. Aguirre,, R. Xavier,, H. C. Reinecker, and, D. K. Podolsky. 2005. GRIM-19 interacts with nucleotide oligomerization domain 2 and serves as down-stream effector of anti-bacterial function in intestinal epithelial cells. J. Biol. Chem. 280: 1902119026.
6. Bessler, W. G.,, K. Mittenbuhler,, U. Esche, and, M. Huber. 2003. Lipopeptide adjuvants in combination treatment. Int. Immunopharmacol. 3: 12171224.
7. Boone, D. L.,, E. E. Turer,, E. G. Lee,, R. C. Ahmad,, M. T. Wheeler,, C. Tsui,, P. Hurley,, M. Chien,, S. Chai,, O. Hitotsumatsu,, E. McNally,, C. Pickart, and, A. Ma. 2004. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5: 10521060.
8. Brown, H. J.,, H. R. Lock,, S. H. Sacks, and, M. G. Robson. 2006. TLR2 stimulation of intrinsic renal cells in the induction of immune-mediated glomerulonephritis. J. Immunol. 177: 19251931.
9. Canny, G.,, E. Cario,, A. Lennartsson,, U. Gull-berg,, C. Brennan,, O. Levy, and, S. P. Colgan. 2006. Functional and biochemical characterization of epithelial bactericidal/permeability-increasing protein. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G557G567.
10. Canny, G.,, O. Levy,, G. T. Furuta,, S. Narravula Alipati,, R. B. Sisson,, C. N. Serhan, and, S. P. Colgan. 2002. Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc. Natl. Acad. Sci. USA 99: 39023907.
11. Cario, E. 2005. Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2. Gut 54: 11821193.
12. Cario, E.,, D. Brown,, M. McKee,, K. Lynch-Devaney,, G. Gerken, and, D. K. Podolsky. 2002. Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am. J. Pathol. 160: 165173.
13. Cario, E.,, G. Gerken, and, D. K. Podolsky. 2004. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127: 224238.
14. Cario, E.,, D. T. Golenbock,, A. Visintin,, M. Runzi,, G. Gerken, and, D. K. Podolsky. 2006. Trypsin-sensitive modulation of intestinal epithelial MD-2 as mechanism of lipopolysaccha-ride tolerance. J. Immunol. 176: 42584266.
15. Cario, E., and, D. K. Podolsky. 2000. Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 68: 70107017.
16. Cario, E.,, I. M. Rosenberg,, S. L. Brand-wein,, P. L. Beck,, H. C. Reinecker, and, D. K. Podolsky. 2000. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J. Immunol. 164: 966972.
17. Fort, M. M.,, A. Mozaffarian,, A. G. Stover,, S. Correia Jda,, D. A. Johnson,, R. T. Crane,, R. J. Ulevitch,, D. H. Persing,, H. Bielefeldt Ohmann,, P. Probst,, E. Jeffery,, S. P. Fling, and, R. M. Hershberg. 2005. A synthetic TLR4 antagonist has anti-inflammatory effects in two murine models of inflammatory bowel disease. J. Immunol. 174: 64166423.
18. Franchimont, D.,, S. Vermeire,, H. El Housni,, M. Pierik,, K. Van Steen,, T. Gustot,, E. Quertinmont,, M. Abramowicz,, A. Van Gossum,, J. Deviere, and, P. Rutgeerts. 2004. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299Gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut 53: 987992.
19. Fukata, M.,, K. S. Michelsen,, R. Eri,, L. S. Thomas,, B. Hu,, K. Lukasek,, C. C. Nast,, J. Lechago,, R. Xu,, Y. Naiki,, A. Soliman,, M. Arditi, and, M. T. Abreu. 2005. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 288: G1055G1065.
20. Garlanda, C.,, F. Riva,, N. Polentarutti,, C. Buracchi,, M. Sironi,, M. De Bortoli,, M. Muzio,, R. Bergottini,, E. Scanziani,, A. Vecchi,, E. Hirsch, and, A. Mantovani. 2004. Intestinal inflammation in mice deficient in Tir8, an inhibitory member of the IL-1 receptor family. Proc. Natl. Acad. Sci. USA 101: 35223526.
21. Girardin, S. E.,, I. G. Boneca,, L. A. Carneiro,, A. Antignac,, M. Jehanno,, J. Viala,, K. Tedin,, M. K. Taha,, A. Labigne,, U. Zahringer,, A. J. Coyle,, P. S. DiStefano,, J. Bertin,, P. J. Sansonetti, and, D. J. Philpott. 2003. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300: 15841587.
22. Gross, O.,, A. Gewies,, K. Finger,, M. Schafer,, T. Sparwasser,, C. Peschel,, I. Forster, and, J. Ruland. 2006. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442: 651656.
23. Hart, A. L.,, H. O. Al-Hassi,, R. J. Rigby,, S. J. Bell,, A. V. Emmanuel,, S. C. Knight,, M. A. Kamm, and, A. J. Stagg. 2005. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology 129: 5065.
24. Hausmann, M.,, S. Kiessling,, S. Mestermann,, G. Webb,, T. Spottl,, T. Andus,, J. Scholmerich,, H. Herfarth,, K. Ray,, W. Falk, and, G. Rogler. 2002. Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology 122: 19872000.
25. Hisamatsu, T.,, M. Suzuki, and, D. K. Podolsky. 2003. Interferon-gamma augments CARD4/NOD1 gene and protein expression through interferon regulatory factor-1 in intestinal epithelial cells. J. Biol. Chem. 278: 3296232968.
26. Hisamatsu, T.,, M. Suzuki,, H. C. Reinecker,, W. J. Nadeau,, B. A. McCormick, and, D. K. Podolsky. 2003. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124: 9931000.
27. Huang, B.,, J. Zhao,, H. Li,, K. L. He,, Y. Chen,, S. H. Chen,, L. Mayer,, J. C. Unkeless, and, H. Xiong. 2005. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res. 65: 50095014.
28. Hugot, J. P.,, M. Chamaillard,, H. Zouali,, S. Lesage,, J. P. Cezard,, J. Belaiche,, S. Almer,, C. Tysk,, C. A. O’Morain,, M. Gassull,, V. Binder,, Y. Finkel,, A. Cortot,, R. Modigliani,, P. Laurent-Puig,, C. Gower-Rousseau,, J. Macry,, J. F. Colombel,, M. Sahbatou, and, G. Thomas. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411: 599603.
29. Ince, M. N.,, D. E. Elliott,, T. Setiawan,, A. Blum,, A. Metwali,, Y. Wang,, J. F. Urban, Jr., and, J. V. Weinstock. 2006. Heligmosomoides polygyrus induces TLR4 on murine mucosal T cells that produce TGFbeta after lipopolysaccha-ride stimulation. J. Immunol. 176: 726729.
30. Inohara, N.,, Y. Ogura,, A. Fontalba,, O. Gutierrez,, F. Pons,, J. Crespo,, K. Fukase,, S. Inamura,, S. Kusumoto,, M. Hashimoto,, S. J. Foster,, A. P. Moran,, J. L. Fernandez-Luna, and, G. Nunez. 2003. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J. Biol. Chem. 278: 55095512.
31. Jijon, H.,, J. Backer,, H. Diaz,, H. Yeung,, D. Thiel,, C. McKaigney,, C. De Simone, and, K. Madsen. 2004. DNA from probiotic bacteria modulates murine and human epithelial and immune function. Gastroenterology 126: 13581373.
32. Kawai, T.,, O. Adachi,, T. Ogawa,, K. Takeda, and, S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11: 115122.
33. Kawashima, R.,, Y. I. Kawamura,, R. Kato,, N. Mizutani,, N. Toyama-Sorimachi, and, T. Dohi. 2006. IL-13 receptor alpha2 promotes epithelial cell regeneration from radiation-induced small intestinal injury in mice. Gastroenterology 131: 130141.
34. Kelly, M. G.,, A. B. Alvero,, R. Chen,, D. A. Silasi,, V. M. Abrahams,, S. Chan,, I. Visintin,, T. Rutherford, and, G. Mor. 2006. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res. 66: 38593868.
35. Killeen, S. D.,, J. H. Wang,, E. J. Andrews, and, H. P. Redmond. 2006. Exploitation of the Toll-like receptor system in cancer: a doubled-edged sword. Br. J. Cancer 95: 247252.
36. Kindon, H.,, C. Pothoulakis,, L. Thim,, K. Lynch-Devaney, and, D. K. Podolsky. 1995. Trefoil peptide protection of intestinal epithelial barrier function: cooperative interaction with mucin glycoprotein. Gastroenterology 109: 516523.
37. Kobayashi, K. S.,, M. Chamaillard,, Y. Ogura,, O. Henegariu,, N. Inohara,, G. Nunez, and, R. A. Flavell. 2005. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307: 731734.
38. Kobayashi, M.,, M. N. Kweon,, H. Kuwata,, R. D. Schreiber,, H. Kiyono,, K. Takeda, and, S. Akira. 2003. Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice. J. Clin. Investig. 111: 12971308.
39. Kuwata, H.,, M. Matsumoto,, K. Atarashi,, H. Morishita,, T. Hirotani,, R. Koga, and, K. Takeda. 2006. IkappaBNS inhibits induction of a subset of Toll-like receptor-dependent genes and limits inflammation. Immunity 24: 4151.
40. Liu, H.,, M. Komai-Koma,, D. Xu, and, F. Y. Liew. 2006. Toll-like receptor 2 signaling modulates the functions of CD4 + CD25 + regulatory T cells. Proc. Natl. Acad. Sci. USA 103: 70487053.
41. Lodes, M. J.,, Y. Cong,, C. O. Elson,, R. Mohamath,, C. J. Landers,, S. R. Targan,, M. Fort, and, R. M. Hershberg. 2004. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Investig. 113: 12961306.
42. Lore, K.,, M. R. Betts,, J. M. Brenchley,, J. Kuruppu,, S. Khojasteh,, S. Perfetto,, M. Roederer,, R. A. Seder, and, R. A. Koup. 2003. Toll-like receptor ligands modulate dendritic cells to augment cytomegalovirus- and HIV-1-specific T cell responses. J. Immunol. 171: 43204328.
43. Mashimo, H.,, D. C. Wu,, D. K. Podolsky, and, M. C. Fishman. 1996. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 274: 262265.
44. Masumoto, J.,, K. Yang,, S. Varambally,, M. Hasegawa,, S. A. Tomlins,, S. Qiu,, Y. Fujimoto,, A. Kawasaki,, S. J. Foster,, Y. Horie,, T. W. Mak,, G. Nunez,, A. M. Chinnaiyan,, K. Fukase, and, N. Inohara. 2006. Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo. J. Exp. Med. 203: 203213.
45. Melmed, G.,, L. S. Thomas,, N. Lee,, S. Y. Tesfay,, K. Lukasek,, K. S. Michelsen,, Y. Zhou,, B. Hu,, M. Arditi, and, M. T. Abreu. 2003. Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligands: implications for host-microbial interactions in the gut. J. Immunol. 170: 14061415.
46. Mueller, T.,, T. Terada,, I. M. Rosenberg,, O. Shibolet, and, D. K. Podolsky. 2006. Th2 cytokines down-regulate TLR expression and function in human intestinal epithelial cells. J. Immunol. 176: 58055814.
47. Mullick, A. E.,, P. S. Tobias, and, L. K. Curtiss. 2005. Modulation of atherosclerosis in mice by Toll-like receptor 2. J. Clin. Investig. 115: 31493156.
48. Netea, M. G.,, T. Azam,, G. Ferwerda,, S. E. Girardin,, M. Walsh,, J. S. Park,, E. Abraham,, J. M. Kim,, D. Y. Yoon,, C. A. Dinarello, and, S. H. Kim. 2005. IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1beta and IL-6 production through a caspase 1-dependent mechanism. Proc. Natl. Acad. Sci. USA 102: 1630916314.
49. Obermeier, F.,, N. Dunger,, U. G. Strauch,, C. Hofmann,, A. Bleich,, N. Grunwald,, H. J. Hedrich,, E. Aschenbrenner,, B. Schlegel-berger,, G. Rogler,, J. Scholmerich, and, W. Falk. 2005. CpG motifs of bacterial DNA essentially contribute to the perpetuation of chronic intestinal inflammation. Gastroenterology 129: 913927.
50. Obermeier, F.,, U. G. Strauch,, N. Dunger,, N. Grunwald,, H. C. Rath,, H. H. Herfarth,, J. Scholmerich, and, W. Falk. 2005. In vivo CpG DNA/TLR9 interaction induces regulatory properties in CD4 + CD62L +-T-cells which prevent intestinal inflammation in the SCID-transfer model of colitis. Gut 54: 14281436.
51. Ogura, Y.,, D. K. Bonen,, N. Inohara,, D. L. Nicolae,, F. F. Chen,, R. Ramos,, H. Britton,, T. Moran,, R. Karaliuskas,, R. H. Duerr,, J. P. Achkar,, S. R. Brant,, T. M. Bayless,, B. S. Kirschner,, S. B. Hanauer,, G. Nunez, and, J. H. Cho. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411: 603606.
52. Ortega-Cava, C. F.,, S. Ishihara,, M. A. Rumi,, K. Kawashima,, N. Ishimura,, H. Kazumori,, J. Udagawa,, Y. Kadowaki, and, Y. Kinoshita. 2003. Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. J. Immunol. 170: 39773985.
53. Otte, J. M.,, E. Cario, and, D. K. Podolsky. 2004. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 126: 10541070.
54. Papadakis, K. A.,, J. K. Tung,, S. W. Binder,, L. Y. Kam,, M. T. Abreu,, S. R. Targan, and, E. A. Vasiliauskas. 2001. Outcome of cytomegalovirus infections in patients with inflammatory bowel disease. Am. J. Gastroenterol. 96: 21372142.
55. Patel, M.,, D. Xu,, P. Kewin,, B. Choo-Kang,, C. McSharry,, N. C. Thomson, and, F. Y. Liew. 2005. TLR2 agonist ameliorates established allergic airway inflammation by promoting Th1 response and not via regulatory T cells. J. Immunol. 174: 75587563.
56. Podolsky, D. K. 2002. Inflammatory bowel disease. N. Engl. J. Med. 347: 417429.
57. Pull, S. L.,, J. M. Doherty,, J. C. Mills,, J. I. Gordon, and, T. S. Stappenbeck. 2005. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc. Natl. Acad. Sci. USA 102: 99104.
58. Qin, J.,, Y. Qian,, J. Yao,, C. Grace, and, X. Li. 2005. SIGIRR inhibits interleukin-1 receptor- and toll-like receptor 4-mediated signaling through different mechanisms. J. Biol. Chem. 280: 2523325241.
59. Rachmilewitz, D.,, K. Katakura,, F. Karmeli,, T. Hayashi,, C. Reinus,, B. Rudensky,, S. Akira,, K. Takeda,, J. Lee,, K. Takabayashi, and, E. Raz. 2004. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 126: 520528.
60. Rakoff-Nahoum, S.,, L. Hao, and, R. Medzhitov. 2006. Role of Toll-like receptors in spontaneous commensal-dependent colitis. Immunity 25: 319329.
61. Rakoff-Nahoum, S.,, J. Paglino,, F. Eslami Varzaneh,, S. Edberg, and, R. Medzhitov. 2004. Recognition of commensal microflora by toll-like receptors is required for intestinal home-ostasis. Cell 118: 229241.
62. Rhee, S. H.,, E. Im,, M. Riegler,, E. Kokkotou,, M. O’Brien, and, C. Pothoulakis. 2005. Pathophysiological role of Toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation. Proc. Natl. Acad. Sci. USA 102: 1361013615.
63. Rosenstiel, P.,, M. Fantini,, K. Brautigam,, T. Kuhbacher,, G. H. Waetzig,, D. Seegert, and, S. Schreiber. 2003. TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology 124: 10011009.
64. Rosenstiel, P.,, K. Huse,, A. Till,, J. Hampe,, S. Hellmig,, C. Sina,, S. Billmann,, O. von Kampen,, G. H. Waetzig,, M. Platzer,, D. Seegert, and, S. Schreiber. 2006. A short isoform of NOD2/CARD15, NOD2-S, is an endogenous inhibitor of NOD2/receptor-interacting protein kinase 2-induced signaling pathways. Proc. Natl. Acad. Sci. USA 103: 32803285.
65. Ruiz, P. A.,, A. Shkoda,, S. C. Kim,, R. B. Sartor, and, D. Haller. 2005. IL-10 gene-deficient mice lack TGF-beta/Smad signaling and fail to inhibit proinflammatory gene expression in intestinal epithelial cells after the colonization with colitogenic Enterococcus faecalis. J. Immunol. 174: 29902999.
66. Sanders, C. J.,, Y. Yu,, D. A. Moore III,, I. R. Williams, and, A. T. Gewirtz. 2006. Humoral immune response to flagellin requires T cells and activation of innate immunity. J. Immunol. 177: 28102818.
67. Scheibner, K. A.,, M. A. Lutz,, S. Boodoo,, M. J. Fenton,, J. D. Powell, and, M. R. Horton. 2006. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J. Immunol. 177: 12721281.
68. Shi, D.,, J. Das, and, G. Das. 2006. Inflammatory bowel disease requires the interplay between innate and adaptive immune signals. Cell Res. 16: 7074.
69. Singh, J. C.,, S. M. Cruickshank,, D. J. Newton,, L. Wakenshaw,, A. Graham,, J. Lan,, J. P. Lodge,, P. J. Felsburg, and, S. R. Carding. 2005. Toll-like receptor-mediated responses of primary intestinal epithelial cells during the development of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 288: G514G524.
70. Smith, P. D.,, L. E. Smythies,, M. Mosteller-Barnum,, D. A. Sibley,, M. W. Russell,, M. Merger,, M. T. Sellers,, J. M. Orenstein,, T. Shimada,, M. F. Graham, and, H. Kubagawa. 2001. Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J. Immunol. 167: 26512656.
71. Sutmuller, R. P.,, M. H. den Brok,, M. Kramer,, E. J. Bennink,, L. W. Toonen,, B. J. Kullberg,, L. A. Joosten,, S. Akira,, M. G. Netea, and, G. J. Adema. 2006. Toll-like receptor 2 controls expansion and function of regulatory T cells. J. Clin. Investig. 116: 485494.
72. Suzuki, M.,, T. Hisamatsu, and, D. K. Podolsky. 2003. Gamma interferon augments the intra-cellular pathway for lipopolysaccharide (LPS) recognition in human intestinal epithelial cells through coordinated up-regulation of LPS uptake and expression of the intracellular Toll-like receptor 4-MD-2 complex. Infect. Immun. 71: 35033511.
73. Tada, H.,, S. Aiba,, K. Shibata,, T. Ohteki, and, H. Takada. 2005. Synergistic effect of Nod1 and Nod2 agonists with Toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells. Infect. Immun. 73: 79677976.
74. Uematsu, S.,, M. H. Jang,, N. Chevrier,, Z. Guo,, Y. Kumagai,, M. Yamamoto,, H. Kato,, N. Sougawa,, H. Matsui,, H. Kuwata,, H. Hemmi,, C. Coban,, T. Kawai,, K. J. Ishii,, O. Takeuchi,, M. Miyasaka,, K. Takeda, and, S. Akira. 2006. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat. Immunol. 7: 868874.
75. Vora, P.,, A. Youdim,, L. S. Thomas,, M. Fukata,, S. Y. Tesfay,, K. Lukasek,, K. S. Michelsen,, A. Wada,, T. Hirayama,, M. Arditi, and, M. T. Abreu. 2004. Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J. Immunol. 173: 53985405.
76. Voss, E.,, J. Wehkamp,, K. Wehkamp,, E. F. Stange,, J. M. Schroder, and, J. Harder. 2006. NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J. Biol. Chem. 281: 20052011.
77. Wang, J.,, R. Sun,, H. Wei,, Z. Dong,, B. Gao, and, Z. Tian. 2006. Poly I:C prevents T cell-mediated hepatitis via an NK-dependent mechanism. J. Hepatol. 44: 446454.
78. Watanabe, T.,, A. Kitani,, P. J. Murray, and, W. Strober. 2004. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat. Immunol. 5: 800808.
79. Wehkamp, J.,, K. Fellermann,, K. R. Herrlinger,, C. L. Bevins, and, E. F. Stange. 2005. Mechanisms of disease: defensins in gastrointestinal diseases. Nat. Clin. Pract. Gastroenterol. Hepatol. 2: 406415.
80. Weichart, D.,, J. Gobom,, S. Klopfleisch,, R. Hasler,, N. Gustavsson,, S. Billmann,, H. Lehrach,, D. Seegert,, S. Schreiber, and, P. Rosenstiel. 2006. Analysis of NOD2-mediated proteome response to muramyl dipeptide in HEK293 cells. J. Biol. Chem. 281: 23802389.
81. Wornle, M.,, H. Schmid,, B. Banas,, M. Merkle,, A. Henger,, M. Roeder,, S. Blattner,, E. Bock,, M. Kretzler,, H. J. Grone, and, D. Schlondorff. 2006. Novel role of toll-like receptor 3 in hepatitis C-associated glomerulonephritis. Am. J. Pathol. 168: 370385.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error