1887

Chapter 19 : Antimicrobial Peptides as Mucosal Adjuvants

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Antimicrobial Peptides as Mucosal Adjuvants, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap19-2.gif

Abstract:

This chapter briefly reviews the major classes and types of conventional adjuvants. It then reviews the use of antimicrobial peptides as adjuvants and examines the ability of antimicrobial peptides, including defensins, to augment and direct an immune response to coadministered antigens. An emulsion of mineral oil and killed mycobacteria is called Freund’s complete adjuvant and is one of the most potent adjuvants known for stimulating both humoral and cellular immune responses. Even microbial toxins, like heat-labile enterotoxin and toxin, are potent mucosal adjuvants. Antimicrobial peptides are a unique and diverse group of molecules produced by many cell types and tissues throughout the Eukarya. Antimicrobial peptides are divided into groups based on their biochemical compositions and structures. Some antimicrobial peptides are reported to have immunomodulatory and adjuvant activities. Cathelin-related antimicrobial peptide (CRAMP) induces humoral and cellular antigen-specific immune responses to ovalbumin in mice in a dose-dependent manner. Some antimicrobial peptides have been reported previously to have potent adjuvant activity in tumor immunotherapy. Microorganisms coming in contact with epithelial cells will induce the production of defensins and cytokines. Ideally, defensins would recruit immature dendritic cells, T cells, and B cells to local sites, promote antigen uptake and processing by dendritic cells, and increase the immunogenicity of the coadministered antigen.

Citation: Pingel L, Lu X, Brogden K. 2007. Antimicrobial Peptides as Mucosal Adjuvants, p 281-295. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch19

Key Concept Ranking

Bacterial Proteins
0.624509
Complement System
0.49116784
Human immunodeficiency virus 1
0.45304176
0.624509
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Human neutrophil peptide α-defensins, human β-defensins, and cathelicidins (e.g., LL-37) are very prevalent in both the oronasal cavity and respiratory tract mucosa ( ) and mucosal secretions ( ) and are ideally positioned at these portals to interact with an extensive and diverse group of microbial antigens. GCF, gingival crevicular fluid; PMN, polymorphonuclear leukocytes.

Citation: Pingel L, Lu X, Brogden K. 2007. Antimicrobial Peptides as Mucosal Adjuvants, p 281-295. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The presence of normal commensals (A) or pathogens (B) induces the differential expression of human β-defensins (HBD-1, HBD-2, HBD-3, and HBD-4) by mucosal epithelial cells or induces the expression of IL-8, which attracts polymorphonuclear leukocytes, a likely source of human neutrophil peptide (HNP-1, HNP-2, HNP-3, HNP-4) α-defensins. These defensins are available to interact with microorganisms or their microbial products (step 1). This interaction enhances the adaptive immune response to the microbial antigen (steps 2 to 4). Ag, antigen. Adapted from ( ) with permission of the publisher.

Citation: Pingel L, Lu X, Brogden K. 2007. Antimicrobial Peptides as Mucosal Adjuvants, p 281-295. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815851.ch19
1. Adlam, C.,, E. S. Broughton, and, M. T. Scott. 1972. Enhanced resistance of mice to infection with bacteria following pre-treatment with Coryne-bacterium parvum. Nat. New Biol. 235:219220.
2. Ahlers, J. D.,, I. M. Belyakov,, S. Matsui, and, J. A. Berzofsky. 2001. Mechanisms of cytokine synergy essential for vaccine protection against viral challenge. Int. Immunol. 13:897908.
3. Ahlers, J. D.,, N. Dunlop,, D. W. Alling,, P. L. Nara, and, J. A. Berzofsky. 1997. Cytokine-in-adjuvant steering of the immune response phenotype to HIV-1 vaccine constructs: granulocyte-macrophage colony-stimulating factor and TNF-alpha synergize with IL-12 to enhance induction of cytotoxic T lymphocytes. J. Immunol. 158:39473958.
4. An, L. L.,, Y. H. Yang,, X. T. Ma,, Y. M. Lin,, G. Li,, Y. H. Song, and, K. F. Wu. 2005. LL-37 enhances adaptive antitumor immune response in a murine model when genetically fused with M-CSFR (J6-1) DNA vaccine. Leuk. Res. 29:535543.
5. Andrews, A. E.,, S. A. Lofthouse,, V. M. Bowles,, M. R. Brandon, and, A. D. Nash. 1994. Production and in vivo use of recombinant ovine IL-1beta as an immunological adjuvant. Vaccine 12:1422.
6. Aucouturier, J.,, S. Ascarateil, and, L. Dupuis. 2006. The use of oil adjuvants in therapeutic vaccines. Vaccine 24(Suppl. 2):S2-44S2-45.
7. Audibert, F.,, L. Chedid,, P. Lefrancier, and, J. Choay. 1976. Distinctive adjuvanticity of synthetic analogs of mycobacterial water-soluble components. Cell. Immunol. 21:243249.
8. Balboa, J. A.,, M. Cuello,, O. Cabrera,, J. del Campo,, M. Lastre,, D. Gil,, C. Taboada,, M. Farinas,, M. Hernandez, and, O. Perez. 2006. Adjuvant properties of lipopolysaccharide from Neisseria meningitidis serogroup B detoxified and conjugated with tetanus toxoid. Vaccine 24(Suppl. 2):S2-63S2-64.
9. Baldridge, J. R., and, R. T. Crane. 1999. Monophosphoryl lipid A (MPL) formulations for the next generation of vaccines. Methods 19:103107.
10. Barr, T.,, J. Carlring,, C. Hatzifoti, and, A. W. Heath. 2006. Antibodies against cell surface antigens as very potent immunological adjuvants. Vaccine 24(Suppl. 2):S2-20S2-21.
11. Barr, T. A.,, J. Carlring, and, A. W. Heath. 2006. Co-stimulatory agonists as immunological adjuvants. Vaccine 24:33993407.
12. Befus, A. D.,, C. Mowat,, M. Gilchrist,, J. Hu,, S. Solomon, and, A. Bateman. 1999. Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J. Immunol. 163:947953.
13. Bekierkunst, A. 1968. Acute granulomatous response produced in mice by trehalose-6,6-dimycolate. J. Bacteriol. 96:958961.
14. Belyakov, I. M.,, J. D. Ahlers,, J. D. Clements,, W. Strober, and, J. A. Berzofsky. 2000. Interplay of cytokines and adjuvants in the regulation of mucosal and systemic HIV-specific CTL. J. Immunol. 165:64546462.
15. Berzofsky, J. A.,, J. D. Ahlers,, M. A. Derby,, C. D. Pendleton,, T. Arichi, and, I. M. Belyakov. 1999. Approaches to improve engineered vaccines for human immunodeficiency virus and other viruses that cause chronic infections. Immunol. Rev. 170:151172.
16. Biragyn, A. 2005. Defensins: non-antibiotic use for vaccine development. Curr. Protein Pept. Sci. 6:5360.
17. Biragyn, A.,, P. A. Ruffini,, C. A. Leifer,, E. Klyushnenkova,, A. Shakhov,, O. Chertov,, A. K. Shirakawa,, J. M. Farber,, D. M. Segal,, J. J. Oppenheim, and, L. W. Kwak. 2002. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298:10251029.
18. Biragyn, A.,, M. Surenhu,, D. Yang,, P. A. Ruffini,, B. A. Haines,, E. Klyushnenkova,, J. J. Oppenheim, and, L. W. Kwak. 2001. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J. Immunol. 167:66446653.
19. Boman, H. G. 1995. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13:6192.
20. Bowdish, D. M.,, D. J. Davidson,, M. G. Scott, and, R. E. Hancock. 2005. Immunomodulatory activities of small host defense peptides. Antimicrob. Agents Chemother. 49:17271732.
21. Boyaka, P. N.,, J. W. Lillard, Jr., and, J. McGhee. 1999. Interleukin 12 and innate molecules for enhanced mucosal immunity. Immunol. Res. 20:207217.
22. Boyaka, P. N., and, J. R. McGhee. 2001. Cytokines as adjuvants for the induction of mucosal immunity. Adv. Drug Deliv. Rev. 51:7179.
23. Bracci, L.,, I. Canini,, M. Venditti,, M. Spada,, S. Puzelli,, I. Donatelli,, F. Belardelli, and, E. Proietti. 2006. Type I IFN as a vaccine adjuvant for both systemic and mucosal vaccination against influenza virus. Vaccine 24(Suppl. 2):S2-56S2-57.
24. Bramwell, V. W.,, S. Somavarapu,, I. Outschoorn, and, H. O. Alpar. 2003. Adjuvant action of melittin following intranasal immunisation with tetanus and diphtheria toxoids. J. Drug Target. 11:525530.
25. Brennan, P. J., and, H. Nikaido. 1995. The envelope of mycobacteria. Annu. Rev. Biochem. 64:2963.
26. Brogden, K. A. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3:238250.
27. Brogden, K. A.,, M. Ackermann, and, K. M. Huttner. 1998. Detection of anionic antimicrobial peptides in ovine bronchoalveolar lavage fluid and respiratory epithelium. Infect. Immun. 66:59485954.
28. Brogden, K. A.,, M. R. Ackermann,, P. B. McCray, Jr., and, K. M. Huttner. 1999. Differences in the concentrations of small, anionic, antimicrobial peptides in bronchoalveolar lavage fluid and in respiratory epithelia of patients with and without cystic fibrosis. Infect. Immun. 67:42564259.
29. Brogden, K. A.,, A. J. De Lucca,, J. Bland, and, S. Elliott. 1996. Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. Proc. Natl. Acad. Sci. USA 93:412416.
30. Brogden, K. A.,, J. S. Glenn,, N. East, and, F. Audibert. 1996. A Corynebacterium pseudotuberculosis bacterin with muramyl dipeptide induces antibody titers, increases the time of onset, and decreases naturally occurring external abscesses in sheep and goats. Small Rumin. Res. 19:161168.
31. Brogden, K. A.,, M. Heidari,, R. E. Sacco,, D. Palmquist,, J. M. Guthmiller,, G. K. Johnson,, H. P. Jia,, B. F. Tack, and, P. B. McCray. 2003. Defensin-induced adaptive immunity in mice and its potential in preventing periodontal disease. Oral Microbiol. Immunol. 18:9599.
32. Brown, K. L., and, R. E. Hancock. 2006. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 18:2430.
33. Cabeen, M. T., and, C. Jacobs-Wagner. 2005. Bacterial cell shape. Nat. Rev. Microbiol. 3:601610.
34. Chaly, Y. V.,, E. M. Paleolog,, T. S. Kolesnikova,, Tikhonov II,, E. V. Petratchenko, and, N. N. Voitenok. 2000. Neutrophil alpha-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur. Cytokine Netw. 11:257266.
35. Chedid, L., and, F. Audibert. 1985. New approaches for control of infections using synthetic or semisynthetic constructs containing MDP. Springer Semin. Immunopathol. 8:401412.
36. Chedid, L.,, F. Audibert, and, A. G. Johnson. 1978. Biological activities of muramyl dipeptide, a synthetic glycopeptide analogous to bacterial immunoregulating agents. Prog. Allergy 25:63105.
37. Chertov, O.,, D. F. Michiel,, L. Xu,, J. M. Wang,, K. Tani,, W. J. Murphy,, D. L. Longo,, D. D. Taub, and, J. J. Oppenheim. 1996. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. 271:29352940.
38. Chertov, O.,, D. Yang,, O. M. Howard, and, J. J. Oppenheim. 2000. Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol. Rev. 177:6878.
39. Chodaczek, G.,, M. Zimecki,, J. Lukasiewicz, and, C. Lugowski. 2006. A complex of lactoferrin with monophosphoryl lipid A is an efficient adjuvant of the humoral and cellular immune response in mice. Med. Microbiol. Immunol. (Berlin) 195:207216.
40. Cloud-Hansen, K. A.,, S. B. Peterson,, E. V. Stabb,, W. E. Goldman,, M. J. McFal-Ngai, and, J. Handelsman. 2006. Breaching the great wall: peptidoglycan and microbial interactions. Nat. Rev. Microbiol. 4:710716.
41. Collins, F. M., and, M. T. Scott. 1974. Effect of Corynebacterium parvum treatment on the growth of Salmonella enteritidis in mice. Infect. Immun. 9:863869.
42. Dale, B. A.,, J. R. Kimball,, S. Krisanaprakornkit,, F. Roberts,, M. Robinovitch,, R. O’Neal,, E. V. Valore,, T. Ganz,, G. M. Anderson, and, A. Weinberg. 2001. Localized antimicrobial peptide expression in human gingiva. J. Periodontal Res. 36:285294.
43. Davis, S. S. 2006. The use of soluble polymers and polymer microparticles to provide improved vaccine responses after parenteral and mucosal delivery. Vaccine 24(Suppl. 2):S2-7S2-10.
44. Denis-Mize, K. S.,, M. Dupuis,, M. Singh,, C. Woo,, M. Ugozzoli,, D. T. O’Hagan,, J. J. Donnelly III,, G. Ott, and, D. M. McDonald. 2003. Mechanisms of increased immunogenicity for DNA-based vaccines adsorbed onto cationic microparticles. Cell. Immunol. 225:1220.
45. Eastman, C. G.,, K. K. Burnell,, M. Bélanger,, A. Progulske-Fox, and, K. A. Brogden. 2006. Human beta-defensin 1 interacts with hemagglutinin B from Porphyromonas gingivalis. J. Dent. Res. 85(Spec. iss. B):2184.
46. Ellouz, F.,, A. Adam,, R. Ciorbaru, and, E. Lederer. 1974. Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem. Biophys. Res. Commun. 59:13171325.
47. Fleischmann, J.,, M. E. Selsted, and, R. I. Lehrer. 1985. Opsonic activity of MCP-1 and MCP-2, cationic peptides from rabbit alveolar macrophages. Diagn. Microbiol. Infect. Dis. 3:233242.
48. Freytag, L. C., and, J. D. Clements. 2005. Mucosal adjuvants. Vaccine 23:18041813.
49. Fritz, J. H.,, S. Brunner,, M. L. Birnstiel,, M. Buschle,, A. Gabain,, F. Mattner, and, W. Zauner. 2004. The artificial antimicrobial peptide KLKLLLLLKLK induces predominantly a TH2-type immune response to co-injected antigens. Vaccine 22:32743284.
50. Ganz, T. 2003. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3:710720.
51. Gennaro, R., and, M. Zanetti. 2000. Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 55:3149.
52. Good, M. F.,, L. H. Miller,, S. Kumar,, I. A. Quakyi,, D. Keister,, J. H. Adams,, B. Moss,, J. A. Berzofsky, and, R. Carter. 1988. Limited immunological recognition of critical malaria vaccine candidate antigens. Science 242:574577.
53. Hancock, R. E. W. 1997. Peptide antibiotics. Lancet 349:418422.
54. Haneberg, B.,, A. K. Herland Berstad, and, J. Holst. 2001. Bacteria-derived particles as adjuvants for non-replicating nasal vaccines. Adv. Drug Deliv. Rev. 51:143147.
55. Hovav, A. H.,, Y. Fishman, and, H. Bercovier. 2005. Gamma interferon and monophosphoryl lipid A-trehalose dicorynomycolate are efficient adjuvants for Mycobacterium tuberculosis multivalent acellular vaccine. Infect. Immun. 73:250257.
56. Humphres, R. C.,, P. R. Henika,, R. W. Ferraresi, and, J. L. Krahenbuhl. 1980. Effects of treatment with muramyl dipeptide and certain of its analogs on resistance to Listeria monocytogenes in mice. Infect. Immun. 30:462466.
57. Ichinose, M.,, M. Asai,, K. Imai, and, M. Sawada. 1996. Enhancement of phagocytosis by corticostatin I (CSI) in cultured mouse peritoneal macrophages. Immunopharmacology 35:103109.
58. Iwasaki, A.,, B. J. Stiernholm,, A. K. Chan,, N. L. Berinstein, and, B. H. Barber. 1997. Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J. Immunol. 158:45914601.
59. Johannsen, L. 1993. Biological properties of bacterial peptidoglycan. APMIS 101:337344.
60. Johnson, A. G. 1983. Adjuvant action of bacterial endotoxins on antibody formation, p. 249253. In A. Nowotny (ed.), Beneficial Effects of Endotoxins. Plenum Publishing Co., New York, NY.
61. Johnson, A. G. 1994. Molecular adjuvants and immunomodulators: new approaches to immunization. Clin. Microbiol. Rev. 7:277289.
62. Joly, S.,, C. Maze,, P. B. McCray, Jr., and, J. M. Guthmiller. 2004. Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J. Clin. Microbiol. 42:10241029.
63. Joly, S.,, C. C. Organ,, G. K. Johnson,, P. B. McCray, Jr., and, J. M. Guthmiller. 2005. Correlation between beta-defensin expression and induction profiles in gingival keratinocytes. Mol. Immunol. 42:10731084.
64. Kawamura, H.,, S. A. Rosenberg, and, J. A. Berzofsky. 1985. Immunization with antigen and interleukin 2 in vivo overcomes Ir gene low responsiveness. J. Exp. Med. 162:381386.
65. Keystone, E. C.,, D. Taylor-Robinson,, L. Ling,, C. Pope,, A. Metcalfe,, P. Furr, and, V. Fornasier. 1981. Enhanced resistance of mice to Mycoplasma pulmonis-induced arthritis by administration of killed Corynebacterium parvum. Clin. Exp. Immunol. 46:355362.
66. Kim, J. J.,, V. Ayyavoo,, M. L. Bagarazzi,, M. A. Chattergoon,, K. Dang,, B. Wang,, J. D. Boyer, and, D. B. Weiner. 1997. In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen. J. Immunol. 158:816826.
67. Klinguer, C.,, A. Beck,, P. De-Lys,, M. C. Bussat,, A. Blaecke,, F. Derouet,, J. Y. Bonnefoy,, T. N. Nguyen,, N. Corvaia, and, D. Velin. 2001. Lipophilic quaternary ammonium salt acts as a mucosal adjuvant when co-administered by the nasal route with vaccine antigens. Vaccine 19:42364244.
68. Krisanaprakornkit, S.,, J. R. Kimball,, A. Weinberg,, R. P. Darveau,, B. W. Bainbridge, and, B. A. Dale. 2000. Inducible expression of human beta-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect. Immun. 68:29072915.
69. Kruzel, M. L., and, M. Zimecki. 2002. Lactoferrin and immunologic dissonance: clinical implications. Arch. Immunol. Ther. Exp. (Warsz) 50:399410.
70. Kurosaka, K.,, Q. Chen,, F. Yarovinsky,, J. J. Oppenheim, and, D. Yang. 2005. Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. J. Immunol. 174:62576265.
71. Lederer, E. 1977. Natural and synthetic immunostimulants related to the mycobacterial cell wall, p. 257-279. In J. Mathieu (ed.), Medicinal Chemistry V. Elsevier Scientific Publishing Company, New York, NY.
72. Lehrer, R. I.,, A. K. Lichtenstein, and, T. Ganz. 1993. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11:105128.
73. Lillard, J. W., Jr.,, P. N. Boyaka,, O. Chertov,, J. J. Oppenheim, and, J. R. McGhee. 1999. Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc. Natl. Acad. Sci. USA 96:651656.
74. Lillard, J. W., Jr.,, P. N. Boyaka,, D. D. Taub, and, J. R. McGhee. 2001. RANTES potentiates antigen-specific mucosal immune responses. J. Immunol. 166:162169.
75. Lofthouse, S. A.,, A. E. Andrews,, M. J. Elhay,, V. M. Bowles,, E. N. Meeusen, and, A. D. Nash. 1996. Cytokines as adjuvants for ruminant vaccines. Int. J. Parasitol. 26:835842.
76. Lu, X.,, Z. Kurago, and, K. A. Brogden. 2006. Effects of polymicrobial communities on host immunity and response. FEMS Microbiol. Lett. 265:141150.
77. Luderitz, O.,, M. A. Freudenberg,, C. Galanos,, V. Lehmann,, E. T. Rietschel, and, D. H. Shaw. 1982. Lipopolysaccharides of Gram-Negative Bacteria, vol. 17. Academic Press, Inc., New York, NY.
78. Lundy, F. T.,, D. F. Orr,, J. R. Gallagher,, P. Maxwell,, C. Shaw,, S. S. Napier,, C. Gerald Cowan,, P. J. Lamey, and, J. J. Marley. 2004. Identification and overexpression of human neutrophil alpha-defensins (human neutrophil peptides 1, 2 and 3) in squamous cell carcinomas of the human tongue. Oral Oncol. 40:139144.
79. Lundy, F. T.,, D. F. Orr,, C. Shaw,, P. J. Lamey, and, G. J. Linden. 2005. Detection of individual human neutrophil alpha-defensins (human neutrophil peptides 1, 2 and 3) in unfractionated gingival crevicular fluid: a MALDI-MS approach. Mol. Immunol. 42:575579.
80. Ma, X. T.,, B. Xu,, L. L. An,, C. Y. Dong,, Y. M. Lin,, Y. Shi, and, K. F. Wu. 2006. Vaccine with beta-defensin 2-transduced leukemic cells activates innate and adaptive immunity to elicit potent antileukemia responses. Cancer Res. 66:11691176.
81. Marinaro, M.,, A. Fasano, and, M. T. De Magistris. 2003. Zonula occludens toxin acts as an adjuvant through different mucosal routes and induces protective immune responses. Infect. Immun. 71:18971902.
82. Mathews, M.,, H. P. Jia,, J. M. Guthmiller,, G. Losh,, S. Graham,, G. K. Johnson,, B. F. Tack, and, P. B. McCray, Jr. 1999. Production of β-defensin antimicrobial peptides by the oral mucosa and salivary glands. Infect. Immun. 67:27402745.
83. Matsumoto, K.,, H. Ogawa,, O. Nagase,, T. Kusama, and, I. Azuma. 1981. Stimulation of nonspecific host resistance to infection induced by muramyldipeptides. Microbiol. Immunol. 25:10471058.
84. McCluskie, M. J., and, R. D. Weeratna. 2001. Novel adjuvant systems. Curr. Drug Targets Infect. Disord. 1:263271.
85. Menzies, P. I.,, C. A. Muckle,, K. A. Brogden, and, L. Robinson. 1991. A field trial to evaluate a whole cell vaccine for the prevention of caseous lymphadenitis in sheep and goat flocks. Can. J. Vet. Res. 55:362366.
86. Meyer, D. H., and, P. M. Fives-Taylor. 1997. The role of Actinobacillus actinomycetemcomitans in the pathogenesis of periodontal disease. Trends Microbiol. 5:224228.
87. Myschik, J.,, D. G. Lendemans,, W. T. McBurney,, P. H. Demana,, S. Hook, and, T. Rades. 2006. On the preparation, microscopic investigation and application of ISCOMs. Micron 37:724734.
88. Niyonsaba, F.,, A. Someya,, M. Hirata,, H. Ogawa, and, I. Nagaoka. 2001. Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur. J. Immunol. 31:10661075.
89. Nonnenmacher, C.,, A. Dalpke,, S. Zimmermann,, L. Flores-De-Jacoby,, R. Mutters, and, K. Heeg. 2003. DNA from periodontopathogenic bacteria is immunostimulatory for mouse and human immune cells. Infect. Immun. 71:850856.
90. Nussenzweig, R. S. 1967. Increased nonspecific resistance to malaria produced by administration of killed Corynebacterium parvum. Exp. Parasitol. 21:224231.
91. O’Hagan, D. T.,, M. L. MacKichan, and, M. Singh. 2001. Recent developments in adjuvants for vaccines against infectious diseases. Biomol. Eng. 18:6985.
92. O’Hagan, D. T., and, M. Singh. 2003. Microparticles as vaccine adjuvants and delivery systems. Expert Rev. Vaccines 2:269283.
93. Parant, M. 1980. Biologic properties of a new synthetic adjuvant, muramyl dipeptide (MDP), p. 111128. In L. Chedid,, P. A. Miescher, and, H. J. Mueller-Eberhard (ed.), Immunostimulation. Springer-Verlag, New York, NY.
94. Parant, M.,, F. Audibert,, F. Parant,, L. Chedid,, E. Soler,, J. Polonsky, and, E. Lederer. 1978. Nonspecific immunostimulant activities of synthetic trehalose-6,6′-diesters (lower homologs of cord factor). Infect. Immun. 20:1219.
95. Parant, M., and, L. Chedid. 1985. Dissociation between immunostimulant activities of several muramyl peptides. Int. J. Immunother. 1:1116.
96. Parant, M., and, L. Chedid. 1985. Stimulation of non-specific resistance to infections by synthetic immunoregulatory agents. Infection 13(Suppl. 2):S251S255.
97. Parant, M.,, F. Parant,, L. Chedid,, J. C. Drapier,, J. F. Petit,, J. Wietzerbin, and, E. Lederer. 1977. Enhancement of nonspecific immunity to bacterial infection by cord factor (6,6′-trehalose dimycolate). J. Infect. Dis. 135:771777.
98. Pascual, D. M.,, R. D. Morales,, E. D. Gil,, L. M. Munoz,, J. E. Lopez, and, O. L. Casanueva. 2006. Adjuvants: present regulatory challenges. Vaccine 24(Suppl. 2):S2-88S2-89.
99. Prohaszka, Z.,, K. Nemet,, P. Csermely,, F. Hudecz,, G. Mezo, and, G. Fust. 1997. Defensins purified from human granulocytes bind C1q and activate the classical complement pathway like the transmembrane glycoprotein gp41 of HIV-1. Mol. Immunol. 34:809816.
100. Qureshi, N.,, K. Takayama, and, E. Ribi. 1982. Purification and structural determination of nontoxic lipid A obtained from the lipopolysaccharide of Salmonella typhimurium. J. Biol. Chem. 257:1180811815.
101. Rappuoli, R.,, M. Pizza,, G. Douce, and, G. Dougan. 1999. Structure and mucosal adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins. Immunol. Today 20:493500.
102. Riley, L. W. 2006. Of mice, men, and elephants: Mycobacterium tuberculosis cell envelope lipids and pathogenesis. J. Clin. Investig. 116:14751478.
103. Saito, R.,, A. Tanaka,, K. Sugiyama,, I. Azuma, and, Y. Yamamura. 1976. Adjuvant effect of cord factor, a mycobacterial lipid. Infect. Immun. 13:776781.
104. Selsted, M. E., and, A. J. Ouellette. 2005. Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6:551557.
105. Singh, M., and, D. T. O’Hagan. 2002. Recent advances in vaccine adjuvants. Pharm. Res. 19:715728.
106. Spickler, A. R., and, J. A. Roth. 2003. Adjuvants in veterinary vaccines: modes of action and adverse effects. J. Vet. Intern. Med. 17:273281.
107. Stewart-Tull, D. E. 1980. The immunological activities of bacterial peptidoglycans. Annu. Rev. Microbiol. 34:311340.
108. Stewart-Tull, D. E. S. 1983. Immunologically important constituents of mycobacteria: antigens, p. 85127. In C. Ratledge and, J. L. Stanford (ed.), Biology of Mycobacteria, vol. 2. Academic Press, London, United Kingdom.
109. Stewart-Tull, D. E. S. 1983. Immunopotentiating products of bacteria, p. 142. In C. S. F. Easmon and, J. Jeljaszewicz (ed.), Immunization against Bacterial Disease, vol. 2. Academic Press, New York, NY.
110. Tang, Y. Q.,, J. Yuan,, G. Osapay,, K. Osapay,, D. Tran,, C. J. Miller,, A. J. Ouellette, and, M. E. Selsted. 1999. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 286:498502.
111. Tani, K.,, W. J. Murphy,, O. Chertov,, R. Salcedo,, C. Y. Koh,, I. Utsunomiya,, S. Funakoshi,, O. Asai,, S. H. Herrmann,, J. M. Wang,, L. W. Kwak, and, J. J. Oppenheim. 2000. Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. Int. Immunol. 12:691700.
112. Territo, M. C.,, T. Ganz,, M. E. Selsted, and, R. Lehrer. 1989. Monocyte-chemotactic activity of defensins from human neutrophils. J. Clin. Investig. 84:20172020.
113. Tossi, A.,, L. Sandri, and, A. Giangaspero. 2000. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55:430.
114. van den Berg, R. H.,, M. C. Faber-Krol,, S. van Wetering,, P. S. Hiemstra, and, M. R. Daha. 1998. Inhibition of activation of the classical pathway of complement by human neutrophil defensins. Blood 92:38983903.
115. Vankeerberghen, A.,, H. Nuytten,, K. Dierickx,, M. Quirynen,, J. J. Cassiman, and, H. Cuppens. 2005. Differential induction of human beta-defensin expression by periodontal commensals and pathogens in periodontal pocket epithelial cells. J. Periodontol. 76:12931303.
116. Van Wetering, S.,, S. P. G. Mannesse Lazeroms,, J. H. Dijkman, and, P. S. Hiemstra. 1997. Effect of neutrophil serine proteinases and defensins on lung epithelial cells: modulation of cytotoxicity and IL-8 production. J. Leukoc. Biol. 62:217226.
117. Vizioli, J., and, M. Salzet. 2002. Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol. Sci. 23:494496.
118. Warren, H. S., and, L. A. Chedid. 1988. Future prospects for vaccine adjuvants. Crit. Rev. Immunol. 8:83101.
119. Warren, H. S.,, F. R. Vogel, and, L. A. Chedid. 1986. Current status of immunological adjuvants. Annu. Rev. Immunol. 4:369388.
120. Weiss, T. M.,, L. Yang,, L. Ding,, A. J. Waring,, R. I. Lehrer, and, H. W. Huang. 2002. Two states of cyclic antimicrobial peptide RTD-1 in lipid bilayers. Biochemistry 41:1007010076.
121. Xiang, Z., and, H. C. Ertl. 1995. Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity 2:129135.
122. Yang, D.,, A. Biragyn,, D. M. Hoover,, J. Lubkowski, and, J. J. Oppenheim. 2004. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol. 22:181215.
123. Yang, D.,, Q. Chen,, O. Chertov, and, J. J. Oppenheim. 2000. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J. Leukoc. Biol. 68:914.
124. Yang, D.,, O. Chertov,, S. N. Bykovskaia,, Q. Chen,, M. J. Buffo,, J. Shogan,, M. Anderson,, J. M. Schroder,, J. M. Wang,, O. M. Howard, and, J. J. Oppenheim. 1999. β-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525528.
125. Yang, D.,, O. Chertov, and, J. J. Oppenheim. 2001. The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity. Cell Mol. Life Sci. 58:978989.
126. Yang, Q. B.,, M. Martin,, S. M. Michalek, and, J. Katz. 2002. Mechanisms of monophosphoryl lipid A augmentation of host responses to recombinant HagB from Porphyromonas gingivalis. Infect. Immun. 70:35573565.
127. Yarkoni, E., and, A. Bekierkunst. 1976. Nonspecific resistance against infection with Salmonella typhi and Salmonella typhimurium induced in mice by cord factor (trehalose-6,6′-dimycolate) and its analogues. Infect. Immun. 14:11251129.
128. Yarkoni, E.,, L. Wang, and, A. Bekierkunst. 1977. Stimulation of macrophages by cord factor and by heat-killed and living BCG. Infect. Immun. 16:18.
129. Zhang, P.,, Q. B. Yang,, D. J. Marciani,, M. Martin,, J. D. Clements,, S. M. Michalek, and, J. Katz. 2003. Effectiveness of the quillaja saponin semi-synthetic analog GPI-0100 in potentiating mucosal and systemic responses to recombinant HagB from Porphyromonas gingivalis. Vaccine 21:44594471.

Tables

Generic image for table
TABLE 1

Types of adjuvants from nonbacterial sources

Citation: Pingel L, Lu X, Brogden K. 2007. Antimicrobial Peptides as Mucosal Adjuvants, p 281-295. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch19
Generic image for table
TABLE 2

Types of adjuvants derived from bacteria

Citation: Pingel L, Lu X, Brogden K. 2007. Antimicrobial Peptides as Mucosal Adjuvants, p 281-295. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch19
Generic image for table
TABLE 3

Cytokines used as immunological adjuvants

Citation: Pingel L, Lu X, Brogden K. 2007. Antimicrobial Peptides as Mucosal Adjuvants, p 281-295. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch19
Generic image for table
TABLE 4

Antimicrobial peptides used as immunological adjuvants

Citation: Pingel L, Lu X, Brogden K. 2007. Antimicrobial Peptides as Mucosal Adjuvants, p 281-295. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error