1887

Chapter 20 : Induction of Host Immune Responses Using -Vectored Vaccines

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Induction of Host Immune Responses Using -Vectored Vaccines, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap20-2.gif

Abstract:

In this chapter the author focuses on minimizing antibody-mediated immune responses to the antigenically diverse cell surface antigens while attempting to enhance antibody-mediated immune responses to immunologically related or cross-reactive surface antigens. The first genetic alteration investigated was a deletion of the gene for phosphomannose isomerase (). The second type of genetic alteration involves the use of the arabinose-dependent araC P regulatory cassette fused to the gene. In many recombinant attenuated vaccine strains, the protective antigen encoded by a cloned gene on a plasmid vector is retained in the cytoplasm of the cell such that cells in the immunized animal or human host have to kill the to liberate this cytoplasmic antigen. For a number of years, the authors have endeavored to develop strategies to design and construct a vaccine containing recombinant, attenuated to induce protective immunity to pneumococcal disease, and they also aim at making this a low-cost vaccine suitable for the oral immunization of newborns and infants that would induce protective immunity to most serotypes. The authors selected six different protective antigens to express and deliver by the vaccine comprising recombinant, attenuated to induce protective immunity to most serotypes. Significant progress has been achieved during the past 25 years since the first description of the construction and use of a vaccine containing recombinant, attenuated . Ultimately, the validation of some of these new technologies will necessitate full testing with agriculturally important animals or human clinical trials.

Citation: Curtiss, III R, Zhang X, Wanda S, Kang H, Konjufca V, Li Y, Gunn B, Wang S, Scarpellini G, Lee I. 2007. Induction of Host Immune Responses Using -Vectored Vaccines, p 297-313. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch20

Key Concept Ranking

Bacterial Vaccines
0.5232922
Type III Secretion System
0.4321329
Indirect Enzyme-Linked Immunosorbent Assay
0.42171207
Type II Secretion System
0.4205579
0.5232922
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Loss of LPS O antigen side chains by growth of serotype Typhimurium Δ mutant χ8650 in NB with 0.5% mannose plus 0.2% glucose followed by resuspension in prewarmed nutrient broth without added sugars. Gels were silver stained for LPS by standard methods ( ).

Citation: Curtiss, III R, Zhang X, Wanda S, Kang H, Konjufca V, Li Y, Gunn B, Wang S, Scarpellini G, Lee I. 2007. Induction of Host Immune Responses Using -Vectored Vaccines, p 297-313. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Outer membrane protein profiles of ΔP::TT P mutants grown in NB with and without arabinose. Gels were stained with Coomassie blue. Lanes: 1, χ3761 wild type grown in NB with 0.2% arabinose; 2, χ3761 wild type grown in NB; 3, χ8634 ΔPfur33::TT P mutant grown in NB + 0.2% arabinose; 4, χ8634 grown in NB; 5, χ8754 ΔPfur33::TT P Δ mutant grown in NB + 0.2% arabinose; 6, χ8754 grown in NB.

Citation: Curtiss, III R, Zhang X, Wanda S, Kang H, Konjufca V, Li Y, Gunn B, Wang S, Scarpellini G, Lee I. 2007. Induction of Host Immune Responses Using -Vectored Vaccines, p 297-313. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

IgG antibody responses to OMPs and IROMPs isolated from and strains grown under iron-limiting conditions. Sera from mice orally immunized with χ8650 or χ8634 were analyzed. IROMPs and OMPs were obtained from purified outer membranes from the following strains: B(T), serotype Typhimurium χ3761; B(H), serotype Heidelberg χ3242; C1, serotype Infantis χ3212; C2, serotype Hadar χ3210; C3, serotype Albany χ3202; D, serotype Enteritidis χ3700; E1, serotype Anatum χ4449; 078, avian pathogenic χ7122; 01, avian pathogenic χ7237; 02, avian pathogenic χ7255; 026, enteropathogenic χ6206; and K12, K-12 χ289. OD, optical density at 405 nm.

Citation: Curtiss, III R, Zhang X, Wanda S, Kang H, Konjufca V, Li Y, Gunn B, Wang S, Scarpellini G, Lee I. 2007. Induction of Host Immune Responses Using -Vectored Vaccines, p 297-313. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Asd vectors lacking P but retaining the ribosome binding site (SD sequence) AGGA.

Citation: Curtiss, III R, Zhang X, Wanda S, Kang H, Konjufca V, Li Y, Gunn B, Wang S, Scarpellini G, Lee I. 2007. Induction of Host Immune Responses Using -Vectored Vaccines, p 297-313. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

pYA3493 and pYA3620 plasmid systems to secrete overexpressed antigen. (A) P promoter, SD sequence, β-lactamase signal sequence (SS), multiple cloning site, and TT signal. (B) P promoter, SD sequence, β-lactamase signal sequence, multiple cloning site, and region corresponding to the β-lactamase C-terminal sequence (CT). The signal sequence is from pBR322.

Citation: Curtiss, III R, Zhang X, Wanda S, Kang H, Konjufca V, Li Y, Gunn B, Wang S, Scarpellini G, Lee I. 2007. Induction of Host Immune Responses Using -Vectored Vaccines, p 297-313. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Recombinant PspA-expressing plasmid pYA3634. aa, amino acids.

Citation: Curtiss, III R, Zhang X, Wanda S, Kang H, Konjufca V, Li Y, Gunn B, Wang S, Scarpellini G, Lee I. 2007. Induction of Host Immune Responses Using -Vectored Vaccines, p 297-313. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Serum IgG responses to serotype Typhimurium LPS and OMPs (SOMPs) and to recombinant PspA in sera following oral immunization of 8-week-old BALB/c mice with either χ8133 (Δ Δ Δ) or χ9088 [ΔP::TT P Δ Δ() Δ]. Strains were grown in Luria-Bertani broth without added mannose or arabinose prior to oral inoculation.

Citation: Curtiss, III R, Zhang X, Wanda S, Kang H, Konjufca V, Li Y, Gunn B, Wang S, Scarpellini G, Lee I. 2007. Induction of Host Immune Responses Using -Vectored Vaccines, p 297-313. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

type III secretion T-cell epitope delivery system for antigens. The plasmids pYA3657 and pYA3658 were derived from pYA3653 and introduced into χ8879 with the three chromosomal mutations depicted at the bottom of the figure. Modified from reference .

Citation: Curtiss, III R, Zhang X, Wanda S, Kang H, Konjufca V, Li Y, Gunn B, Wang S, Scarpellini G, Lee I. 2007. Induction of Host Immune Responses Using -Vectored Vaccines, p 297-313. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815851.ch20
1. Baud, D.,, J. Benyacoub,, V. Revaz,, M. Kok,, F. Ponci,, M. Bobst,, R. Curtiss III,, P. De Grandi, and, D. Nardelli-Haefliger. 2004. Immuno-genicity against human papillomavirus type 16 virus-like particles is strongly enhanced by the PhoPc phenotype in Salmonella enterica serovar Typhimurium. Infect. Immun. 72:750756.
2. Bauman, N., and, B. D. Davis. 1957. Selection of auxotrophic bacterial mutants through diaminopimelic acid or thymine deprival. Science 126:170.
3. Bienenstock, J.,, M. McDermott,, D. Befus, and, M. O’Neill. 1978. A common mucosal immunologic system involving the bronchus, breast and bowel. Adv. Exp. Med. Biol. 107:5359.
4. Black, S., and, N. G. Wright. 1955. Aspartic beta-semialdehyde dehydrogenase and aspartic beta-semialdehyde. J. Biol. Chem. 213:3950.
5. Briles, D. E.,, R. C. Tart,, E. Swiatlo,, J. P. Dillard,, P. Smith,, K. A. Benton,, B. A. Ralph,, A. Brooks-Walter,, M. J. Crain,, S. K. Hollings-head, and, L. S. McDaniel. 1998. Pneumococcal diversity: considerations for new vaccine strategies with emphasis on pneumococcal surface protein A (PspA). Clin. Microbiol. Rev. 11:645657.
6. Briles, D. E.,, S. Hollingshead,, A. Brooks-Walter,, G. S. Nabors,, L. Ferguson,, M. Schilling,, S. Gravenstein,, P. Braun,, J. King, and, A. Swift. 2000. The potential to use PspA and other pneumococcal proteins to elicit protection against pneumococcal infection. Vaccine 18:17071711.
7. Briles, D. E.,, J. Yother, and, L. S. McDaniel. 1988. Role of pneumococcal surface protein A in the virulence of Streptococcus pneumoniae. Rev. Infect. Dis. 10(Suppl. 2):S372S374.
8. Carter, P. B., and, F. M. Collins. 1974. The route of enteric infection in normal mice. J. Exp. Med. 139:11891203.
9. Cebra, J. J.,, P. J. Gearhart,, R. Kamat,, S. M. Robertson, and, J. Tseng. 1977. Origin and differentiation of lymphocytes involved in the secretory IgA responses. Cold Spring Harbor Symp. Quant. Biol. 41:201215.
10. Centers for Disease Control and Prevention. 2005. Salmonella Surveillance: Annual Summary, 2004. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA.
11. Chapman, H. D.,, B. Roberts,, M. W. Shirley, and, R. B. Williams. 2005. Guidelines for evaluating the efficacy and safety of live anticoccidial vaccines, and obtaining approval for their use in chickens and turkeys. Avian Pathol. 34:279290.
12. Charbit, A.,, S. M. Newton,, P. E. Klebba,, J. M. Clement,, C. Fayolle,, R. Lo-Man,, C. Leclerc, and, M. Hofnung. 1997. Expression and immune response to foreign epitopes in bacteria. Perspectives for live vaccine development. Behring Inst. Mitt. 98:135142.
13. Chatfield, S. N.,, I. G. Charles,, A. J. Makoff,, M. D. Oxer,, G. Dougan,, D. Pickard,, D. Slater, and, N. F. Fairweather. 1992. Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine strains: development of a single-dose oral tetanus vaccine. Bio/Technology 10:888892.
14. Chen, L. M.,, G. Briones,, R. O. Donis, and, J. E. Galan. 2006. Optimization of the delivery of heterologous proteins by the Salmonella enterica serovar Typhimurium type III secretion system for vaccine development. Infect. Immun. 74:58265833.
15. Collins, L. V.,, S. Attridge, and, J. Hackett. 1991. Mutations at rfc or pmi attenuate Salmonella typhimurium virulence for mice. Infect. Immun. 59:10791085.
16. Collins, L. V., and, J. Hackett. 1991. Sequence of the phosphomannose isomerase-encoding gene of Salmonella typhimurium. Gene 103:135136.
17. Curtiss, R., III. 2002. Bacterial infectious disease control by vaccine development. J. Clin. Investig. 110:10611066.
18. Curtiss, R., III. 2005. Antigen delivery systems: development of live recombinant attenuated bacterial antigen and DNA vaccine delivery vector vaccines, p. 10091037. In J. Mestecky,, M. E. Lamm,, W. Strober,, J. Bienenstock,, J. R. McGhee, and, L. Mayer (ed.), Mucosal Immunology, 3rd ed., vol. 1. Academic Press, San Diego, CA.
19. Curtiss, R., III,, T. Doggett,, A. Nayak, and, J. Srinivasan. 1996. Strategies for the use of live recombinant avirulent bacterial vaccines for mucosal immunization, p. 499511. In H. Kiyono and, M. F. Kagnoff (ed.), Essentials of Mucosal Immunology. Academic Press, San Diego, CA.
20. Dalloul, R. A., and, H. S. Lillehoj. 2005. Recent advances in immunomodulation and vaccination strategies against coccidiosis. Avian Dis. 49:18.
21. Earhart, C. F. 1996. Uptake and metabolism of iron and molybdenum, p. 10751090. In F. C. Neidhardt et al. (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 1. ASM Press, Washington, DC.
22. Evans, D. T.,, L. M. Chen,, J. Gillis,, K. C. Lin,, B. Harty,, G. P. Mazzara,, R. O. Donis,, K. G. Mansfield,, J. D. Lifson,, R. C. Desrosiers,, J. E. Galan, and, R. P. Johnson. 2003. Mucosal priming of simian immunodeficiency virus-specific cytotoxic T-lymphocyte responses in rhesus macaques by the Salmonella type III secretion antigen delivery system. J. Virol. 77:24002409.
23. Formal, S. B.,, L. S. Baron,, D. J. Kopecko,, O. Washington,, C. Powell, and, C. A. Life. 1981. Construction of a potential bivalent vaccine strain: introduction of Shigella sonnei form I antigen genes into the galE Salmonella typhi Ty21a typhoid vaccine strain. Infect. Immun. 34:746750.
24. Fu, Y., and, J. E. Galan. 1998. Identification of a specific chaperone for SptP, a substrate of the centisome 63 type III secretion system of Salmonella typhimurium. J. Bacteriol. 180:33933399.
25. Fu, Y., and, J. E. Galan. 1998. The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Mol. Microbiol. 27:359368.
26. Gaines, S.,, H. Sprinz,, J. G. Tully, and, W. D. Tigertt. 1968. Studies on infection and immunity in experimental typhoid fever. VII. The distribution of Salmonella typhi in chimpanzee tissue following oral challenge, and the relationship between the numbers of bacilli and morphologic lesions. J. Infect. Dis. 118:293306.
27. Galan, J. E., and, R. Curtiss III. 1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc. Natl. Acad. Sci. USA 86:63836387.
28. Galen, J. E.,, J. Nair,, J. Y. Wang,, S. S. Wasserman,, M. K. Tanner,, M. B. Sztein, and, M. M. Levine. 1999. Optimization of plasmid maintenance in the attenuated live vector vaccine strain Salmonella typhi CVD 908-htrA. Infect. Immun. 67:64246433.
29. Gentschev, I.,, I. Glaser,, W. Goebel,, D. J. McKeever,, A. Musoke, and, V. T. Heussler. 1998. Delivery of the p67 sporozoite antigen of Theileria parva by using recombinant Salmonella dublin: secretion of the product enhances specific antibody responses in cattle. Infect. Immun. 66:20602064.
30. Gentschev, I.,, H. Mollenkopf,, Z. Sokolovic,, J. Hess,, S. H. Kaufmann, and, W. Goebel. 1996. Development of antigen-delivery systems, based on the Escherichia coli hemolysin secretion pathway. Gene 179:133140.
31. Gerdes, K.,, A. P. Gultyaev,, T. Franch,, K. Pedersen, and, N. D. Mikkelsen. 1997. Antisense RNA-regulated programmed cell death. Annu. Rev. Genet. 31:131.
32. Guzman, L. M.,, D. Belin,, M. J. Carson, and, J. Beckwith. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177:41214130.
33. Hayashi, F.,, K. D. Smith,, A. Ozinsky,, T. R. Hawn,, E. C. Yi,, D. R. Goodlett,, J. K. Eng,, S. Akira,, D. M. Underhill, and, A. Aderem. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:10991103.
34. Hitchcock, P. J., and, T. M. Brown. 1983. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J. Bacteriol. 154:269277.
35. Hohmann, E. L.,, C. A. Oletta,, W. P. Loomis, and, S. I. Miller. 1995. Macrophage-inducible expression of a model antigen in Salmonella typhimurium enhances immunogenicity. Proc. Natl. Acad. Sci. USA 92:29042908.
36. Hollingshead, S. K.,, R. Becker, and, D. E. Briles. 2000. Diversity of PspA: mosaic genes and evidence for past recombination in Streptococcus pneumoniae. Infect. Immun. 68:58895900.
37. Kang, H. Y., and, R. Curtiss III. 2003. Immune responses dependent on antigen location in recombinant attenuated Salmonella typhimurium vaccines following oral immunization. FEMS Immunol. Med. Microbiol. 37:99104.
38. Kang, H. Y.,, J. Srinivasan, and, R. Curtiss III. 2002. Immune responses to recombinant pneumococcal PspA antigen delivered by live attenuated Salmonella enterica serovar Typhimurium vaccine. Infect. Immun. 70:17391749.
39. Konjufca, V.,, S. Y. Wanda,, M. C. Jenkins, and, R. Curtiss III. 2006. A recombinant attenuated Salmonella enterica serovar Typhimurium vaccine encoding Eimeria acervulina antigen offers protection against E. acervulina challenge. Infect. Immun. 74:67856796.
40. Koshland, D., and, D. Botstein. 1980. Secretion of β-lactamase requires the carboxy end of the protein. Cell 20:749760.
41. Kotton, C. N.,, A. J. Lankowski,, N. Scott,, D. Sisul,, L. M. Chen,, K. Raschke,, G. Borders,, M. Boaz,, A. Spentzou,, J. E. Galan, and, E. L. Hohmann. 2006. Safety and immunogenicity of attenuated Salmonella enterica serovar Typhimurium delivering an HIV-1 Gag antigen via the Salmonella type III secretion system. Vaccine 24:62166224.
42. Kubori, T., and, J. E. Galan. 2003. Temporal regulation of Salmonella virulence effector function by proteasome-dependent protein degradation. Cell 115:333342.
43. Makela, P. H., and, B. A. Stocker. 1969. Genetics of polysaccharide biosynthesis. Annu. Rev. Genet. 3:291322.
44. McDaniel, L. S.,, J. Yother,, M. Vijayakumar,, L. McGarry,, W. R. Guild, and, D. E. Briles. 1987. Use of insertional inactivation to facilitate studies of biological properties of pneumococcal surface protein A (PspA). J. Exp. Med. 165:381394.
45. McDougald, L. R. 2003. Coccidiosis. In Y. M. Saif (ed.), Diseases of Poultry, 11th ed. Iowa State Press, Ames, IA.
46. Minor, L. 1984. Salmonella, p. 427458. In R. E. Buchanan and, N. E. Gibbons (ed.), Bergey’s Manual of Systematic Bacteriology, 8th ed. Williams & Wilkins, Baltimore, MD.
47. Nakayama, K.,, S. M. Kelly, and, R. Curtiss III. 1988. Construction of an Asd+ expression-cloning vector: stable maintenance and high level expression of cloned genes in a Salmonella vaccine strain. Bio/Technology 6:693697.
48. Nayak, A. R.,, S. A. Tinge,, R. C. Tart,, L. S. McDaniel,, D. E. Briles, and, R. Curtiss III. 1998. A live recombinant avirulent oral Salmonella vaccine expressing pneumococcal surface protein A induces protective responses against Streptococcus pneumoniae. Infect. Immun. 66:37443751.
49. Orr, N.,, J. E. Galen, and, M. M. Levine. 2001. Novel use of anaerobically induced promoter, dmsA, for controlled expression of fragment C of tetanus toxin in live attenuated Salmonella enterica serovar Typhi strain CVD 908-htrA. Vaccine 19:16941700.
50. Pogonka, T.,, C. Klotz,, F. Kovacs, and, R. Lucius. 2003. A single dose of recombinant Salmonella typhimurium induces specific humoral immune responses against heterologous Eimeria tenella antigens in chicken. Int. J. Parasitol. 33:8188.
51. Raetz, C. R., and, C. Whitfield. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71:635700.
52. Roberts, M.,, S. M. Chatfield, and, G. Dougan. 1994. Salmonella as carriers of heterologous antigens. In D. T. O’Hagan (ed.), Novel Delivery Systems for Oral Vaccines. CRC Press, Inc., New York, NY.
53. Rüssmann, H.,, H. Shams,, F. Poblete,, Y. Fu,, J. E. Galan, and, R. Q. Donis. 1998. Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science 281:565568.
54. Samatey, F. A.,, K. Imada,, S. Nagashima,, F. Vonderviszt,, T. Kumasaka,, M. Yamamoto, and, K. Namba. 2001. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410:331337.
55. Schodel, F., and, R. Curtiss III. 1995. Salmonellae as oral vaccine carriers. Dev. Biol. Stand. 84:245253.
56. Smith, K. D.,, E. Andersen-Nissen,, F. Hayashi,, K. Strobe,, M. A. Bergman,, S. L. Barrett,, B. T. Cookson, and, A. Aderem. 2003. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4:12471253.
57. Summers, R. G., and, J. R. Knowles. 1989. Illicit secretion of a cytoplasmic protein into the periplasm of Escherichia coli requires a signal peptide plus a portion of the cognate secreted protein. Demarcation of the critical region of the mature protein. J. Biol. Chem. 264:2007420081.
58. Vermeulen, A. N. 2004. Avian coccidiosis: a disturbed host-parasite relationship to be restored. Symp. Soc. Exp. Biol. 2004:211241, 243245.
59. Weisz-Carrington, P.,, M. E. Roux,, M. McWilliams,, J. M. Phillips-Quagliata, and, M. E. Lamm. 1979. Organ and isotype distribution of plasma cells producing specific antibody after oral immunization: evidence for a generalized secretory immune system. J. Immunol. 123:17051708.
60. Williams, R. B. 1998. Epidemiological aspects of the use of live anticoccidial vaccines for chickens. Int. J. Parasitol. 28:10891098.
61. Yonekura, K.,, S. Maki-Yonekura, and, K. Namba. 2003. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424:643650.
62. Yother, J., and, D. E. Briles. 1992. Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae, as revealed by sequence analysis. J. Bacteriol. 174:601609.

Tables

Generic image for table
TABLE 1

Virulence of and induction of protective immunity by serotype Typhimurium UK-1 mutants following oral inoculation of 8-week-old female BALB/c mice

Citation: Curtiss, III R, Zhang X, Wanda S, Kang H, Konjufca V, Li Y, Gunn B, Wang S, Scarpellini G, Lee I. 2007. Induction of Host Immune Responses Using -Vectored Vaccines, p 297-313. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch20
Generic image for table
TABLE 2

Effect of selective marker expression levels on the virulence of serotype Typhimurium Δ mutants orally inoculated into 8-week-old female BALB/c mice

Citation: Curtiss, III R, Zhang X, Wanda S, Kang H, Konjufca V, Li Y, Gunn B, Wang S, Scarpellini G, Lee I. 2007. Induction of Host Immune Responses Using -Vectored Vaccines, p 297-313. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error