1887

Chapter 3 : Prokaryotic Diversity: Form, Ecophysiology, and Habitat

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Prokaryotic Diversity: Form, Ecophysiology, and Habitat, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap03-2.gif

Abstract:

This chapter provides a descriptive outline of the , the , and some new chemical boundaries of their habitats in the more usual environmental sense (e.g., association with soils, waters, and some extreme environments) and also includes a consideration of microbes associated with macrobes. The recognition that beneath the widely disparate nutritional and environmental needs for the growth and sustenance of different microbes there was an underlying unity in their physiological attributes was a major conceptual contribution that had a marked practical influence on the development, nature, and extent of one's understanding of the significance of prokaryotic diversity. A widely accepted phylogenetic tree that classifies life in three major categories, , , and , is based on the inferences that and diverged from ancestors of the , first as a single lineage and only later diverging and becoming separately recognizable entities. As ever-increasing numbers of unique habitats are examined by use of macromolecular sequence, stable-isotope research, and new cultivation strategies, it is ever more evident that prokaryotic diversity has been regularly underestimated by classical isolation and cultivation approaches. Studies of spp., the prokaryotic intracellular symbionts of aphids, are but one reminder that not all organisms of environmental significance are free-living and that some may exist in mutualistic states. With complete and accessible data collection, there is a good chance that even complex systems with multiple species may yield information that is comprehensible, leads to more accurate predictions, and may be used by the greater scientific community.

Citation: Colwell F, Leadbetter E. 2007. Prokaryotic Diversity: Form, Ecophysiology, and Habitat, p 20-34. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch3

Key Concept Ranking

Bacteria and Archaea
1.2641702
Microbial Ecology
1.1630441
Chemicals
0.5825775
Hydrogen Sulfide
0.5226997
Inorganic Compounds
0.5174695
1.2641702
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

A phylogenetic tree based on evaluation of 16S rRNA sequences. The three major lineages of life ( and ) are shown. T. celer, Reprinted from ( ) with permission.

Citation: Colwell F, Leadbetter E. 2007. Prokaryotic Diversity: Form, Ecophysiology, and Habitat, p 20-34. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch03
1. Achtnich, C.,, A. Schuhmann,, T. Wind, and, R. Conrad. 1995. Role of interspecies H2 transfer to sulfate and ferric iron-reducing bacteria in acetate consumption in anoxic paddy soil. FEMS Microbiol. Ecol. 16:6170.
2. Akkermans, A. D. L.,, M. S. Mirza,, J. M. Harmsen,, J. H. Biok,, P. R. Herron,, A. Sessitsch, and, W. M. Akkermans. 1994. Molecular ecology of microbes: a review of promises, pitfalls and true progress. FEMS Microbiol. Rev. 15:185194.
3. Albrechtsen, H. J.,, G. Heron, and, T. H. Christensen. 1995. Limiting factors for microbial Fe(III)-reduction in landfill leachate polluted aquifer (Vejen, Denmark). FEMS Microbiol. Ecol. 16:233248.
4. Amann, R. I.,, W. Ludwig, and, K.-H. Schliefer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143169.
5. Amy, P. S.,, and R. Y. Morita. 1983. Starvation-survival patterns of sixteen freshly isolated open-ocean bacteria. Appl. Environ. Microbiol. 45:11091115.
6. Anderson, R. T.,, and D. R. Lovley. 2000. Hexadecane decay by methanogenesis. Nature 404:722723.
7. Angert, E. R.,, K. D. Clements, and, N. R. Pace. 1993. The largest bacterium. Nature 362:239241.
8. Atlas, R. M. 1986. Applicability of general ecological principles to microbial ecology, p. 339–370. In J. S. Poindexter and, E. R. Leadbetter (ed.), Bacteria in Nature, vol. 2. Methods and Special Applications in Bacterial Ecology. Plenum Press, New York, N.Y.
9. Baas Becking, L. G. M. 1934. Geobiologie ov in eidintot de milieukunde. Stockum und Zoon N. V., The Hague, The Netherlands.
10. Balows, A.,, H. G. Truper,, M. Dworkin,, W. Harder, and, K. H. Schleifer. 1992. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, the Prokaryotes, 2nd ed., vol. 1–4. Springer-Verlag, New York, N.Y.
11. Barns, S. M.,, R. E. Fundyga,, M. W. Jeffries, and, N. R. Pace. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91:16091613.
12. Baumann, P.,, L. Baumann,, C. Y. Lai, and, D. Rouhbakhsh. 1995. Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu. Rev. Microbiol. 49:5594.
13. Bazylinski, D. A.,, A. J. Dean,, D. Schuler,, E. J. P. Philips, and, D. R. Lovley. 2000. N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ. Microbiol. 2:266273.
14. Beatty, J. T.,, J. Overmann,, M. T. Lince,, A. K. Manske,, A. S. Lang,, R. E. Blankenship,, C. L. Van Dover,, T. A. Martinson, and, F. G. Plumley. 2005. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc. Natl. Acad. Sci. USA 102:93069310.
15. Beiko, R. G.,, T. J. Harlow, and, M. A. Ragan. 2005. Highways of gene sharing in prokaryotes. Proc. Natl. Acad. Sci. USA 102:1433214337.
16. Beja, O.,, M. T. Suzuki,, E. V. Koonin,, L. Aravind,, A. Hadd,, L. P. Nguyen,, R. Villacorta,, M. Amjadi,, C. Garrigues,, S. B. Jovanovich,, R. A. Feldman, and, E. F. DeLong. 2000. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2:516529.
17. Boetius, A.,, K. Ravenschlag,, C. J. Schubert,, D. Rickert,, F. Widdel,, A. Gieseke,, R. Amann,, B. B. Jorgensen,, U. Witte, and, O. Pfannkuche. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623626.
18. Caumette, P.,, R. Matheron,, N. Raymond, and, J. C. Relexans. 1994. Microbial mats in the hypersaline ponds of Mediterranean salterns (Sahns-de-Grand, France). FEMS Microbiol. Ecol. 13:273286.
19. Chapelle, F. H.,, K. O’Neill,, P. M. Bradley,, B. A. Methe,, S. A. Ciufo,, L. L. Knobel, and, D. R. Lovley. 2002. A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312315.
20. Cisar, J. O.,, D.-Q. Xu,, J. Thompson,, W. Swaim,, L. Hu, and, D. J. Kopecko. 2000. An alternative interpretation of nanobacteria-induced biomineralization. Proc. Natl. Acad. Sci. USA 97:1151111515.
21. Colwell, F. 2001. Constraints on the distribution of microorganisms in subsurface environments, p. 71–95. In J. Fredrickson and, M. Fletcher (ed.), Subsurface Microbiology and Biogeochemistry. John Wiley and Sons, New York, N.Y.
22. Connon, S. A.,, and S. J. Giovannoni. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68:38783885.
23. Conrad, R.,, P. Frenzel, and, Y. Cohen. 1995. Methane emission from hypersaline microbial mats: lack of aerobic methane oxidation activity. FEMS Microbiol. Ecol. 16:297306.
24. Davies, D.,, M. Parsek,, J. Pearson,, B. Iglewski,, J. W. Costerton, and, E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295298.
25. DeLong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89:56855689.
26. DeLong, E. F.,, K. Y. Wu,, B. B. Presellin, and, R. V. M. Jovine. 1994. High abundance of archaea in antarctic marine picoplankton. Nature 371:695697.
27. Devol, A. H. 2003. Nitrogen cycle: solution to a marine mystery. Nature 422:575576.
28. D’Hondt, S.,, S. Rutherford, and, A. J. Spivak. 2002. Metabolic activity of subsurface life in deep-sea sediments. Science 295:20672070.
29. Dickens, G. R. 2003. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet. Sci. Lett. 213:169183.
30. Doolittle, R. F.,, D. F. Feng,, S. Tsang,, G. Cho, and, E. Little. 1996. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271:470477.
31. Edwards, K. J.,, P. L. Bond,, T. M. Gihring, and, J. F. Banfield. 2000. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:17961799.
32. Ehrlich, H. L. 1985. The position of bacteria and their products in food webs, p. 199–220. In E. R. Leadbetter and, J. S. Poindexter (ed.), Bacteria in Nature, vol. 1. Bacterial Activities in Perspective. Plenum Press, New York, N.Y.
33. Flint, J. F.,, D. Drzymalski,, W. L. Montgomery,, G. Southam, and, E. R. Angert. 2005. Nocturnal production of endospores in natural populations of Epulopiscium-like surgeonfish symbionts. J. Bacteriol. 187:74607470.
34. Fortin, D.,, G. Southam, and, T. J. Beveridge. 1994. Nickel sulfide, iron-nickel sulfide and iron sulfide precipitation by a newly isolated Desulfotomaculum species and its relation to nickel resistance. FEMS Microbiol. Ecol. 14:121132.
35. Fossing, H.,, V. A. Gallardo,, B. B. Jorgensen,, M. Huttel,, L. P. Nielsen,, H. Schulz,, D. E. Canfield,, S. Forster,, R. N. Glud,, J. K. Gundersen,, J. Kuver,, N. B. Ramsing,, A. Teske,, B. Thamdrup, and, O. Ulloa. 1995. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature 374:713717.
36. Francis, C. A.,, K. J. Roberts,, J. M. Beman,, A. E. Santoro, and, B. B. Oakley. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 102:1468314688.
37. Fredrickson, J. K.,, J. M. Zachara,, D. L. Balkwill,, D. Kennedy,, S. M. W. Li,, H. M. Kostandarithes,, M. J. Daly,, M. F. Romine, and, F. J. Brockman. 2004. Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford site, Washington State. Appl. Environ. Microbiol. 70:42304241.
38. Fuhrman, J. A.,, K. McCallum, and, A. A. Davis. 1992. Novel major archaebacterial group from marine plankton. Nature 356:148149.
39. Gaidos, E. J.,, K. H. Nealson, and, J. L. Kirschvink. 1999. Life in ice-covered oceans. Science 284:16311632.
40. Garcia-Pichel, F.,, M. Mechling, and, R. W. Castenholz. 1994. Diel migrations of microorganisms within a benthic, hypersaline mat community. Appl. Environ. Microbiol. 60:15001511.
41. Gauci, V.,, E. Matthews,, N. Dise,, B. Walter,, D. Koch,, G. Granberg, and, M. Vile. 2004. Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proc. Natl. Acad. Sci. USA 101:1258312587.
42. Gevers, D.,, F. M. Cohan,, J. G. Lawrence,, B. G. Spratt,, T. Coenye,, E. J. Feil,, E. Stackebrandt,, Y. V. de Peer,, P. Vandamme,, F. L. Thompson, and, J. Swings. 2005. Reevaluating prokaryotic species. Nat. Rev. Microbiol. 3:733739.
43. Gilichinsky, D.,, E. Rivkina,, C. Bakermans,, V. Shcherbakova,, L. Petrovskaya,, S. Ozerskaya,, N. Ivanushkina,, G. Kochkina,, K. Laurinavichuis,, S. Pecheritsina,, R. Fattakhova, and, J. M. Tiedje. 2005. Biodiversity of cryopegs in permafrost. FEMS Microbiol. Ecol. 53:117128.
44. Giovannoni, S. J.,, M. S. Rappe,, D. Gordon,, E. Urbach,, M. Suzuki, and, K. G. Field. 1996. Ribosomal RNA and the evolution of bacterial diversity. Symp. Soc. Gen. Microbiol. 54:6385.
45. Gogarten, J. P.,, and J. P. Townsend. 2005. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3:679687.
46. Golyshina, O. V.,, and K. N. Timmis. 2005. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ. Microbiol. 7:12771288.
47. Guerrero, R.,, A. Haselton,, M. Sole,, A. Wier, and, L. Margulis. 1999. Titanospirillum velox: a huge speedy, sulfur-storing spirillum from Ebro Delta microbial mats. Proc. Natl. Acad. Sci. USA 96:1158411588.
48. Gutell, R. R.,, N. Larsen, and, C. R. Woese. 1994. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol. Rev. 58:1026.
49. Hallam, S. J.,, N. Putnam,, C. M. Preston,, J. C. Detter,, D. Rokhsar,, P. M. Richardson, and, E. F. DeLong. 2004. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:14571462.
50. Hall-Stoodley, L.,, J. W. Costerton, and, P. Stoodley. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2:95108.
51. Handelsman, J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68:669685.
52. Head, I. M.,, D. M. Jones, and, S. R. Larter. 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344352.
53. Heath, J.,, E. Ayres,, M. Possell,, R. D. Bardgett,, H. I. J. Black,, H. Grant,, P. Ineson, and, G. Kerstiens. 2005. Rising atmospheric CO2 reduces sequestration of root-derived soil carbon. Science 309:17111713.
54. Holman, H.-Y. N.,, D. L. Perry, and, J. C. Hunter-Cevera. 1998. Surface-enhanced infrared absorption-reflectance (SEIRA) microspectroscopy for bacteria localization on geologic material surfaces. J. Microbiol. Methods 34:5971.
55. Holmes, A. J.,, N. J. P. Owens, and, J. C. Murrell. 1995. Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment. Microbiology 141:19471955.
56. Huber, H.,, M. J. Hohn,, R. Rachel,, T. Fuchs,, V. C. Wimmer, and, K. O. Stetter. 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:6367.
57. Hugenholtz, P. 2002. Exploring prokaryotic diversity in the genomic era. Genome Biol. 3:reviews0003.1–0003.8. [Epub 29 January 2002.]
58. Hungate, R. E. 1985. Anaerobic biotransformations of organic matter, p. 39–96. In E. R. Leadbetter and, J. S. Poindexter (ed.), Bacteria in Nature, vol. 1. Bacterial Activities in Perspective. Plenum Press, New York, N.Y.
59. Inagaki, F.,, T. Nunoura,, S. Nakagawa,, A. Teske,, M. Lever,, A. Lauer,, M. Suzuki,, K. Takai,, M. Delwiche,, F. S. Colwell,, K. H. Nealson,, K. Horikoshi,, S. D’Hondt, and, B. B. Jorgensen. 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc. Natl. Acad. Sci. USA 103:28152820.
60. Isaksen, M. F.,, F. Bak, and, B. B. Jorgensen. 1994. Thermophilic sulfate-reducing bacteria in cold marine sediment. FEMS Microbiol. Ecol. 14:18.
61. Jannasch, H. W. 1995. Microbial interactions with hydrothermal fluids. Geophys. Monogr. 91:273296.
62. Jetten, M.,, M. Schmid,, K. van de Pas-Schoonen,, J. S. Damste, and, M. Strous. 2005. Anammox organisms: enrichment, cultivation, and environmental analysis. Methods Enzymol. 397:3457.
63. Kaeberlein, T.,, K. Lewis, and, S. S. Epstein. 2002. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:11271129.
64. Kajander, E. O.,, and N. Ciftcioglu. 1998. Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc. Natl. Acad. Sci. USA 95:82748279.
65. Kaprelyants, A. S.,, J. C. Gottschal, and, D. B. Kell. 1993. Dormancy in non-sporulating bacteria. FEMS Microbiol. Rev. 104:271286.
66. Kashefi, K.,, and D. R. Lovley. 2003. Extending the upper temperature limit for life. Science 301:934.
67. Kell, D. B. 2004. Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol. 7:296307.
68. Kieft, T. L.,, and T. J. Phelps. 1997. Life in the slow lane: activities of microorganisms in the subsurface, p. 137–163. In P. S. Amy and, D. L. Haldeman (ed.), The Microbiology of the Terrestrial Deep Subsurface. CRC Press, New York, N.Y.
69. Kluyver, A. J. 1931. The Chemical Activities of Micro-Organisms. University of London Press, Ltd., London, United Kingdom.
70. Kluyver, A. J.,, and C. B. van Niel. 1956. The Microbe’s Contribution to Biology. Harvard University Press, Cambridge, Mass.
71. Knoll, A. H.,, M. J. Osborn,, J. Baross,, H. C. Berg,, N. R. Pace, and, M. Sogin. 1999. Size Limits of Very Small Microorganisms. National Research Council, Washington, D.C.
72. Konneke, M.,, A. E. Bernhard,, J. R. de la Torre,, C. B. Walker,, J. B. Waterbury, and, D. A. Stahl. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543546.
73. Krause, D. O.,, W. J. M. Smith,, F. M. E. Ryan,, R. I. Mackie, and, C. S. McSweeney. 1999. Use of 16S-rRNA based techniques to investigate the ecological succession of microbial populations in the immature lamb rumen: tracking of a specific strain of inoculated Ruminococcus and interactions with other microbial populations in vivo. Microb. Ecol. 38:365376.
74. Leadbetter, J. R. 2003. Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr. Opin. Microbiol. 6:274281.
75. Leadbetter, J. R.,, and J. A. Breznak. 1996. Physiological ecology of Methanobacter cuticularis sp. nov. and Methanobacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl. Environ. Microbiol. 62:36203631.
76. Leadbetter, J. R.,, T. M. Schmidt,, J. R. Graber, and, J. A. Breznak. 1999. Acetogenesis from H2 plus CO2 by spiro-chetes from termite guts. Science 283:686689.
77. Lepp, P. W.,, M. M. Brinig,, C. C. Ouverney,, K. Palm,, G. C. Armitage, and, D. A. Relman. 2004. Methanogenic Archaea and human periodontal disease. Proc. Natl. Acad. Sci. USA 101:61766181.
78. Liesack, W.,, P. H. Janssen,, F. A. Rainey,, N. L. Ward-Rainey, and, E. Stackebrandt. 1997. Microbial diversity in soil: the need for a combined approach using molecular and cultivation techniques, p. 375–439. In J. D. Elsas,, J. P. Trevors, and, E. M. H. Wellington (ed.), Modern Soil Microbiology. Marcel Dekker, New York, N.Y.
79. Lin, L.-H.,, G. F. Slater,, B. Sherwood Lollar,, G. Lacrampe-Couloume, and, T. C. Onstott. 2005. The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochim. Cosmochim. Acta 69:893903.
80. Lorenz, M. G.,, and W. Wackernagel. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58:563602.
81. Lowe, S. E.,, M. K. Jain, and, J. G. Zeikus. 1993. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol. Rev. 57:451509.
82. Martiny, J. B. H.,, B. J. M. Bohannan,, J. H. Brown,, R. K. Colwell,, J. A. Fuhrman,, J. L. Green,, M. C. Horner-Devine,, M. Kane,, J. A. Krumins,, C. R. Kuske,, P. J. Morin,, S. Naeem,, L. Ovreas,, A.-L. Reysenbach,, V. H. Smith, and, J. T. Staley. 2006. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4:102112.
83. McCarty, P. L. 2000. Novel biological removal of hazardous chemicals at trace levels. Water Sci. Technol. 42:4960.
84. McFall-Ngai, M. 1999. Consequences of evolving with bacterial symbionts: insights from the squid-vibrio associations. Annu. Rev. Ecol. Syst. 30:235256.
85. McInerney, M. J. 1986. Transient and persistent associations among prokaryotes, p. 293-338. In J. S. Poindexter and, E. R. Leadbetter (ed.), Bacteria in Nature, vol. 2. Methods and Special Applications in Bacterial Ecology. Plenum Press, New York, N.Y.
86. Meyerdierks, A.,, M. Kube,, T. Lombardot,, K. Knittel,, M. Bauer,, F. O. Glockner,, R. Reinhardt, and, R. Amann. 2005. Insights into the genomes of archaea mediating the anaerobic oxidation of methane. Environ. Microbiol. 7:19371951.
87. Morita, R. Y. 2000. Is H2 the universal energy source for long-term survival? Microb. Ecol. 38:307320.
88. Mulder, A.,, A. A. van de Graaf,, L. A. Robertson, and, J. G. Kuenen. 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16:177184.
89. Nealson, K. H.,, F. Inagaki, and, K. Takai. 2005. Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? Trends Microbiol. 13:405410.
90. Nealson, K. H.,, and D. Saffarini. 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48:311343.
91. Nealson, K. H.,, T. M. Schmidt, and, B. Bleakley. 1990. Biochemistry and physiology of Xenorhabdus, p. 271–284. In R. R. Gaugler and, H. K. Kaya (ed.), Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, Fla.
92. Nealson, K. H.,, and D. A. Stahl. 1997. Microorganisms and biogeochemical cycles: what can we learn from layered microbial communities?, p. 5–31. In J. F. Banfield and, K. H. Nealson (ed.), Reviews in Mineralogy, vol. 35. Geomicrobiology: Interactions between Microbes and Minerals. The Mineralogical Society of America, Washington, D.C.
93. Nierman, W.,, J. A. Eisen, and, C. M. Fraser. 2000. Microbial genome sequencing 2000: new insights into physiology, evolution and expression analysis. Res. Microbiol. 151:7984.
94. Nordstrom, D. K.,, and C. N. Alpers. 1999. Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc. Natl. Acad. Sci. USA 96:34553462.
95. Ogram, A. 1998. Isolation of nucleic acids from environmental samples, p. 273–288. In R. S. Burlage,, R. Atlas,, D. Stahl,, G. Geesey, and, G. Sayler (ed.), Techniques in Microbial Ecology. Oxford University Press, New York, N.Y.
96. Oliver, J. D. 2005. The viable but nonculturable state in bacteria. J. Microbiol. 43:93100.
97. Olsen, G. J. 1994. Archaea, archaea, everywhere. Nature 371:657658.
98. Olsen, G. J.,, D. L. Lane,, S. J. Giovannoni,, N. R. Pace, and, D. A. Stahl. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40:337366.
99. Olsen, G. J.,, and C. R. Woese. 1993. Ribosomal RNA: a key to phylogeny. FASEB J. 7:113123.
100. Onstott, T. C.,, T. J. Phelps,, T. Kieft,, F. S. Colwell,, D. L. Balkwill,, J. K. Fredrickson, and, F. Brockman. 1999. A global perspective on the microbial abundance and activity in the deep subsurface, p. 487–500. In J. Seckbach (ed.), Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers, Dordrecht, The Netherlands.
101. Oremland, R. S.,, T. R. Kulp,, J. S. Blum,, S. E. Hoeft,, S. Baesman,, L. G. Miller, and, J. F. Stolz. 2005. A microbial arsenic cycle in a salt-saturated, extreme environment. Science 308:13051308.
102. Orphan, V. J.,, C. H. House,, K. U. Hinrichs,, K. D. McKeegan, and, E. F. DeLong. 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484487.
103. Overmann, J.,, J. T. Beatty, and, K. J. Hall. 1994. Photosynthetic activity and population dynamics of Amoebo-bacter purpureus in a meromictic saline lake. FEMS Microbiol. Ecol. 15:309320.
104. Parkes, R. J.,, B. A. Cragg,, S. J. Bale,, J. M. Getliff,, K. Goodman,, P. A. Rochelle,, J. C. Fry,, A. J. Weightman, and, S. M. Harvey. 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410413.
105. Parkes, R. J.,, G. Webster,, B. A. Cragg,, A. J. Weightman,, C. J. Newberry,, T. G. Ferdelman,, J. Kallmeyer,, B. B. Jorgensen,, I. W. Aiello, and, J. C. Fry. 2005. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436:390394.
106. Parsek, M. R.,, and E. P. Greenberg. 2005. Sociomicro-biology: the connections between quorum sensing and biofilms. Trends Microbiol. 13:2733.
107. Pernthaler, J.,, and R. Amann. 2005. Fate of heterotrophic microbes in pelagic habitats: focus on populations. Microbiol. Mol. Biol. Rev. 69:440461.
108. Pfennig, N. 1985. Stages in the recognition of bacteria using light as a source of energy, p. 113–129. In E. R. Leadbetter and, J. S. Poindexter (ed.), Bacteria in Nature, vol. 1. Bacterial Activities in Perspective. Plenum Press, New York, N.Y.
109. Pitta, T. P.,, and H. C. Berg. 1995. Self-electrophoresis is not the mechanism for motility in swimming cyanobacteria. J. Bacteriol. 177:57015703.
110. Pledger, R. J.,, B. C. Crump, and, J. A. Baross. 1994. A barophilic response by two hyperthermophilic, hydro-thermal vent archaea: an upward shift in the optimal temperature and acceleration of growth rate at supra-optimal temperatures by elevated pressure. FEMS Microbiol. Ecol. 14:233242.
111. Plugge, C. M.,, E. G. Zoetendal, and, A. J. M. Stams. 2000. Caloramator coolhaasii sp. nov., a glutamate-degrading, moderately thermophilic anaerobe. Int. J. Syst. Evol. Microbiol. 50:11551162.
112. Poindexter, J. S.,, and E. R. Leadbetter. 1986. Enrichment cultures in bacterial ecology, p. 229–260. In J. S. Poindexter and, E. R. Leadbetter (ed.), Bacteria in Nature, vol. 2. Methods and Special Applications in Bacterial Ecology. Plenum Press, New York, N.Y.
113. Polizzotto, M. L.,, C. F. Harvey,, S. R. Sutton, and, S. Fendorf. 2005. Processes conducive to the release and transport of arsenic into aquifers of Bangladesh. Proc. Natl. Acad. Sci. USA 102:1881918823.
114. Price, P. B.,, and T. Sowers. 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl. Acad. Sci. USA 101:46314636.
115. Radajewski, S.,, I. R. McDonald, and, J. C. Murrell. 2003. Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr. Opin. Biotechnol. 14:296302.
116. Ragatz, L.,, Z. Y. Jiang,, C. E. Bauer, and, H. Gest. 1995. Macroscopic phototactic behavior of the purple photo-synthetic bacterium Rhodospirillum centenum. Arch. Microbiol. 163:16.
117. Ram, R. J.,, N. C. VerBerkmoes,, M. P. Thelen,, G. W. Tyson,, B. J. Baker,, R. C. Blake,, M. Shah,, R. L. Hettich, and, J. F. Banfield. 2005. Community proteomics of a natural microbial biofilm. Science 308:19151920.
118. Ramsak, A.,, M. Peterka,, K. Tajima,, J. C. Martin,, J. Wood,, M. E. A. Johnston,, R. I. Aminov,, J. J. Flint, and, G. Avgustin. 2000. Unravelling the genetic diversity of ruminal bacteria belonging to the CFB phylum. FEMS Microbiol. Ecol. 33:6979.
119. Rappe, M. S.,, and S. J. Giovannoni. 2003. The uncultured microbial majority. Annu. Rev. Microbiol. 57:369394.
120. Reguera, G.,, K. D. McCarthy,, T. Mehta,, J. S. Nicoll,, M. T. Tuominen, and, D. R. Lovley. 2005. Extracellular electron transfer via microbial nanowires. Nature 435:10981101.
121. Rondon, M. R.,, P. R. August,, A. D. Bettermann,, S. F. Brady,, T. H. Grossman,, M. R. Liles,, K. A. Loiacono,, B. A. Lynch,, I. A. MacNeil,, C. Minor,, C. L. Tiong,, M. Gilman,, M. S. Osburne,, J. Clardy,, J. Handelsman, and, R. M. Goodman. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66:25412547.
122. Sackett, M. J.,, J. P. Armitage,, E. E. Sherwood, and, T. P. Pitta. 1997. Photoresponses of the purple non-sulfur bacteria Rhodospirillum centenum and Rhodobacter sphaeroides. J. Bacteriol. 179:67646768.
123. Schink, B.,, and M. Friedrich. 2000. Phosphite oxidation by sulphate reduction. Nature 406:37.
124. Schippers, A.,, L. N. Neretin,, J. Kallmeyer,, T. G. Ferdelman,, B. A. Cragg,, R. John Parkes, and, B. B. Jorgensen. 2005. Prokaryotic cells of the deep subseafloor biosphere identified as living bacteria. Nature 433:861864.
125. Schlegel, H. G. 1993. General Microbiology, 7th ed. Cambridge University Press, London, United Kingdom.
126. Schlesinger, W. H. 2004. Better living through biogeochemistry. Ecology 85:24022407.
127. Schmidt, T. M.,, E. F. DeLong, and, N. R. Pace. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173:43714378.
128. Schulz, H. N.,, T. Brinkhoff,, T. G. Ferdelman,, M. H. Marine,, A. Teske, and, B. B. Jorgensen. 1999. Dense population of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493495.
129. Seitz, A. P.,, T. H. Nielsen, and, J. Overmann. 1993. Physiology of purple sulfur bacteria forming macroscopic aggregates in Great Sippewissett Salt Marsh, Massachusetts. FEMS Microbiol. Ecol. 12:225236.
130. Siefert, J. L.,, and G. W. Fox. 1998. Phylogenetic mapping of bacterial morphology. Microbiology 144:28032808.
131. Spear, J. R.,, J. J. Walker,, T. M. McCollom, and, N. R. Pace. 2005. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc. Natl. Acad. Sci. USA 102:25552560.
132. Staley, J. T. 1999. Bacterial biodiversity: a time for place. ASM News 65:681687.
133. Staley, J. T.,, and J. J. Gosink. 1999. Poles apart: biodiversity and biogeography of sea ice bacteria. Annu. Rev. Microbiol. 53:189215.
134. Stanier, R. Y. 1951. The life-work of a founder of bacteriology. Q. Rev. Biol. 26:3537.
135. Stetter, K. O. 1995. Microbial life in hyperthermal environments. ASM News 61:285290.
136. Stevens, T. O.,, and J. P. McKinley. 1995. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450454.
137. Stolz, J. F.,, and R. S. Oremland. 1999. Bacterial respiration of arsenic and selenium. FEMS Microbiol. Rev. 23:615627.
138. Strous, M.,, J. A. Fuerst,, E. H. M. Kramer,, S. Logemann,, G. Muyzer,, K. T. van de Pas-Schoonen,, R. Webb,, J. G. Kuenen, and, M. S. M. Jetten. 1999. Missing lithotroph identified as new planctomycete. Nature 400:446449.
139. Strous, M.,, J. G. Kuenen,, J. A. Fuerst,, M. Wagner, and, M. S. M. Jetten. 2002. The anammox case—a new experimental manifesto for microbiological eco-physiology. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 81:693702.
140. Tiedje, J. M.,, and J. L. Stein. 1999. Microbial biodiversity: strategies for its recovery, p. 682–692. In A. L. Demain,, J. E. Davies,, R. M. Atlas,, G. Cohen,, C. L. Hershberger,, W.-S. Hu,, D. H. Sherman,, R. C. Willson, and, J. H. D. Wu (ed.), Manual of Industrial Microbiology and Biotechnology, 2nd ed. ASM Press, Washington, D.C.
141. Tringe, S. G.,, C. von Mering,, A. Kobayashi,, A. A. Salamov,, K. Chen,, H. W. Chang,, M. Podar,, J. M. Short,, E. J. Mathur,, J. C. Detter,, P. Bork,, P. Hugenholtz, and, E. M. Rubin. 2005. Comparative metagenomics of microbial communities. Science 308:554557.
142. Tyson, G. W.,, I. Lo,, B. J. Baker,, E. E. Allen,, P. Hugenholtz, and, J. F. Banfield. 2005. Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl. Environ. Microbiol. 71:63196324.
143. Ulrich, G. A.,, D. Martino,, K. Bureger,, J. Routh,, E. L. Grossman,, J. W. Ammerman, and, J. M. Suflita. 1998. Sulfur cycling in the terrestrial subsurface: commensal interactions, spatial scales, and microbial heterogeneity. Microb. Ecol. 36:141151.
144. Uwins, P. J. R.,, R. I. Webb, and, A. P. Taylor. 1998. Novel nano-organisms from Australian sandstones. Am. Mineral. 83:15411545.
145. van de Peer, Y.,, M. Neefs,, P. de Rijk,, P. de Vos, and, R. de Wachter. 1994. About the order of divergence of the major bacterial taxa during evolution. Syst. Appl. Microbiol. 17:3238.
146. van Niel, C. B. 1949. The “Delft school” and the rise of general microbiology. Bacteriol. Rev. 13:161174.
147. van Niel, C. B. 1955. Natural selection in the microbial world. J. Gen. Microbiol. 13:201217.
148. Ward, D. M.,, M. J. Ferris,, S. C. Nold,, M. M. Bateson,, E. D. Kopczynski, and, A. L. Ruff-Roberts. 1994. Species diversity in hot spring microbial mats as revealed by both molecular and enrichment culture approaches—relationship between biodiversity and community structure. NATO ASI Ser. Ser. G 35:3344.
149. Whitman, W. B.,, D. C. Coleman, and, W. J. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95:65786583.
150. Wirsen, C. O.,, T. Brinkhoff,, J. Kuever,, G. Muyzer,, S. Molyneaux, and, H. W. Jannasch. 1998. Comparison of a new Thiomicrospira strain from the mid-Atlantic ridge with known hydrothermal vent isolates. Appl. Environ. Microbiol. 64:40574059.
151. Wolfe, R. S. 1992. Foreword, p. v–vi. In A. Balows,, H. G. Truper,, M. Dworkin,, W. Harder, and, K. H. Schleifer (ed.), The Prokaryotes, 2nd ed. Springer-Verlag, New York, N.Y.
152. Yayanos, A. A. 1995. Microbiology to 10,500 meters in the deep sea. Annu. Rev. Microbiol. 49:777805.
153. Zengler, K.,, G. Toledo,, M. Rappe,, J. Elkins,, E. J. Mathur,, J. M. Short, and, M. Keller. 2002. Cultivating the uncultured. Proc. Natl. Acad. Sci. USA 99:1568115686.
154. Zhulin, I. G.,, and J. P. Armitage. 1993. Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense. J. Bacteriol. 175:952958.
155. Zuckerkandl, E.,, and L. Pauling. 1965. Molecules as documents of evolutionary history. J. Theor. Biol. 8:357366.

Tables

Generic image for table
TABLE 1

Examples of diversity in morphology of selected prokaryotes

Citation: Colwell F, Leadbetter E. 2007. Prokaryotic Diversity: Form, Ecophysiology, and Habitat, p 20-34. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch3
Generic image for table
TABLE 2

Diversity in prokaryote cell size

Citation: Colwell F, Leadbetter E. 2007. Prokaryotic Diversity: Form, Ecophysiology, and Habitat, p 20-34. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch3
Generic image for table
TABLE 3

Some nutritional aspects of physiological diversity

Citation: Colwell F, Leadbetter E. 2007. Prokaryotic Diversity: Form, Ecophysiology, and Habitat, p 20-34. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch3
Generic image for table
TABLE 4

Some terms used in relation to bacterial growth or metabolic activity

Citation: Colwell F, Leadbetter E. 2007. Prokaryotic Diversity: Form, Ecophysiology, and Habitat, p 20-34. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch3
Generic image for table
TABLE 5

Environmental extremes in which prokaryotes are thought to multiply

Citation: Colwell F, Leadbetter E. 2007. Prokaryotic Diversity: Form, Ecophysiology, and Habitat, p 20-34. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error