Chapter 5 : Analytical Imaging and Microscopy Techniques

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Analytical Imaging and Microscopy Techniques, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap05-2.gif


Examination of microorganisms in their natural habitat may be achieved most effectively through the application of a variety of microscope-based techniques. A major goal of the use of microscopic techniques is to achieve minimum disturbance of the system under observation. The major guidelines for all types of laser scanning microscopy (LSM) imaging are to obtain an image using the lowest-intensity laser and the smallest-pinhole aperture to minimize photodamage, optimize image quality (i.e., signal-to-noise ratio), and minimize the thickness of the optical section. Probes useful for fluorescence microscopy may be divided into three different types. Intrinsic probes are already present inside the sample (e.g., pigments such as chlorophyll or phycoerythrins and phycocyanins). Extrinsic probes are those which bind directly to a target (e.g., the general nucleic acid stains, such as 4 ,6 -diamidino-2-phenylindole [DAPI] or the SYTO series). Extrinsic covalently bound probes are usually high-molecular-weight molecules with a high specificity but no fluorescence (e.g., antibodies, lectins, and gene probes). Fluorescence in situ hybridization (FISH) of oligonucleotide probes to specific bacteria has previously been used in conjunction with confocal laser scanning microscopy (CLSM) and epifluorescence microscopy to document microbial diversity in a range of environments, including sewage sludge, river biofilms, and the rhizosphere. A number of emerging microscopy techniques, particularly in fluorescence imaging, may be applied to microbiological samples. These include FLIM, FCS, coherent anti-Stokes Raman scattering (CARS) microscopy, second harmonic imaging microscopy, 4Pi microscopy, stimulated emission depletion microscopy, and near-field scanning optical microscopy (NSOM).

Citation: Lawrence J, Korber D, Neu T. 2007. Analytical Imaging and Microscopy Techniques, p 40-68. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch5

Key Concept Ranking

Environmental Microbiology
Microbial Ecology
Confocal Laser Scanning Microscopy
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Images may be collected in the or plane, or a series of images may be collected in either the or plane. These photomicrographs show images collected in both the and planes in a biofilm community by using negative staining so that cells appear as dark objects (A) or positive staining so that cells appear as bright objects on a dark background (B). The location of the section is shown by the location of the horizontal line in each image in each panel.

Citation: Lawrence J, Korber D, Neu T. 2007. Analytical Imaging and Microscopy Techniques, p 40-68. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

A series of confocal micrographs taken at the same location in a sample of an algal mat. These images provide an illustration of multichannel imaging showing (A) an autofluorescence signal (algal chloroplasts), (B) reflection imaging of colloidal particles, and (C) an image of exopolymer labeled with the fluor-conjugated lectin concanavalin A-FITC. Reprinted from reference with permission from the publisher.

Citation: Lawrence J, Korber D, Neu T. 2007. Analytical Imaging and Microscopy Techniques, p 40-68. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

(a) Analyses of CLSM confocal image stacks illustrating the application of basic image-processing steps to the analysis of a three-channel (green, red, and far red) fluorescence emission CLSM image stack of a river biofilm. The three stacks are used for the determination of algal (A, D, and G), bacterial (B, E, and H), and polymeric (C, F, and I) biomasses. The series shows the primary image (A, B, and C), application of segmentation to identify objects (D, E, and F), and application of dilation and erosion functions to eliminate noise in the images prior to determination of the number of object pixels in each category (G, H, and I). (b) Graphs showing sample data extracted from the image stacks as a bar graph of the percent biomass in each category and a pie chart of the proportional distribution of the measured parameters.

Citation: Lawrence J, Korber D, Neu T. 2007. Analytical Imaging and Microscopy Techniques, p 40-68. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Illustration of the application of difference imagery to detect and quantify the algal and cyanobacterial signals and biomass in an LSM image series.

Citation: Lawrence J, Korber D, Neu T. 2007. Analytical Imaging and Microscopy Techniques, p 40-68. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

CLSM micrograph showing the three-color stereo pair created from the combination of images shown in Fig. 3 . The image shows the relative positions of algal and bacterial cells and their surrounding polymer matrix.

Citation: Lawrence J, Korber D, Neu T. 2007. Analytical Imaging and Microscopy Techniques, p 40-68. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

CLSM data set for protozoa grazing on a heterotrophic biofilm. The original data set is compared with the result obtained after blind deconvolution. (a) Maximum intensity projection (MIP) of original data; (b) MIP of blind deconvolution data; (c) 3-D isosurface reconstruction of original data; (d) 3-D isosurface reconstruction of deconvolved data; (e) zoomed region of interest from panel c; (f) zoomed region of interest from panel d. Color allocations are as follows: green, lectin-specific glycoconjugates stained with lectin labeled with the Alexa-488 fluorochrome; red, bacterial cells stained with the nucleic acid-specific stain SYTO 60. Scale bars and grid boxes, 10 µm. Image data were recorded and deconvolution was calculated and projected by Christian Staudt.

Citation: Lawrence J, Korber D, Neu T. 2007. Analytical Imaging and Microscopy Techniques, p 40-68. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7

(Top) Confocal micrographs illustrating the effects of selected pharmaceuticals on biofilm composition and architecture for control, carbamazepine, caffeine, furosemide, and ibuprofen after 8 weeks of development. The color wheel indicates the assignment of colors to bacteria (green), EPS and cyanobacteria (red), and other photosynthetic organisms (blue). (Bottom) Results of image analyses of confocal laser micrographs illustrating the effects of the pharmaceuticals on the proportional distribution of biomass of algae, cyanobacteria, and bacteria in the river biofilms. Reprinted from Lawrence et al. ( ) with permission from the publisher.

Citation: Lawrence J, Korber D, Neu T. 2007. Analytical Imaging and Microscopy Techniques, p 40-68. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adiga, P. S. U.,, and B. B. Chaudhuri. 2000. Segmentation and counting of FISH signals in confocal microscopy images. Micron 31:515.
2. Amann, R.,, R. Snaid,, M. Wagner,, W. Ludwig, and, K. H. Schleifer. 1996. In situ visualization of high genetic diversity in a natural microbial community. J. Bacteriol. 178:34963500.
3. Amann, R. I.,, J. Stromley,, R. Devereux,, R. Key, and, D. A. Stahl. 1992. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58:614623.
4. Amann, R. I.,, L. Krumholz, and, D. A. Stahl. 1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172:762770.
5. Amann, R. I.,, W. Ludwig, and, K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143169.
6. Amaral, A. L.,, M. A. Pereira,, M. da Motta,, M.-N. Pons,, M. Mota,, E. C. Ferreira, and, M. M. Alves. 2004. Development of image analysis techniques as a tool to detect and quantify morphological changes in aerobic sludge. II. Application to a granule deterioration process triggered by contact with oleic acid. Biotechnol. Bioeng. 87:194199.
7. An, Y. H.,, R. J. Friedman,, R. A. Draughn,, E. A. Smith,, J. H. Nicholson, and, J. F. John. 1995. Rapid quantification of staphylococci adhered to titanium surfaces using image analyzed epifluorescence microscopy. J. Microbiol. Methods 24:2940.
8. Andersen, J. B.,, C. Sternberg,, L. K. Poulsen,, S. P. Bjørn,, M. Givskov, and, S. Molin. 1998. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64:22402246.
9. Anguish, L. J.,, and W. C. Ghiorse. 1997. Computer-assisted laser scanning and video microscopy for analysis of Cryptosporidium parvum oocysts in soils, sediment, and feces. Appl. Environ. Microbiol. 63:724733.
10. Araya-Kroff, P.,, A. L. Amaral,, L. Neves,, E. C. Ferreira,, M.-N. Pons,, M. Mota, and, M. M. Alves. 2004. Development of image analysis techniques as a tool to detect and quantify morphological changes in anaerobic sludge. I. Application to a granulation process. Biotechnol. Bioeng. 87:184193.
11. Assmus, B.,, P. Hutzler,, G. Kirchhof,, R. I. Amann,, J. R. Lawrence, and, A. Hartmann. 1995. In situ localization of Azospirillum brasilense in the rhizosphere of wheat using fluorescently labeled rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl. Environ. Microbiol. 61:10131019.
12. Auty, M. A. E.,, G. E. Gardiner,, S. J. McBrearty,, E. O. O’Sullivan,, D. M. Mulvihill,, J. K. Collins,, G. F. Fitzgerald,, C. Stanton, and, R. P. Ross. 2001. Direct in situ viability assessment of bacteria in probiotic dairy products using viability staining in conjunction with confocal scanning laser microscopy. Appl. Environ. Microbiol. 67:420425.
13. Axelrod, A.,, D. E. Koppel,, J. Schlessinger,, E. Elsen, and, W. W. Webb. 1976. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16:10551069.
14. Back, J. P.,, and R. G. Kroll. 1991. The differential fluorescence of bacteria stained with acridine orange and the effects of heat. J. Appl. Bacteriol. 71:5158.
15. Bae, H. C.,, E. H. Cota-Robles, and, L. E. Casida, Jr. 1972. Microflora of soil as viewed by transmission electron microscopy. Appl. Microbiol. 23:637648.
16. Bahlmann, K.,, S. Jakobs, and, S. W. Hell. 2001. 4Pi-confocal microscopy of live cells. Ultramicroscopy 87:155164.
17. Barthelson, R.,, C. Hopkins, and, A. Mobasseri. 1999. Quantitation of bacterial adherence by image analysis. J. Microbiol. Methods 38:1723.
18. Battin, T. J.,, L. A. Kaplan,, J. D. Newbold,, X. Cheng, and, C. Hansen. 2003. Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl. Environ. Microbiol. 69:54435452.
19. Bergner, S.,, R. Pohle,, S. Al-Zubi,, K. Tönnies,, A. Eitner, and, T. R. Neu. 2002. Segmenting microorganisms in multi-modal volumetric datasets using a modified watershed transform, p. 429–437. In L. Van Gool (ed.), Lecture Notes in Computer Science, vol. 2449. Springer, Heidelberg, Germany.
20. Beveridge, T. J.,, J. R. Lawrence, and, R. G. E. Murray. Submitted for publication.
21. Beyenal, H.,, C. Donovan,, Z. Lewandowski, and, G. Harkin. 2004. Three-dimensional biofilm structure quantification. J. Microbiol. Methods 59:395413.
22. Birmingham, J. J.,, N. P. Hughes, and, R. Treloar. 1995. Diffusion and binding measurements within oral biofilms using fluorescence photobleaching recovery methods. Philos. Trans. Ry. Soc. Lond. B Biol. Sci. 350:325343.
23. Björnsen, P. K. 1986. Automatic determination of bacterioplankton biomass by image analysis. Appl. Environ. Microbiol. 51:11991204.
24. Blackburn, N.,, A. Hagström,, J. Wikner,, R. Cuadros-Hansson, and, P. K. Bjørnsen. 1998. Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis. Appl. Environ. Microbiol. 64:32463255.
25. Bloem, J.,, M. Veninga, and, J. Shepherd. 1995. Fully automatic determination of soil bacterium numbers, cell volumes, and frequency of dividing cells by confocal laser scanning microscopy and image analysis. Appl. Environ. Microbiol. 61:926936.
26. Blonk, J. C. G.,, A. Don,, H. van Aalst, and, J. J. Birmingham. 1993. Fluorescence photobleaching recovery in the confocal scanning laser microscope. J. Microsc. 169:363374.
27. Böckelmann, U.,, W. Manz,, T. R. Neu, and, U. Szewzyk. 2002. New combined technique of fluorescent in situ hybridization and lectin-binding-analysis (FISH-LBA) for the investigation of lotic microbial aggregates. J. Microbiol. Methods 49:7587.
28. Bos, R.,, H. C. van der Mei, and, H. J. Busscher. 1999. Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol. Rev. 23:179230.
29. Bos, R.,, H. C. van der Mei,, J. M. Meinders, and, H. J. Busscher. 1994. A quantitative method to study co-adhesion of microorganisms in a parallel plate flow chamber: basic principles of the analysis. J. Microbiol. Methods 20:289305.
30. Bott, T. L.,, and T. D. Brock. 1970. Growth and metabolism of periphytic bacteria: methodology. Limnol. Oceanogr. 20:191197.
31. Breeuwer, P.,, J.-L. Drocourt,, F. M. Rombouts, and, T. Abee. 1996. A novel method for continuous determination of intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6) carboxyfluorescein succinimidyl ester. Appl. Environ. Microbiol. 62:178183.
32. Brock, T. D.,, and M. L. Brock. 1968. Autoradiography as a tool in microbial ecology. Nature 209:734736.
33. Brock, T. D. 1971. Microbial growth rates in nature. Bacteriol. Rev. 35:3958.
34. Brock, T. D. 1984. How sensitive is the light microscope for observations on microorganisms in natural habitats? Microb. Ecol. 10:297300.
35. Bruchez, M.,, Jr., M. Moronne,, P. Gin,, S. Weiss, and, P. A. Alivisatos. 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281:20132016.
36. Caldwell, D. E.,, and J. J. Germida. 1985. Evaluation of difference imagery for visualizing and quantitating microbial growth. Can. J. Microbiol. 31:3544.
37. Caldwell, D. E.,, and J. R. Lawrence. 1986. Growth kinetics of Pseudomonas fluorescens microcolonies within the hydrodynamic boundary layers of surface microenvironments. Microb. Ecol. 12:299312.
38. Caldwell, D. E.,, D. R. Korber, and, J. R. Lawrence. 1992. Imaging of bacterial cells by fluorescence exclusion using scanning confocal laser microscopy. J. Microbiol. Methods 15:249261.
39. Caldwell, D. E.,, D. R. Korber, and, J. R. Lawrence. 1992. Confocal laser microscopy and digital image analysis in microbial ecology. Adv. Microb. Ecol. 12:167.
40. Campagnola, P. J.,, and L. M. Loew. 2003. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21:13561360.
41. Casida, L. E. 1976. Continuously variable amplitude contrast microscopy for the detection and study of microorganisms in soil. Appl. Environ. Microbiol. 31:605608.
42. Casida, L. E. 1975. Infrared color photomicrography of soil microorganisms. Can. J. Microbiol. 21:18921893.
43. Casida, L. E. 1969. Observation of microorganisms in soil and other natural habitats. Appl. Microbiol. 18:10651071.
44. Casida, L. E. 1972. Interval scanning photomicrography of microbial cell populations. Appl. Microbiol. 23:190192.
45. Chalfie, M.,, Y. Tu,, G. Euskirchen,, W. W. Ward, and, D. C. Prasher. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802805.
46. Chen, F.,, J. M. González,, W. A. Dustman,, M. A. Moran, and, R. E. Hodson. 1997. In situ reverse transcription, an approach to characterize genetic diversity and activities of prokaryotes. Appl. Environ. Microbiol. 63:49074913.
47. Chenier, M. R.,, D. Beaumier,, R. Roy,, B. T. Driscoll,, J. R. Lawrence, and, C. W. Greer. 2003. Impact of seasonal variations and nutrient inputs on the cycling of nitrogen and the degradation of hexadecane by replicated river biofilms. Appl. Environ. Microbiol. 69:51705177.
48. Choi, J.-W.,, B. F. Sherr, and, E. B. Sherr. 1999. Dead or alive? A large fraction of ETS-inactive marine bacterio-plankton cells, as assessed by reduction of CTC, can become ETS-active with incubation and substrate addition. Aquat. Microb. Ecol. 18:105115.
49. Cholodny, N. 1930. Über eine neue Method zur Untersuchung der Bodenflora. Arch. Mikrobiol. 1:620652.
50. Christensen, B. B.,, C. Sternberg,, J. B. Andersen,, L. Eberl,, S. Møller,, M. Givskov, and, S. Molin. 1998. Establishment of new genetic traits in a microbial biofilm community. Appl. Environ. Microbiol. 64:22472255.
51. Christensen, B. B.,, C. Sternberg,, J. B. Andersen,, L. Eberl,, S. Møller,, M. Givskov, and, S. Molin. 1999. Molecular tools for study of biofilm physiology. Methods Enzymol. 310:2042.
52. Chrzanowski, T. H.,, R. D. Crotty,, J. G. Hubbard, and, R. P. Welch. 1984. Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater. Microb. Ecol. 10:179185.
53. Clegg, R. M.,, O. Holub, and, C. Gohlke. 2003. Fluorescence lifetime-resolved imaging: measuring lifetimes in an image. Methods Enzymol. 360:509542.
54. Congestri, R.,, R. Federici, and, P. Albertano. 2000. Evaluating biomass of Baltic filamentous cyanobacteria by image analysis. Aquat. Microb. Ecol. 22:283290.
55. Conn, M. P. (ed.). 1999. Methods in Enzymology, vol. 307. Confocal Microscopy. Academic Press, Inc., San Diego, Calif.
56. Corkidi, G.,, R. Diaz-Uribe,, J. L. Folch-Mallol, and, J. Nieto-Sotelo. 1998. COVASIAM: an image analysis method that allows detection of confluent microbial colonies and colonies of various sizes for automated counting. Appl. Environ. Microbiol. 64:14001404.
57. Cox, P. W.,, G. C. Paul, and, C. R. Thomas. 1998. Image analysis of the morphology of filamentous micro-organisms. Microbiology 144:817827.
58. Cummings, R. D. 1994. Use of lectins in analysis of glycoconjugates. Methods Enzymol. 230:6686.
59. Daims, H.,, S. Lücker, and, M. Wagner. 2005. Daime, a novel image analysis program for microbial ecology and biofilm research. Environ. Microbiol. 10.1111/j.1462-2920.2005.00880.x.
60. Daims, H. 2005. Microbial community structure and function of flocs, p. 317–338. In I. G. Droppo,, G. G. Leppard,, S. N. Liss, and, T. M. Milligan (ed.), Flocculation in Natural and Engineered Environmental Systems. CRC Press, Inc., Boca Raton, Fla.
61. Daims, H.,, N. B. Ramsing,, K.-H. Schleifer, and, M. Wagner. 2001. Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization. Appl. Environ. Microbiol. 67:58105818.
62. Daley, R. J. 1979. Direct epifluorescence enumeration of native aquatic bacteria: uses, limitations, and comparative accuracy, p. 29–45. In J. W. Costerton and, R. R. Colwell (ed.), Native Aquatic Bacteria: Enumeration, Activity, and Ecology. STP 695. American Society for Testing and Materials, Villanova, Pa.
63. Dandurand, L. M.,, D. J. Schotzko, and, G. R. Knudsen. 1997. Spatial patterns of rhizoplane populations of Pseudo-monas fluorescens. Appl. Environ. Microbiol. 63:32113218.
64. Davey, H. M.,, and D. B. Kell. 1996. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Rev. 60:641696.
65. David, A. W.,, and J. H. Paul. 1989. Enumeration and sizing of aquatic bacteria by use of a silicon-intensified target camera linked-image analysis system. J. Microbiol. Methods 9:257266.
66. De Beer, D.,, A. Glud,, E. Epping, and, M. Kühl. 1997. A fast responding CO2 microelectrode for profiling sediments, microbial mats and biofilms. Limnol. Oceanogr. 42:15901600.
67. De Beer, D.,, P. Stoodley, and, Z. Lewandowski. 1997. Measurements of local diffusion coefficients in biofilms by microinjections and confocal microscopy. Biotechnol. Bioeng. 53:151158.
68. De Beer, D.,, P. Stoodley,, F. L. Roe, and, Z. Lewandowski. 1994. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol. Bioeng. 43:11311138.
69. Decho, A. W.,, and T. Kawaguchi. 1999. Confocal imaging of in situ natural microbial communities and their extracellular polymeric secretions using Nanoplast resin. BioTechniques 27:12461252.
70. de los Ríos, A.,, C. Ascaso,, J. Wierzchos,, E. Fernández-Valiente, and, A. Quesada. 2004. Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica. Appl. Environ. Microbiol. 70:569580.
71. Draaijer, A.,, R. Sanders, and, H. C. Gerritsen. 1995. Fluorescence lifetime imaging: a new tool in confocal microscopy, p. 491–505. In J. B. Pawley (ed.), Handbook of Biological Confocal Microscopy. Plenum Press, New York, N.Y.
72. Droppo, I. G.,, D. T. Flannigan,, G. G. Leppard,, C. Jaskot, and, S. N. Liss. 1996. Floc stabilization for multiple microscopic techniques. Appl. Environ. Microbiol. 62:35083515.
73. Dunn, K. W.,, and E. Wang. 2000. Optical aberrations and objective choice in multicolor confocal microscopy. BioTechniques 28:542550.
74. Duxbury, T. 1977. A microperfusion chamber for studying the growth of bacterial cells. J. Appl. Bacteriol. 42:247251.
75. Egland, P. G.,, R. J. Palmer, Jr., and, P. E. Kolenbrander. 2004. Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc. Natl. Acad. Sci. USA 101:1691716922.
76. Elfwing, A.,, Y. LeMarc,, J. Baranyi, and, A. Ballagi. 2004. Observing growth and division of large numbers of individual bacteria by image analysis. Appl. Environ. Microbiol. 70:675678.
77. Emerson, D.,, R. M. Worden, and, J. A. Breznak. 1994. A diffusion gradient chamber for studying microbial behavior and separating microorganisms. Appl. Environ. Microbiol. 60:12691278.
78. Errampali, D.,, K. Leung,, M. B. Cassidy,, M. Kostrzynska,, M. Blears,, H. Lee, and, J. T. Trevors. 1999. Applications of the green fluorescent protein as a molecular marker in environmental microorganisms. J. Microbiol. Methods 35:187199.
79. Gadella, T. W. J., Jr. 1999. Fluorescence lifetime imaging microscopy (FLIM): instrumentation and applications, p. 467–479. In W. T. Mason (ed.), Fluorescent and Luminescent Probes for Biological Activity. Academic Press, Inc., San Diego, Calif.
80. Ghiorse, W. C.,, D. N. Millar,, R. L. Sandoli, and, P. L. Siering. 1995. Applications of laser scanning microscopy for analysis of aquatic microhabitats. Microsc. Res. Tech. 33:7386.
81. Ginige, M. P.,, P. Hugenholtz,, H. Daims,, M. Wagner,, J. Keller, and, L. L. Blackall. 2004. Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanolfed denitrifying microbial community. Appl. Environ. Microbiol. 70:588596.
82. Gjaltema, A.,, P. A. M. Arts,, M. C. M. Loosdrecht,, J. G. van Kuenen, and, J. J. Heijnen. 1994. Heterogeneity of biofilms in rotating annular reactors: occurrence, structure, and consequences. Biotechnol. Bioeng. 44:194204.
83. Gonzalez, R. C.,, and P. Wintz. 1977. Digital Image Processing. Addison-Wesley, Reading, Mass.
84. Gribbon, L. T.,, and M. R. Barer. 1995. Oxidative metabolism in nonculturable Helicobacter pylori and Vibrio vulnificus cells studied by substrate-enhanced tetrazolium reduction and digital image processing. Appl. Environ. Microbiol. 61:33793384.
85. Grivet, M.,, J.-J. Morrier,, C. Souchier, and, O. Barsotti. 1999. Automatic enumeration of adherent streptococci or actinomyces on dental alloy by fluorescence image analysis. J. Microbiol. Methods 38:3342.
86. Grossart, H.-P.,, G. F. Steward,, J. Martinez, and, F. Azam. 2000. A simple, rapid method for demonstrating bacterial flagella. Appl. Environ. Microbiol. 66:36323636.
87. Guggenheim, M.,, S. Shapiro,, R. Gmür, and, B. Guggenheim. 2001. Spatial arrangements and associative behavior of species in an in vitro oral biofilm model. Appl. Environ. Microbiol. 67:13431350.
88. Guiot, E.,, P. Georges,, A. Brun,, M. P. Fontaine,, M.-N. Bellon-Fontaine, and, R. Briandet. 2002. Heterogeneity of diffusion inside microbial biofilms determined by fluorescence correlation spectroscopy under two photon excitation. Photochem. Photobiol. 75:570578.
89. Hahn, D.,, R. I. Amann,, W. Ludwig,, A. D. L. Akkermans, and, K.-H. Schleifer. 1992. Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. J. Gen. Microbiol. 138:879887.
90. Han, M.,, X. Gao,, J. Z. Su, and, S. Nie. 2001. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19:631635.
91. Hansen, M. C.,, R. J. Palmer, Jr.,, C. Udsen,, D. C. White, and, S. Molin. 2001. Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiology 147:13831391.
92. Hassan, M.,, G. Corkidi,, E. Galindo,, C. Flores, and, L. Serrano-Carreon. 2002. Accurate and rapid viability assessment of Trichoderma harzianum using fluorescence-based digital image analysis. Biotechnol. Bioeng. 80:677684.
93. Haugland, R. P. 2002. Handbook of Fluorescent Probes and Research Chemicals. Molecular Probes, Inc., Eugene, Oreg.
94. Haydon, P. G. 2003. Biological near-field microscopy. Methods Enzymol. 360:501508.
95. Heidelberg, J. F.,, M. Shahamat,, M. Levin,, I. Rahman,, G. Stelma,, C. Grim, and, R. R. Colwell. 1997. Effect of aerosolization on culturability and viability of gram-negative bacteria. Appl. Environ. Microbiol. 63:35853588.
96. Hell, S. W. 2003. Toward fluorescence nanoscopy. Nat. Biotechnol. 21:13471355.
97. Hell, S. W.,, and M. Nagorni. 1998. 4Pi confocal microscopy with alternate interference. Opt. Lett. 23:15671569.
98. Hendry, M. J.,, J. R. Lawrence, and, P. Maloszewski. 1997. The role of sorption in the transport of Klebsiella oxytoca through saturated silica sand: effects of scale of investigation. Ground Water 35:574584.
99. Henk, M. C. 2004. Method for collecting air-water interface microbes suitable for subsequent microscopy and molecular analyses in both teaching and research laboratories. Appl. Environ. Microbiol. 70:24862493.
100. Henrici, A. T. 1933. Studies of freshwater bacteria. I. A direct microscopic technique. J. Bacteriol. 25:277286.
101. Heydorn, A.,, A. T. Nielsen,, M. Hentzer,, C. Sternberg,, M. Givskov,, B. K. Ersböll, and, S. Molin. 2000. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:23952407.
102. Hink, M. A.,, J. W. Borst, and, A. J. W. G. Visser. 2003. Fluorescence correlation spectroscopy of GFP fusion proteins in living plant cells. Methods Enzymol. 361:93112.
103. Hobbie, J. E.,, R. J. Daley, and, S. Jasper. 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33:12251228.
104. Hodson, R. E.,, W. A. Dustman,, R. P. Garg, and, M. A. Moran. 1995. In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities. Appl. Environ. Microbiol. 61:40744082.
105. Holloway, C. F.,, and J. P. Cowen. 1997. Development of a scanning confocal laser microscopic technique to examine the structure and composition of marine snow. Limnol. Oceanogr. 42:13401352.
106. Hu, Z.,, G. Hidalgo,, P. L. Houston,, A. G. Hay,, M. L. Shuler,, H. D. Abruña,, W. C. Ghiorse, and, L. W. Lion. 2005. Determination of spatial distributions of zinc and active biomass in microbial biofilms by two-photon laser scanning microscopy. Appl. Environ. Microbiol. 71:40144021.
107. Huang, K.-T.,, K. D. Xu,, G. A. McFeters, and, P. S. Stewart. 1998. Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl. Environ. Microbiol. 64:15261531.
108. Hunter, R. C.,, and T. J. Beveridge. 2005. Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 71:25012510.
109. Imai, T.,, and T. Ohno. 1995. The relationship between viability and intracellular pH in the yeast Saccharomyces cerevisceae. Appl. Environ. Microbiol. 61:36043608.
110. Inoué, S. 1997. Video Microscopy. Plenum Press, New York, N.Y.
111. Karthikeyan, S.,, G. M. Wolfaardt,, D. R. Korber, and, D. E. Caldwell. 1999. Functional and structural responses of a degradative microbial community to substrates with varying degrees of complexity in chemical structure. Microb. Ecol. 38:215224.
112. Kelly, S. D.,, M. I. Boyanov,, B. A. Bunker,, J. B. Fein,, D. A. Fowle,, N. Yee, and, K. M. Kemner. 2001. XAFS determination of the bacterial cell wall functional groups responsible for complexation of Cd and U as a function of pH. J. Synchrotron Radiat. 8:946948.
113. Kepner, R. L.,, and J. R. Pratt. 1994. Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol. Rev. 58:603615.
114. Kitaguchi, A.,, N. Yamaguchi, and, M. Nasu. 2005. Enumeration of respiring Pseudomonas spp. in milk by fluorescence in situ hybridization following formazan reduction. Appl. Environ. Microbiol. 71:27482752.
115. Klar, T. A.,, S. Jakobs,, M. Dyba,, A. Egner, and, S. W. Hell. 2000. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 97:82068210.
116. Kloepfer, J. A.,, R. E. Mielke,, W. S. Wong,, K. H. Nealson,, G. Stucky, and, J. L. Nadeau. 2003. Quantum dots as strain- and metabolism-specific microbiological labels. Appl. Environ. Microbiol. 69:42054213.
117. Kogure, K.,, U. Simidu, and, N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 24:415420.
118. Kolari, M.,, K. Mattila,, R. Mikkola, and, M. S. Salkinoja-Salonen. 1998. Community structure of biofilms on ennobled stainless steel in Baltic Sea water. J. Ind. Microbiol. Biotechnol. 21:261275.
119. Korber, D. R.,, A. Choi,, G. M. Wolfaardt and, D. E. Caldwell. 1996. Bacterial plasmolysis as a physical indicator of viability. Appl. Environ. Microbiol. 62:39393947.
120. Korber, D. R.,, A. Choi,, G. M. Wolfaardt,, S. C. Ingham, and, D. E. Caldwell. 1997. Substratum topography influences susceptibility of Salmonella enteritidis bio-films to trisodium phosphate. Appl. Environ. Microbiol. 63:33523358.
121. Korber, D. R.,, G. A. James, and, J. W. Costerton. 1994. Evaluation of fleroxacin activity against established Pseudomonas fluorescens biofilms. Appl. Environ. Microbiol. 60:16631669.
122. Korber, D. R.,, J. R. Lawrence,, B. Sutton, and, D. E. Caldwell. 1989. Effect of laminar flow velocity on the kinetics of surface recolonization by mot+ and mot Pseudomonas fluorescens. Microb. Ecol. 18:119.
123. Korber, D. R.,, J. R. Lawrence,, K. E. Cooksey,, B. Cooksey, and, D. E. Caldwell. 1989. Computer image analysis of diatom chemotaxis. Binary 1:155168.
124. Korber, D. R.,, J. R. Lawrence,, M. J. Hendry, and, D. E. Caldwell. 1992. Programs for determining representative areas of microbial biofilms. Binary 4:204210.
125. Korber, D. R.,, J. R. Lawrence,, M. J. Hendry, and, D. E. Caldwell. 1993. Analysis of spatial variability within mot+ and mot Pseudomonas fluorescens biofilms using representative elements. Biofouling 7:339358.
126. Korber, D. R.,, G. M. Wolfaardt,, V. Brözel,, R. MacDonald, and, T. Niepel. 1999. Reporter systems for microscopic analysis of microbial biofilms. Methods Enzymol. 310:320.
127. Krambeck, C.,, H.-J. Krambeck,, D. Schröder, and, S. Y. Newell. 1990. Sizing bacterioplankton: a juxtaposition of bias due to shrinkage, halos, subjectivity in image interpretation and symmetric distributions. Binary 2:514.
128. Kuehn, M.,, M. Hausner,, H.-J. Bungartz,, M. Wagner,, P. A. Wilderer, and, S. Wuertz. 1998. Automated confocal laser scanning microscopy and semiautomated image processing for analysis of biofilms. Appl. Environ. Microbiol. 64:41154127.
129. Lam, J. S.,, and L. M. Mutharia. 1994. Antigen-antibody reactions, p. 104–132. In P. Gerhardt,, R. G. E. Murray,, W. A. Wood, and, N. R. Krieg (ed.), Methods for General and Molecular Bacteriology. ASM Press, Washington, D.C.
130. Lawrence, J. R.,, M. Chenier,, R. Roy,, D. Beaumier,, N. Fortin,, G. D. W. Swerhone,, T. R. Neu, and, C. W. Greer. 2004. Microscale and molecular assessment of the impacts of nickel, nutrients and oxygen level on river biofilm communities. Appl. Environ. Microbiol. 70:43264339.
131. Lawrence, J. R.,, G. Kopf,, J. V. Headley, and, T. R. Neu. 2001. Sorption and metabolism of selected herbicides in river biofilm communities. Can. J. Microbiol. 47:634641.
132. Lawrence, J. R.,, G. D. W. Swerhone,, L. I. Wassenaar, and, T. R. Neu. 2005. Effects of selected pharmaceuticals on riverine biofilm communities. Can. J. Microbiol. 51:655669.
133. Lawrence, J. R.,, T. R. Neu, and, G. D. W. Swerhone. 1998. Application of multiple parameter imaging for the quantification of algal, bacterial and exopolymer components of microbial biofilms. J. Microbiol. Methods 32:253261.
134. Lawrence, J. R.,, and R. A. Snyder. 1998. Feeding behaviour and grazing impacts of a Euplotes sp. on attached bacteria. Can. J. Microbiol. 44:623629.
135. Lawrence, J. R.,, and T. R. Neu. Submitted for publication.
136. Lawrence, J. R.,, G. D. W. Swerhone, and, T. R. Neu. 2000. Design and evaluation of a simple rotating annular reactor for replicated biofilm studies. J. Microbiol. Methods 42:215224.
137. Lawrence, J. R.,, D. R. Korber, and, D. E. Caldwell. 1989. Computer-enhanced darkfield microscopy for the quantitative analysis of bacterial growth and behavior on surfaces. J. Microbiol. Methods 10:123138.
138. Lawrence, J. R.,, D. R. Korber, and, D. E. Caldwell. 1992. Behavioral analysis of Vibrio parahaemolyticus variants in high and low viscosity microenvironments using computer-enhanced microscopy. J. Bacteriol. 174:57325739.
139. Lawrence, J. R.,, D. R. Korber, and, G. M. Wolfaardt. 2002. Image analysis of microorganisms, p. 1674–1688. In G. Bitton (ed.), Encyclopedia of Environmental Microbiology, vol. 4. John Wiley & Sons, Inc., New York, N.Y.
140. Lawrence, J. R.,, D. R. Korber,, B. D. Hoyle,, J. W. Costerton, and, D. E. Caldwell. 1991. Optical sectioning of microbial biofilms. J. Bacteriol. 173:65586567.
141. Lawrence, J. R.,, G. D. W. Swerhone, and, Y. T. J. Kwong. 1998. Natural attenuation of aqueous metal contamination by an algal mat. Can. J. Microbiol. 44:825832.
142. Lawrence, J. R.,, G. M. Wolfaardt, and, D. R. Korber. 1994. Monitoring diffusion in biofilm matrices using confocal laser microscopy. Appl. Environ. Microbiol. 60:11661173.
143. Lawrence, J. R.,, J. A. Malone,, D. R. Korber, and, D. E. Caldwell. 1989b. Computer image enhancement to increase depth of field in phase contrast microscopy. Binary 1:181185.
144. Lawrence, J. R.,, G. D. W. Swerhone,, G. G. Leppard,, T. Araki,, X. Zhang,, M. M. West, and, A. P. Hitchcock. 2003. Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl. Environ. Microbiol. 69:55435554.
145. Lawrence, J. R.,, Y. T. J. Kwong, and, G. D. W. Swerhone. 1997. Colonization and weathering of natural sulfide mineral assemblages by Thiobacillus ferrooxidans. Can. J. Microbiol. 43:6878.
146. Lee, N.,, P. H. Nielsen,, K. H. Adreasen,, S. Juretschko,, J. L. Nielsen,, K.-H. Schleifer, and, M. Wagner. 1999. Combination of fluorescent in situ hybridization and microautoradiography—a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol. 65:12891297.
147. Lens, P. N. L.,, D. De Beer,, C. C. H. Cronenberg,, F. P. Houwen,, S. P. P. Ottengraf, and, W. H. Verstraete. 1993. Heterogeneous distribution of microbial activity in methanogenic aggregates: pH and glucose microprofiles. Appl. Environ. Microbiol. 59:38033815.
148. Leppard, G. G.,, A. Heissenberger, and, G. J. Herndl. 1996. Ultrastructure of marine snow. I. Transmission electron microscopy methodology. Mar. Ecol. Prog. Ser. 135:289298.
149. Lerner, J. M.,, and R. M. Zucker. 2004. Calibration and validation of confocal spectral imaging systems. Cytometry Part A 62:813.
150. Lewis, A.,, H. Taha,, A. Strinkovski,, A. Manevitch,, A. Khatchatouriants,, R. Dekhter, and, E. Ammann. 2003. Near-field optics: from subwavelength illumination to nanometric shadowing. Nat. Biotechnol. 21:13781386.
151. Lin, H.-J.,, P. Herman,, J. S. Kang, and, J. R. Lakowicz. 2001. Fluorescence lifetime characterization of novel low-pH probes. Anal. Biochem. 294:118125.
152. Lindow, S. E.,, and M. T. Brandl. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69:18751883.
153. Lisle, J. T.,, P. S. Stewart, and, G. A. McFeters. 1999. Fluorescent probes applied to physiological characterization of bacterial biofilms. Methods Enzymol. 310:166178.
154. Liu, J.,, F. B. Dazzo,, O. Glagoleva,, B. Yu, and, A. K. Jain. 2001. CMEIAS: a computer-aided system for the image analysis of bacterial morphotypes in microbial communities. Microb. Ecol. 41:173194.
155. Liu, W.-T.,, and D. A. Stahl. 2002. Molecular approaches for the measurement of density, diversity, and phylogeny, p. 114–134. In C. J. Hurst,, R. L. Crawford,, G. R. Knudsen,, M. J. McInerney, and, L. D. Stetzenbach (ed.), Manual of Environmental Microbiology, 2nd ed. ASM Press, Washington, D.C.
156. Lopez, C.,, M. N. Pons, and, E. Morgenroth. 2005. Evaluation of microscopic techniques (epifluorescence microscopy, CLSM, TPE-LSM) as a basis for the quantitative image analysis of activated sludge. Water Res. 39:456468.
157. Lopez-Amoros, R., J. Comas,, and J. Vives-Rego. 1995. Flow cytometric assessment of Escherichia coli and Salmonella typhimurium starvation-survival in seawater using rhodamine 123, propidium iodide, and oxonol. Appl. Environ. Microbiol. 61:25212526.
158. Macedo, A. J.,, U. Kuhlicke,, T. R. Neu,, K. N. Timmis, and, W.-R. Abraham. 2005. Three stages of a biofilm community developing at the liquid-liquid interface between polychlorinated biphenyls and water. Appl. Environ. Microbiol. 71:73017309.
159. Manz, W.,, K. Wendt-Potthoff,, T. R. Neu,, U. Szewzyk, and, J. R. Lawrence. 1999. Phylogenetic composition, spatial structure, and dynamics of lotic bacterial biofilms investigated by in situ hybridization and confocal laser scanning microscopy. Microb. Ecol. 37:225237.
160. Manz, W.,, M. Eisenbrecher,, T. R. Neu, and, U. Szewzyk. 1998. Abundance and spatial organization of gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol. Ecol. 25:4361.
161. Marshall, K. C. 1986. Microscopic methods for the study of bacterial behaviour at inert surfaces. J. Microbiol. Methods 4:217227.
162. Mason, D. J.,, S. Shanmuganathan,, F. C. Mortimer, and, V. A. Gant. 1998. A fluorescent gram stain for flow cytometry and epifluorescence microscopy. Appl. Environ. Microbiol. 64:26812685.
163. Mason, J. D.,, L.-A. R. Allman,, J. M. Stark, and, D. Lloyd. 1995. The ability of membrane potential dyes and calcofluor white to distinguish between viable and non-viable bacteria. J. Appl. Bacteriol. 78:309315.
164. Meyer-Reil, L.-A. 1978. Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters. Appl. Environ. Microbiol. 36:506512.
165. Michael, T.,, and C. M. Smith. 1995. Lectins probe molecular films in biofouling: characterization of early films on non-living and living surfaces. Mar. Ecol. Prog. Ser. 119:229236.
166. Millard, A. C.,, P. J. Campagnola,, W. Mohler,, A. Lewis, and, L. M. Loew. 2003. Second harmonic imaging microscopy. Methods Enzymol. 361:4769.
167. Mills, A. L.,, and J. L. Garland. 2002. Application of physiological profiles to assessment of community properties, p. 135–146. In C. J. Hurst,, R. L. Crawford,, G. R. Knudsen,, M. J. McInerney, and, L. D. Stetzenbach (ed.), Manual of Environmental Microbiology, 2nd ed. ASM Press, Washington, D.C.
168. Molin, S.,, and M. Givskov. 1999. Application of molecular tools for in situ monitoring of bacterial growth activity. Environ. Microbiol. 1:383391.
169. Møller, S.,, C. Sternberg,, J. B. Andersen,, B. B. Christensen,, J. L. Ramos,, M. Givskov, and, S. Molin. 1998. In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl. Environ. Microbiol. 64:721732.
170. Møller, S.,, C. S. Kristensen,, L. K. Poulsen,, J. M. Carstensen, and, S. Molin. 1995. Bacterial growth on surfaces: automated image analysis for quantification of growth rate-related parameters. Appl. Environ. Microbiol. 61:741748.
171. Møller, S.,, D. R. Korber,, G. M. Wolfaardt,, S. Molin, and, D. E. Caldwell. 1997. The impact of nutrient composition on a degradative biofilm community. Appl. Environ. Microbiol. 63:24322438.
172. Morgan, P.,, C. J. Cooper,, N. S. Battersby,, S. A. Lee,, S. T. Lewis,, T. M. Machin,, S. C. Graham, and, R. J. Watkinson. 1991. Automated image analysis method to determine fungal biomass in soil and on solid matrices. Soil Biol. Biochem. 23:609616.
173. Morris, C. E.,, J.-M. Monier, and, M.-A. Jacques. 1997. Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl. Environ. Microbiol. 63:15701576.
174. Müller, J. D.,, Y. Chen, and, E. Gratton. 2003. Fluorescence correlation spectroscopy. Methods Enzymol. 361:6992.
175. Murga, R.,, P. S. Stewart, and, D. Daly. 1995. Quantitative analysis of biofilm thickness variability. Biotechnol. Bioeng. 45:503510.
176. Murray, R. G. E.,, and C. F. Robinow. 1994. Light microscopy, p. 8–20. In P. Gerhardt (ed.), Methods for General and Molecular Bacteriology. ASM Press, Washington, D.C.
177. Murray, R. G. E.,, R. N. Doetsch, and, C. F. Robinow. 1994. Determinative and cytological light microscopy, p. 21–41. In P. Gerhardt (ed.), Methods for General and Molecular Bacteriology. ASM Press, Washington, D.C.
178. Nedoma, J.,, J. Vrba,, T. Hanzl, and, L. Nedbalova. 2001. Quantification of pelagic filamentous microorganisms in aquatic environments using the line-intercept method. FEMS Microbiol. Ecol. 38:8185.
179. Nedoma, J.,, A. Strojsova,, J. Vrba,, J. Komarkova, and, K. Simek. 2003. Extracellular phosphatase activity of natural plankton studied with ELF97 phosphate: fluorescence quantification and labelling kits. Environ. Microbiol. 5:462472.
180. Neu, T.,, and K. C. Marshall. 1991. Microbial “foot-prints”—a new approach to adhesive polymers. Biofouling 3:101112.
181. Neu, T. R.,, and J. R. Lawrence. 2002. Laser scanning microscopy in combination with fluorescence techniques for biofilm study, p. 1772–1788. In G. Bitton (ed.), The Encyclopedia of Environmental Microbiology. John Wiley & Sons, Inc., New York, N.Y.
182. Neu, T. R.,, S. Woelfl, and, J. R. Lawrence. 2004. Three-dimensional differentiation of photo-autotrophic biofilm constituents by multi-channel laser scanning microscopy (single-photon and two-photon excitation). J. Microbiol. Methods 56:161172.
183. Neu, T. R. 2000. In situ cell and glycoconjugate distribution in river snow studied by confocal laser scanning microscopy. Aquat. Microb. Ecol. 21:8595.
184. Neu, T. R.,, and J. R. Lawrence. 1997. Development and structure of microbial stream biofilms as studied by confocal laser scanning microscopy. FEMS Microb. Ecol. 24:1125.
185. Neu, T. R.,, and J. R. Lawrence. 1999. Lectin-binding analysis in biofilm systems. Methods Enzymol. 310:145152.
186. Neu, T. R.,, and J. R. Lawrence. 1999. In situ characterization of extracellular polymeric substances in biofilm systems, p. 21–47. In J. Wingender,, T. R. Neu, and, H.-C. Flemming (ed.), Microbial Extracellular Polymeric Substances: Characterization, Structure and Function. Springer International, Berlin, Germany.
187. Neu, T. R.,, G. D. W. Swerhone, and, J. R. Lawrence. 2001. Assessment of lectin-binding-analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology 147:299313.
188. Neu, T. R.,, G. D. W. Swerhone,, U. Bockelmann, and, J. R. Lawrence. 2005. Effect of CNP on composition and structure of lotic biofilms as detected with lectin-specific glycoconjugates. Aquat. Microb. Ecol. 38:283295.
189. Neu, T. R.,, P. Walczysko, and, J. R. Lawrence. 2004. Two-photon imaging for studying the microbial ecology of biofilm systems. Microbes Environ. 19:16.
190. Neu, T. R.,, and J. R. Lawrence. 2005. One-photon versus two-photon laser scanning microscopy and digital image analysis of microbial biofilms. Methods Microbiol. 34:87134.
191. Newman, K. L.,, R. P. P. Almeida,, A. H. Purcell, and, S. E. Lindow. 2003. Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera. Appl. Environ. Microbiol. 69:73197327.
192. Nielsen, J. L.,, L. H. Mikkelsen, and, P. H Nielsen. 2000. In situ detection of cell surface hydrophobicity of probe-defined bacteria in activated sludge. Water Sci. Technol. 43:97103.
193. Nielsen, J. L.,, M. Aquino de Muro, and, P. H. Nielsen. 2003. Evaluation of the redox dye 5-cyano-2,3-tolyltetrazolium chloride for activity studies by simultaneous use of microautoradiography and fluorescence in situ hybridization. Appl. Environ. Microbiol. 69:641643.
194. Normander, B.,, N. B. Hendriksen, and, O. Nybroe. 1999. Green fluorescent protein-marked Pseudomonas fluorescens: localization, viability, and activity in the natural barley rhizosphere. Appl. Environ. Microbiol. 65:46464651.
195. Nour, S. M.,, J. R. Lawrence,, H. Zhu,, G. D. W. Swerhone,, M. Welsh,, T. W. Welacky, and, E. Topp. 2003. Bacteria associated with cysts of the soybean cyst nematode (Heterodera glycines). Appl. Environ. Microbiol. 69:607615.
196. Nunan, N.,, K. Ritz,, D. Crabb,, K. Harris,, K. Wu,, J. W. Crawford, and, I. M. Young. 2001. Quantification of the in situ distribution of soil bacteria by large-scale imaging of thin sections of undisturbed soil. FEMS Microbiol. Ecol. 37:6777.
197. Nyholm, S. V.,, B. Deplancke,, H. H. Gaskins,, M. A. Apicella, and, M. J. McFall-Ngai. 2002. Roles of Vibrio fischeri and nonsymbiotic bacteria in the dynamics of mucus secretion during symbiont colonization of the Euprymna scolopes light organ. Appl. Environ. Microbiol. 68:51135122.
198. Okabe, S.,, H. Naitoh,, H. Satoh, and, Y. Watanabe. 2002. Biofilm composition and process—structure and function of nitrifying biofilms as determined by molecular techniques and the use of microelectrodes. Water Sci. Technol. 46:233243.
199. Olsen, K. N.,, B. B. Budde,, H. Siegumfeldt,, K. B. Rechinger,, M. Jakobsen, and, H. Ingmer. 2002. Noninvasive measurement of bacterial intracellular pH on a single-cell level with green fluorescent protein and fluorescence ratio imaging microscopy. Appl. Environ. Microbiol. 68:41454147.
200. O’Mahony, R.,, C. Basset,, J. Holton,, D. Vaira, and, I. Roitt. 2005. Comparison of image analysis software packages in the assessment of adhesion of microorganisms to mucosal epithelium using confocal laser scanning microscopy. J. Microbiol. Methods 61:105126.
201. Packroff, G.,, J. R. Lawrence, and, T. R. Neu. 2002. In situ confocal laser scanning microscopy of protozoans in pure cultures and complex communities. Acta Protozool. 41:245253.
202. Palmer, R. J.,, Jr., and D. C. White. 1999. Spatially resolved, quantitative determination of luciferase activity by photon counting microscopy. Methods Enzymol. 310:152160.
203. Pawley, J. 2000. The 39 steps: a cautionary tale of quantitative 3-D fluorescence microscopy. BioTechniques 28:884888.
204. Pawley, J. B. 1995. Handbook of Biological Confocal Microscopy. Plenum Press, New York, N.Y.
205. Pepper, I. L.,, and S. E. Dowd. 2002. PCR applications for plant and soil microbes, p. 573–582. In C. J. Hurst,, R. L. Crawford,, G. R. Knudsen,, M. J. McInerney, and, L. D. Stetzenbach (ed.), Manual of Environmental Microbiology, 2nd ed. ASM Press, Washington, D.C.
206. Perenthaler, J.,, F. O. Glöckner,, W. Schönhuber, and, R. Amann. 2001. Fluorescence in situ hybridization (FISH) with rRNA targeted oligonucleotide probes. Methods Microbiol. 30:207226.
207. Perfil’ev, B. V.,, and D. R. Gabe. 1969. Capillary Methods of Investigating Micro-Organisms. (Translated by J. M. Shewan.) University of Toronto Press, Toronto, Ontario, Canada.
208. Pernthaler, A.,, and R. Amann. 2004. Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl. Environ. Microbiol. 70:54265433.
209. Petrisor, A. I.,, T. Kawaguchi, and, A. W. Decho. 2004. Quantifying CaCO3 microprecipitates within developing surface mats of marine stromatolites using GIS and digital image analysis. Geomicrob. J. 21:491496.
210. Petrisor, A. I.,, and A. W. Decho. 2004. Using geographical information techniques to quantify the specific structure of endolithic boring processes within sediment grains of marine stromatolites. J. Microbiol. Methods 56:173180.
211. Pomroy, A. J. 1984. Direct counting of bacteria preserved with Lugol iodine solution. Appl. Environ. Microbiol. 47:11911192.
212. Popkin, T. J. 1994. Photography, p. 735–762. In P. Gerhardt,, R. G. E. Murray,, W. A. Wood, and, N. R. Krieg (ed.), Methods for General and Molecular Bacteriology. ASM Press, Washington, D.C.
213. Porter, J.,, D. Deere,, M. Hardman,, C. Edwards, and, R. Pickup. 1997. Go with the flow—use of flow cytometry in environmental microbiology. FEMS Microbiol. Ecol. 24:93101.
214. Porter, K. G.,, and Y. S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25:943948.
215. Poulsen, L. K.,, G. Ballard, and, D. A. Stahl. 1993. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl. Environ. Microbiol. 59:13541360.
216. Ramos, C.,, L. Mølbak, and, S. Molin. 2000. Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl. Environ. Microbiol. 66:801809.
217. Rocheleau, S.,, C. W. Greer,, J. R. Lawrence,, C. Cantin,, L. Laramee, and, S. Guiot. 1999. Differentiation of Methanosaeta concilii and Methanosarcina barkeri in anaerobic mesophilic granular sludge by fluorescent in situ hybridization and confocal scanning laser microscopy. Appl. Environ. Microbiol. 65:22222229.
218. Rodenacker, K.,, M. Hausner, and, A. A. Gorbushina. 2003. Quantification and spatial relationship of micro-organisms in sub-aquatic and subaerial biofilms, p. 387–399. In W. E. Krumbein,, D. M. Paterson, and, G. A. Zavarzin (ed.), Fossil and Recent Biofilms. Kluwer Academic Publishers, Dordrecht, The Netherlands.
219. Rodriguez, G. G.,, D. Phipps,, K. Ishiguro, and, H. F. Ridgway. 1992. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58:18011808.
220. Rogers, J.,, and C. W. Keevil. 1992. Immunogold and fluorescein immunolabelling of Legionella pneumophila within an aquatic biofilm visualized by episcopic differential interference contrast microscopy. Appl. Environ. Microbiol. 58:23262330.
221. Rossner, M.,, and K. M. Yamada. 2004. What’s in a picture? The temptation of image manipulation. J. Cell Biol. 166:1115.
222. Rost, F. W. D. 1992. Fluorescence microscopy, vol. I and II. Cambridge University Press, Cambridge, United Kingdom.
223. Russ, J. C. 2002. The Image Processing Handbook, 3rd ed. CRC Press, Inc. Boca Raton, Fla.
224. Sanders, R.,, A. Draaijer,, H. C. Gerritsen,, P. M. Houpt, and, Y. K. Levine. 1995. Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy. Anal. Biochem. 227:302308.
225. Schloter, M.,, W. Wiehe,, B. Assmus,, H. Steindl,, H. Becke,, G. Höflich, and, A. Hartmann. 1997. Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antibodies. Appl. Environ. Microbiol. 63:20382046.
226. Schmid, M.,, A. Thill,, U. Purkhold,, M. Walcher,, J. Y. Bottero,, P. Ginestet,, P. H. Nielsen,, S. Wuertz, and, M. Wagner. 2003. Characterization of activated sludge flocs by confocal laser scanning microscopy and image analysis. Water Res. 37:20432052.
227. Schrader, M.,, K. Bahlmann,, G. Giese, and, S. W. Hell. 1998. 4Pi-confocal imaging in fixed biological specimens. Biophys. J. 75:16591668.
228. Schramm, A.,, D. De Beer,, J. C. van den Heuvel,, S. Ottengraf, and, R. Amann. 1999. Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Appl. Environ. Microbiol. 65:36903696.
229. Schramm, A.,, D. De Beer,, M. Wagner, and, R. Amann. 1998. Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 64:34803485.
230. Shakespeare, A. P.,, and J. Verran. 1988. The use of automated image analysis for rapid measurement of the in vitro attachment of Candida albicans to transparent acrylic. Lett. Appl. Microbiol. 6:7983.
231. Shaw, P. J. 1995. Comparison of wide-field/deconvolution and confocal microscopy for 3D imaging, p. 373–387. In J. B. Pawley (ed.), Handbook of Biological Confocal Microscopy. Plenum Press, New York, N.Y.
232. Shaw, P. J.,, and D. J. Rawlins. 1991. The point-spread function of a confocal microscope: its measurement and use in deconvolution of 3-D data. J. Microsc. 163:151165.
233. Sherr B. F.,, P. A. Giorgio, and, E. B. Sherr. 1999. Estimating abundance and single-cell characteristics of respiring bacteria via the redox dye CTC. Aquat. Microb. Ecol. 18:117131.
234. Shotton, D. M. 1989. Confocal scanning optical microscopy and its applications for biological specimens. J. Cell Sci. 94:175206.
235. Sieracki, M. E.,, P. W. Johnson, and, J. M. Sieburth. 1985. Detection, enumeration and sizing of planktonic bacteria by image-analyzed epifluorescence microscopy. Appl. Environ. Microbiol. 49:799810.
236. Sieracki, M. E.,, S. E. Reichenbach, and, K. L. Webb. 1989. Evaluation of automated threshold selection methods for accurately sizing microscopic fluorescent cells by image analysis. Appl. Environ. Microbiol. 55:27622772.
237. Sizemore, R. K.,, J. J. Caldwell, and, A. S. Kendrick. 1990. Alternate Gram staining technique using a fluorescent lectin. Appl. Environ. Microbiol. 56:22452247.
238. Sjollema, J.,, H. J. Busscher, and, A. H. Weerkamp. 1989. Real-time enumeration of adhering microorganisms in a parallel plate flow cell using automated image analysis. J. Microbiol. Methods 9:7378.
239. Söderström, B. E. 1977. Vital staining of fungi in pure cultures and in soil with fluorescein diacetate. Soil Biol. Biochem. 9:5963.
240. Sole, A.,, N. Gaju,, S. Mendez-Alvarez, and, I. Esteve. 2001. Confocal laser scanning microscopy as a tool to determine cyanobacteria biomass in microbial mats. J. Microsc. 204:258262.
241. Sorensen, S. J.,, M. Bailey,, L. H. Hansen,, N. Kroer, and, S. Wuertz. 2005. Studying plasmid horizontal transfer in situ: a critical review. Nat. Microbiol. Rev. 3:700710.
242. Southward, C. M.,, and M. G. Surette. 2002. The dynamic microbe: green fluorescent protein brings bacteria to light. Mol. Microbiol. 45:11911196.
243. Stahl, D. A.,, B. Flesher,, H. R. Mansfield, and, L. Montgomery. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54:10791084.
244. Staley, J. T. 1971. Growth rates of algae determined in situ using an immersed microscope. J. Phycol. 7:1317.
245. Staudt, C. H. Horn,, D. C. Hempel, and, T. R. Neu. 2003. Screening of lectins for staining lectin-specific glycoconjugates in the EPS of biofilms, p. 308–326. In P. Lens,, A. P. Moran,, T. Mahony,, P. Stoodley, and, V. O’Flaherty (ed.), Biofilms in Medicine, Industry and Environmental Biotechnology. IWA Publishing, London, United Kingdom.
246. Staudt, C.,, H. Horn,, D. C. Hempel, and, T. R. Neu. 2004. Volumetric measurements of bacterial cells and EPS glycoconjugates in biofilms. Biotechnol. Bioeng. 88:585592.
247. Sternberg, C.,, B. B. Christensen,, T. Johansen,, A. T. Nielsen,, J. B. Andersen,, M. Givskov, and, S. Molin. 1999. Distribution of bacterial growth activity in flow-chamber biofilms. Appl. Environ. Microbiol. 65:41084117.
248. Surman, S. B.,, J. T. Walker,, D. T. Goddard,, L. H. G. Morton,, C. W. Keevil,, W. Weaver,, A. Skinner,, K. Hanson,, D. Caldwell, and, J. Kurtz. 1996. Comparison of microscope techniques for the examination of biofilms. J. Microbiol. Methods 25:5770.
249. Szmacinski, H.,, and J. R. Lakowicz. 1993. Optical measurements of pH using fluorescent lifetimes and phase modulation fluorometry. Anal. Chem. 65:16681674.
250. Tani, K.,, K. Kurokawa, and, M. Nasu. 1998. Development of a direct in situ PCR method for detection of specific bacteria in natural environments. Appl. Environ. Microbiol. 64:15361540.
251. Thomas, C. R. 1992. Image analysis: putting filamentous microorganisms in the picture. Trends Biotechnol. 10:343348.
252. Thompson, E. 1930. Quantitative microscopic analysis. J. Geol. 38:193.
253. Thurnheer, T.,, R. Gmür,, S. Shapiro, and, B. Guggenheim. 2003. Mass transport of macromolecules within an in vitro model of supragingival plaque. Appl. Environ. Microbiol. 69:17021709.
254. Tobin, K. J.,, T. C. Onstott,, M. F. DeFlaun,, F. S. Colwell, and, J. Fredrickson. 1999. In situ imaging of microorganisms in geologic material. J. Microbiol. Methods 37:201213.
255. Tombolini, R.,, D. J. van der Gaag,, B. Gerhardson, and, J. K. Jansson. 1999. Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA 342 on barley seeds visualized by using green fluorescent protein. Appl. Environ. Microbiol. 65:36743680.
256. Torrella, F.,, and R. Y. Morita. 1981. Microcultural study of bacterial size changes and microcolony and ultramicro-colony formation by heterotrophic bacteria in seawater. Appl. Environ. Microbiol. 41:518527.
257. Ulrich, S.,, B. Karrasch,, H. G. Hoppe,, K. Jeskulke, and, M. Mehrens. 1996. Toxic effects on bacterial metabolism of the redox dye 5-cyano-2,3-ditolyl tetrazolium chloride. Appl. Environ. Microbiol. 62:45874593.
258. van der Voort, H. T. M.,, and K. C. Strasters. 1995. Restoration of confocal images for quantitative image analysis. J. Microsc. 178:165181.
259. Van Kempen, G. M. P.,, L. J. Van Vliet,, P. J. Verveer, and, H. T. M. van der Voort. 1997. A quantitative comparison of image restoration methods for confocal microscopy. J. Microsc. 185:354365.
260. Van Ommen Kloeke, F.,, and G. G. Geesey. 1999. Localization and identification of populations of phosphatase-active bacterial cells associated with activated sludge flocs. Microb. Ecol. 38:201214.
261. Verveer, P. J.,, M. J. Gemkow, and, T. M. Jovin. 1999. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy. J. Microsc. 193:5061.
262. Vigeant, M. A.-S.,, R. M. Ford,, M. Wagner, and, L. K. Tamm. 2002. Reversible and irreversible adhesion of motile Escherichia coli cells analyzed by total internal reflection aqueous fluorescence microscopy. Appl. Environ. Microbiol. 68:27942801.
263. Viles, C.,, and M. E. Sieracki. 1992. Measurement of marine picoplankton cell size by using a cooled, charge-coupled device camera with image-analyzed fluorescent microscopy. Appl. Environ. Microbiol. 58:584592.
264. Vives-Rego, J.,, P. Lebaron, and, G. Nebe-von Caron. 2000. Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol. Rev. 24:429448.
265. Vroom, J. M.,, K. J. de Grauw,, H. C. Gerritsen,, D. J. Bradshaw,, P. D. Marsh,, G. K. Watson,, J. J. Birmingham, and, C. Allison. 1999. Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl. Environ. Microbiol. 65:35023511.
266. Wagner, M.,, R. Amann,, H. Lemmer, and, K.-H. Schleifer. 1993. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59:15201525.
267. Waid, J. S. 1973. A method to study microorganisms on surface films from soil particles with the aid of the transmission electron microscope. Bull. Ecol. Res. Commun. (Stockholm) 17:103108.
268. Walker, R. F.,, K. Ishikawa, and, M. Kumagai. 2002. Fluorescence-assisted image analysis of freshwater microalgae. J. Microbiol. Methods 51:149162.
269. Webb, R. H.,, and C. K. Dorey. 1995. The pixelated image, p. 55–67. In J. B. Pawley (ed.), Handbook of Biological Confocal Microscopy. Plenum Press, New York, N.Y.
270. Wei, Y. D.,, K. N. Byer, and, P. H. Goodwin. 1997. Hemibiotrophic infection of round-leaved mallow by Colletotrichum gloeosporioides f. sp. malvae in relation to leaf senescence and reducing reagents. Mycol. Res. 101:357364.
271. Wentland, E. J,, P. S. Stewart,, C.-T. Huang, and, G. A. McFeters. 1996. Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilms. Biotechnol. Prog. 12:316321.
272. Werner, E.,, F. Roe,, A. Bugnicourt,, M. J. Franklin,, A. Heydorn,, S. Molin,, B. Pitts, and, P. S. Stewart. 2004. Stratified growth in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 70:61886196.
273. Wigglesworth-Cooksey, B.,, and K. E. Cooksey. 2005. Use of fluorophore-conjugated lectins to study cell-cell interactions in model marine biofilms. Appl. Environ. Microbiol. 71:428435.