1887

Chapter 6 : Cultivation of Bacteria and Fungi

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Cultivation of Bacteria and Fungi, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap06-2.gif

Abstract:

With knowledge of the basic concepts of medium composition and the physical conditions which may limit microbial growth, one can enhance the ability to grow bacteria and fungi in pure culture and to enrich for, isolate, and culture many microorganisms of interest from the environment. The major nutritional requirements for microbial growth that must be considered are sources of carbon; sources of energy; electron acceptors; nitrogen sources; sources of nutrients, such as sulfur, phosphate, magnesium, and calcium; vitamin requirements; and trace metal requirements. Some physiochemical factors affecting growth include temperature, pH, requirement for oxygen, and salinity. This chapter presents a recipe for a basic basal medium for cultivating microorganisms. The selection of the various components and their roles are discussed. The chapter also discusses physicochemical factors for cultivation of bacteria and fungi, the fundamentals of the culture of fungi, larger-scale culture of bacteria, and the progress in culturing the uncultured.

Citation: Tanner R. 2007. Cultivation of Bacteria and Fungi, p 69-78. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch6

Key Concept Ranking

Environmental Microbiology
1.160876
Inorganic Chemicals
0.8257277
Hydrogen Sulfide
0.5416313
Chemicals
0.53518426
Carbon monoxide
0.51566267
1.160876
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815882.ch06
1. Adkins, J. P.,, L. A. Cornell, and, R. S. Tanner. 1992. Microbial composition of carbonate petroleum reservoir fluids. Geomicrobiol. J. 10:8797.
2. Atlas, R. M. 1997. Handbook of Microbiological Media, 2nd ed. CRC Press, Boca Raton, Fla.
3. Balch, W. E.,, L. J. Magrum,, G. E. Fox,, R. S. Wolfe, and, C. R. Woese. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260296.
4. Balch, W. E.,, and R. S. Wolfe. 1976. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32:781791.
5. Balows, A.,, H. G. Truper,, M. Dworkin,, W. Harder, and, K.-H. Schleifer (ed.). 1992. The Prokaryotes, 2nd ed., vol. I to IV. Springer-Verlag, New York, N.Y.
6. Barnett, H. L.,, and B. B. Hunter. 1998. Illustrated Genera of Imperfect Fungi, 4th ed. American Phytopathological Society, St. Paul, Minn.
7. Booth, C. 1971. Fungal culture media. Methods Microbiol. 4:4994.
8. Brazier, J. S.,, and V. Hall. 1994. A simple evaluation of the AnaeroGen system for the growth of clinically significant anaerobic bacteria. Lett. Appl. Microbiol. 18:5658.
9. Bryant, M. P.,, and I. M. Robinson. 1962. Some nutritional characteristics of predominant culturable ruminal bacteria. J. Bacteriol. 84:605614.
10. Budavari, S. (ed.). 1989. Merck Index, 11th ed. Merck & Co., Rahway, N.J.
11. Buttner, M. P.,, K. Willeke, and, S. A. Grinshpun. 2002. Sampling and analysis of airborne microorganisms, p. 814–826. In C. J. Hurst,, R. L. Crawford,, G. R. Knudsen,, M. J. McInerney, and, L. D. Stetzenbach (ed.), Manual of Environmental Microbiology, 2nd ed. ASM Press, Washington, D.C.
12. Cato, E. P. 1983. Transfer of Peptostreptococcus parvulus (Weinberg, Nativelle, and Prevot 1937) Smith 1957 to the genus Streptococcus: Streptococcus parvulus (Weinberg, Nativelle, and Prevot 1937) comb. nov., rev., emended. Int. J. Syst. Bacteriol. 33:8284.
13. Claus, D.,, and N. Walker. 1964. The decomposition of toluene by soil bacteria. J. Gen. Microbiol. 36:107122.
14. Collins, C. H.,, P. M. Lyne, and, J. M. Grange. 1989. Microbiological Methods, 6th ed. Butterworths, Boston, Mass.
15. Connon, S. A.,, and S. J. Giovannoni. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68:38783885.
16. Cote, R. J.,, and R. L. Gherna. 1994. Nutrition and media, p. 155–178. In P. Gerhardt,, R. G. E. Murray,, W. A. Wood, and, N. R. Krieg (ed.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C.
17. DeWeerd, K. A.,, L. Mandelco,, R. S. Tanner,, C. R. Woese, and, J. M. Suflita. 1990. Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch. Microbiol. 154:2330.
18. Difco Laboratories. 1998. Difco Manual, 11th ed. Becton Dickinson and Co., Sparks, Md.
19. Dore, J.,, and D. A. Stahl. 1991. Phylogeny of anaerobic rumen Chytridiomycetes inferred from small subunit ribosomal RNA sequence comparisons. Can. J. Bot. 69:19641971.
20. Edwards, C. (ed.). 1990. Microbiology of Extreme Environments. McGraw-Hill Publishing Co., New York, N.Y.
21. Focht, D. D.,, and W. Verstraete. 1977. Biochemical ecology of nitrification and denitrification. Adv. Microbiol. Ecol. 1:135214.
22. Fogg, G. E.,, W. D. P. Stewart,, P. Fay, and, A. E. Walsby. 1973. The Blue-Green Algae. Academic Press, New York, N.Y.
23. Garraway, M. O.,, and R. C. Evans. 1984. Fungal Nutrition and Physiology. John Wiley & Sons, New York, N.Y.
24. Gerhardt, P.,, and S. W. Drew. 1994. Liquid culture, p. 224–247. In P. Gerhardt,, R. G. E. Murray,, W. A. Wood, and, N. R. Krieg (ed.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C.
25. Gomez-Alarcon, R. A.,, C. O’Dowd,, J. A. Z. Leedle, and, M. P. Bryant. 1982. 1,4–Naphthoquinone and other nutrient requirements of Succinovibrio dextrinosolvens. Appl. Environ. Microbiol. 44:346350.
26. Good, N. E.,, G. D. Winget,, W. Winter,, T. N. Connolloy,, S. Izawa, and, R. M. M. Singh. 1966. Hydrogen ion buffers for biological research. Biochemistry 5:467477.
27. Gottschal, J. C.,, W. Harder, and, R. A. Prins. 1992. Principles of enrichment, isolation, cultivation, and preservation of bacteria, p. 149–196. In A. Balows,, H. G. Truper,, M. Dworkin,, W. Harder, and, K.-H. Schleifer (ed.), The Prokaryotes, 2nd ed., vol. I. Springer-Verlag, New York, N.Y.
28. Holdeman, L. V.,, E. P. Cato, and, W. E. C. Moore (ed.). 1977. Anaerobe Laboratory Manual, 4th ed. Virginia Polytechnic Institute and State University, Blacksburg, Va.
29. Holt, J. G.,, and N. R. Krieg. 1994. Enrichment and isolation, p. 179–215. In P. Gerhardt,, R. G. E. Murray,, W. A. Wood, and, N. R. Krieg (ed.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C.
30. Jones, G. A.,, and M. D. Pickard. 1980. Effect of titanium(III) citrate as reducing agent on the growth of rumen bacteria. Appl. Environ. Microbiol. 39:11441147.
31. Kaeberlein, T.,, K. Lewis, and, S. S. Epstein. 2002. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:11271129.
32. Krieg, N. R.,, and P. Gerhardt. 1994. Solid, liquid/solid, and semisolid culture, p. 216–223. In P. Gerhardt,, R. G. E. Murray,, W. A. Wood, and, N. R. Krieg (ed.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C.
33. Kuhner, C. A.,, S. S. Smith,, K. M. Noll,, R. S. Tanner, and, R. S. Wolfe. 1991. 7–Mercaptoheptanoylthreonine phosphate substitutes for heat-stable factor (mobile factor) for growth of Methanomicrobium mobile. Appl. Environ. Microbiol. 57:28912895.
34. Labeda, D. P. (ed.). 1990. Isolation of Biotechnological Organisms from Nature. McGraw-Hill Publishing Co., New York, N.Y.
35. Laverman, A. M.,, J. S. Blum,, J. K. Schaefer,, E. J. P. Philips,, D. R. Lovley, and, R. S. Oremland. 1995. Growth of strain SES-5 with arsenate and other diverse electron acceptors. Appl. Environ. Microbiol. 61:35563561.
36. Lorowitz, W. H.,, D. P. Nagle, Jr., and, R. S. Tanner. 1992. Anaerobic oxidation of elemental metals coupled to methanogenesis by Methanobacterium thermoautotrophicum. Environ. Sci. Technol. 26:16061610.
37. Lovley, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55:259287.
38. Lovley, D. R.,, and E. J. P. Phillips. 1992. Bioremediation of uranium contamination with enzymic uranium reduction. Environ. Sci. Technol. 26:22282234.
39. Macy, J.,, H. Kulla, and, G. Gottschalk. 1976. H2-dependent growth of Escherichia coli on l-malate. J. Bacteriol. 125:423428.
40. Mallory, L. M.,, B. Austin, and, R. R. Colwell. 1977. Numerical taxonomy and ecology of oligotrophic bacteria isolated from the estuarine environment. Can. J. Microbiol. 23:733750.
41. Mann, N. H.,, and N. G. Carr (ed.). 1992. Photosynthetic Prokaryotes. Plenum Press, New York, N.Y.
42. Moore, M. D.,, and S. Kaplan. 1994. Members of the family Rhodospirillaceae reduce heavy-metal oxyanions to maintain redox poise during photosynthetic growth. ASM News 60:1723.
43. Moore-Landecker, E. 1982. Fundamentals of the Fungi. Prentice-Hall, Inc., Englewood Cliffs, N.J.
44. Mountfort, D. O. 1994. Anaerobic fungi: future perspectives, p. 271–279. In D. O. Mountfort and, C. G. Orpin (ed.), Anaerobic Fungi. Marcel Dekker, Inc., New York, N.Y.
45. Nolan, R. A. 1971. Amino acids and growth factors in vitamin-free Casamino Acids. Mycologia 63:12311234.
46. Oremland, R.,, J. S. Blum,, C. W. Culbertson,, P. T. Visscher,, L. G. Miller,, P. Dowdle, and, F. E. Strohmaier. 1994. Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl. Environ. Microbiol. 60:30113019.
47. Pasculle, A. W. 1992. The genus Legionella, p. 3281–3303. In A. Balows,, H. G. Truper,, M. Dworkin,, W. Harder, and, K.-H. Schleifer (ed.), The Prokaryotes, 2nd ed., vol. IV. Springer-Verlag, New York, N.Y.
48. Pienta, P.,, J. Tang, and, R. Cote. 1996. American Type Culture Collection of Bacteria and Phages, 19th ed. American Type Culture Collection, Rockville, Md.
49. Rabus, R.,, R. Nordhaus,, W. Ludwig, and, F. Widdel. 1993. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol. 59:14441451.
50. Rappe, M. S.,, and S. J. Giovannoni. 2003. The uncultured microbial majority. Annu. Rev. Microbiol. 57:369394.
51. Reasoner, D. J.,, and E. E. Geldreich. 1985. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 49:17.
52. Schonheit, P.,, J. Moll, and, R. K. Thauer. 1979. Nickel, cobalt and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch. Microbiol. 123:105107.
53. Seifert, K. A. 1990. Isolation of filamentous fungi, p. 21–51. In D. P. Labeda (ed.), Isolation of Biotechnological Organisms from Nature. McGraw-Hill Publishing Co., New York, N.Y.
54. Stevenson, B. S.,, S. A. Eichorst,, J. T. Wertz,, T. M. Schmidt, and, J. A. Breznak. 2004. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70:47484755.
55. Tanner, R. S. 1989. Monitoring sulfate-reducing bacteria: comparison of enumeration media. J. Microbiol. Methods 10:1927.
56. Tanner, R. S. 1996. Monitoring sulfide and sulfate-reducing bacteria, p. 353–362. In R. Bryant (ed.), Proceedings of the Fifth International Conference on Microbial Enhanced Oil Recovery and Related Biotechnology for Solving Environmental Problems. CONF-9509173. National Technical Information Service, Springfield, Va.
57. Tanner, R. S.,, and R. S. Wolfe. 1988. Nutritional requirements of Methanomicrobium mobile. Appl. Environ. Microbiol. 54:625628.
58. Taylor, G. T.,, and S. J. Pirt. 1977. Nutrition and factors limiting the growth of a methanogenic bacterium (Methanobacterium thermoautotrophicum). Arch. Microbiol. 113:1722.
59. Theodorou, M. K.,, D. R. Davies, and, C. G. Orpin. 1994. Nutrition and survival of anaerobic fungi, p. 107–128. In D. O. Mountfort and, C. G. Orpin (ed.), Anaerobic Fungi. Marcel Dekker, Inc., New York, N.Y.
60. Tindall, B. J. 1992. The family Halobacteriaceae, p. 768–808. In A. Balows,, H. G. Truper,, M. Dworkin,, W. Harder, and, K.-H. Schleifer (ed.), The Prokaryotes, 2nd ed., vol. I. Springer-Verlag, New York, N.Y.
61. Trinci, A. P. J.,, D. R. Davies,, K. Gull,, M. I. Lawrence,, B. B. Nielsen,, A. Rickers, and, M. K. Theodorou. 1994. Anaerobic fungi in herbivorous animals. Mycol. Res. 98:129152.
62. Vester, F.,, and K. Ingvorsen. 1998. Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer. Appl. Environ. Microbiol. 64:17001707.
63. Wachenheim, D. E.,, and R. B. Hespell. 1984. Inhibitory effects of titanium(III) citrate on enumeration of bacteria from rumen contents. Appl. Environ. Microbiol. 48:444445.
64. Weber, F. J.,, K. C. Hage, and, J. A. M. de Bont. 1995. Growth of the fungus Cladosporium sphaerospermum with toluene as the sole carbon and energy source. Appl. Environ. Microbiol. 61:35623566.
65. Whitman, W. B.,, E. Ankwanda, and, R. S. Wolfe. 1982. Nutrition and carbon metabolism of Methanococcus voltae. J. Bacteriol. 149:852863.
66. Widdel, F.,, and F. Bak. 1992. Gram-negative mesophilic sulfate-reducing bacteria, p. 3352–3378. In A. Balows,, H. G. Truper,, M. Dworkin,, W. Harder, and, K.-H. Schleifer (ed.), The Prokaryotes, 2nd ed., vol. IV. Springer-Verlag, New York, N.Y.
67. Wolin, E. A.,, M. J. Wolin, and, R. S. Wolfe. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238:28822886.
68. Yanagita, T.,, T. Ichikawa,, T. Tsuji,, Y. Kamata,, K. Ito, and, M. Sasaki. 1978. Two trophic groups of bacteria, oligotrophs and eutrophs: their distributions in fresh and sea water areas in the central northern Japan. J. Gen. Appl. Microbiol. 24:5988.
69. Zengler, K.,, G. Toledo,, M. Rappe,, J. Elkins,, E. J. Mathur,, J. M. Short, and, M. Keller. 2002. Cultivating the uncultured. Proc. Natl. Acad. Sci. USA 99:1568115686.

Tables

Generic image for table
TABLE 1

Basal microbiological medium

Citation: Tanner R. 2007. Cultivation of Bacteria and Fungi, p 69-78. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch6
Generic image for table
TABLE 2

Mineral solution

Citation: Tanner R. 2007. Cultivation of Bacteria and Fungi, p 69-78. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch6
Generic image for table
TABLE 3

Vitamin solution

Citation: Tanner R. 2007. Cultivation of Bacteria and Fungi, p 69-78. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch6
Generic image for table
TABLE 4

Trace metal solution

Citation: Tanner R. 2007. Cultivation of Bacteria and Fungi, p 69-78. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error