1887

Chapter 8 : Cultivation and Assay of Animal Viruses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Cultivation and Assay of Animal Viruses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap08-2.gif

Abstract:

During the last 50 years, virologists have been able to select cell cultures that are susceptible to many commonly encountered viruses and environmental virologists have developed methods to detect very low numbers of viruses in various environments. This chapter reviews these methods and their practical use and describes basic quality control procedures to maximize their level of sensitivity. The main objective of the cultivation and assay of viruses is to optimize detection methods to a level where even a single infectious unit can be detected with confidence. Several methods for detection of viruses in environmental samples have been described: visualization of the virus by microscopy, detection of viral antigens, detection of viral nucleic acids, and detection of viral infectivity. The detection of infective viruses in environmental samples still relies mainly on cell culture as the method of choice. There are several sources for cell cultures that can be used in virology. Plaque assay is used for a very limited number of viruses and has the lowest sensitivity of the available methods. The main advantages of plaque assay are that each individual virus (or aggregate) forms a single plaque and that each plaque is rarely a mixture of several virus types. Viruses isolated by cell culture can be propagated further in cell culture and identified by a variety of methods, including electron microscopy, serum neutralization, molecular methods, and immunoassays.

Citation: Payment P. 2007. Cultivation and Assay of Animal Viruses, p 93-100. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch8

Key Concept Ranking

Human respiratory syncytial virus
0.50186217
0.50186217
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Untitled
Untitled

Citation: Payment P. 2007. Cultivation and Assay of Animal Viruses, p 93-100. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch08
1. Balows, A.,, W. J. Hausler,, K. L. Herrmann,, H. D. Isenberg, and, H. J. Shadomy (ed.). 1991. Manual of Clinical Microbiology, 5th ed. American Society for Microbiology, Washington, D.C.
2. Berg, G.,, R. S. Safferman,, D. R. Dahling,, D. Berman, and, C. J. Hurst. 1983. USEPA Manual of Methods for Virology. EPA-600/4–84—013. Environmental Protection Agency, Cincinnati, Ohio.
3. Chang, S. L. 1965. Statistics of the infective units of animal viruses, p. 219–234. In G. Berg (ed.), Transmission of Viruses by the Water Route. Interscience Publishers, New York, N.Y.
4. Chang, S. L.,, G. Berg,, K. A. Busch,, R. E. Stevenson,, N. A. Clarke, and, P. W. Kabler. 1958. Application of the most probable number method for estimating concentration of animal viruses by the tissue culture technique. Virology 6:2742.
5. Dahling, D. R.,, B. A. Wright, and, F. P. Williams. 1993. Detection of viruses in environmental samples—suitability of commercial rotavirus and adenovirus test kits. J. Virol. Methods 45:135147.
6. Dahling, D. R.,, and B. A. Wright. 1986. Optimization of the BGM cell line culture and viral assay for monitoring viruses in the environment. Appl. Environ. Microbiol. 51:790812.
7. Dahling, D. R.,, G. Berg, and, D. Berman. 1974. BGM, a continuous cell line more sensitive than primary rhesus and African green kidney cells for the recovery of viruses from water. Health Lab. Sci. 11:275282.
8. Dahling, D. R.,, R. S. Safferman, and, B. A. Wright. 1984. Results of a survey of BGM cell culture practices. Environ. Int. 10:309311.
9. Davis, P. M.,, and R. J. Phillpots. 1974. Susceptibility of the Vero line of African green monkey kidney cells to human enteroviruses. J. Hyg. Lond. 72:2330.
10. Freshney, R. 1987. Culture of Animal Cells: a Manual of Basic Techniques, 2nd ed. Alan R. Liss Inc., New York, N.Y.
11. Genthe, B.,, G. K. Idema,, R. Kfir, and, W. O. K. Grabow. 1991. Detection of rotavirus in South African waters: a comparison of a cytoimmunolabeling technique with commercially available immunoassays. Water Sci. Technol. 24:241244.
12. Genthe, B.,, M. Gericke,, B. Bateman,, N. Mjoli, and, R. Kfir. 1995. Detection of enteric adenoviruses in South African waters using gene probes. Water Sci. Technol. 31:345350.
13. Gerba, C. P.,, and S. M. Goyal. 1982. Methods in Environmental Virology. Marcel Dekker, Inc., New York, N.Y.
14. Girones, R.,, M. Puig,, A. Allard,, F. Lucena,, G. Wadell, and, J. Jofre. 1995. Detection of adenovirus and entero-virus by PCR amplification in polluted waters. Water Sci. Technol. 31:351357.
15. Guttman-Bass, N. 1987. Cell cultures and other host systems for detecting and quantifying viruses in the environment, p. 195–228. In G. Berg (ed.), Methods for Recovering Viruses from the Environment. CRC Press Inc., Boca Raton, Fla.
16. Hasler, P.,, and R. Wigand. 1978. The susceptibility of Vero cell cultures for human adenoviruses. Med. Microbiol. Immunol. 164:267276.
17. Herrmann, J. E. 1995. Immunoassay for the diagnosis of infectious diseases, p. 110–122. In P. R. Murray,, E. S. Baron,, M. A. Pfaller,, F. C. Tenover, and, R. H. Yolken (eds.), Manual of Clinical Microbiology, 6th ed. ASM Press, Washington, D.C.
18. Hugues, B.,, C. Pietri, and, M. André. 1985. Estimation of virus density in sewage effluents by 2 counting techniques. Comparison of precision as a function of inoculum volume. Zentbl. Bakteriol. B 181:409417.
19. Hugues, C.,, and C. Pietri. 1985. Influence du volume d’inoculum dans la quantification des virus selon deux techniques comparées: plages et N.P.P. utilisant un grand nombre d’inoculum par dilution. Chemosphere 14:149153.
20. Hurst, C. J. 1986. Evaluation of mixed cell types and 5-iodo-2′-deoxyuridine treatment upon plaque assay titers of human enteric viruses. Appl. Environ. Microbiol. 51:10361040.
21. Husson van Vliet, J.,, and P. Roussel. 1986. Estimating viral concentrations: a reliable computation method programmed on a pocket calculator. Comput. Methods Progr. Biomed. 21:167172.
22. Jehl-Pietri, C.,, B. Hugues,, M. Andre,, J. M. Diez, and, A. Bosch. 1993. Comparison of immunological and molecular hybridization detection methods for the detection of hepatitis A virus in sewage. Lett. Appl. Microbiol. 17:162166.
23. Jones Brando, L. V. 1995. Cell culture systems, p. 158–165. In P. R. Murray,, E. J. Baron,, M. A. Pfaller,, F. C. Tenover, and, R. H. Yolken (ed.), Manual of Clinical Microbiology, 6th ed. ASM Press, Washington, D.C.
24. Leguyader, F.,, V. Apaire-Marchais,, J. Brillet, and, S. Billaudel. 1993. Use of genomic probes to detect hepatitis A virus and enterovirus RNAs in wild shellfish and relationship of viral contamination to bacterial contamination. Appl. Environ. Microbiol. 59:39633968.
25. Leguyader, F.,, D. Menard,, M. Pommepuy, and, H. Kopecka. 1995. Use of RT seminested PCR to assess viral contamination in Caribbean rivers (Martinique). Water Sci. Technol. 31:391394.
26. Reference deleted.
27. Macdonell, M. T.,, E. Russek, and, R. R. Colwell. 1984. An interactive microcomputer program for the computation of most probable number. J. Microbiol. Methods 2:17.
28. Margolin, A. B.,, C. P. Gerba,, K. J. Richardson, and, J. E. Naranjo. 1993. Comparison of cell culture and a poliovirus gene probe assay for the detection of entero-viruses in environmental water samples. Water Sci. Technol. 27:311314.
29. Metcalf, T. G.,, J. L. Melnick, and, M. K. Estes. 1995. Environmental virology: from detection of virus in sewage and water by isolation to identification by molecular biology—a trip of over 50 years. Annu. Rev. Microbiol. 49:461487.
30. Morris, R. 1985. Detection of enteroviruses—an assessment of 10 cell lines. Water Sci. Technol. 17:8188.
31. Payment, P.,, and M. Trudel. 1985. Influence of inoculum size, incubation temperature and cell density on virus detection in environmental samples. Can. J. Microbiol. 31:977980.
32. Payment, P.,, and M. Trudel. 1987. Detection and quantitation of human enteric viruses in waste waters: increased sensitivity using a human immune serum globulinimmunoperoxidase assay on MA-104 cells. Can. J. Microbiol. 33:568570.
33. Payment, P.,, and M. Trudel. 1989. Manuel de techniques virologiques, 2nd ed. Presses de l′Université du Québec/AUPELF, Québec, Canada.
34. Payment, P.,, and M. Trudel. 1993. Methods and Techniques in Virology. Marcel Dekker Inc., New York, N.Y.
35. Payment, P.,, F. Affoyon, and, M. Trudel. 1988. Detection of animal and human enteric viruses in water from the Assomption river and its tributaries. Can. J. Microbiol. 34:967972.
36. Payment, P.,, and E. Franco. 1993. Clostridium perfringens and somatic coliphages as indicators of the efficiency of drinking water treatment for viruses and protozoan cysts. Appl. Environ. Microbiol. 59:24182424.
37. Pietri, C.,, and B. Hugues. 1985. Influence du système cellulaire sur la quantification des virus dans les eaux usées. Microbios Lett. 30:6772.
38. Pietri, C.,, B. Hugues, and, D. Puel. 1988. Immune electron microscopy in the detection of viruses other than enteroviruses on cell culture in untreated sewage. Zentbl. Bakteriol. Mikrobiol. Hyg. 186:6772.
39. Podzorsky, R. P.,, and D. H. Persing. 1995. Molecular detection and identification of microorganisms, p. 130–157. In P. R. Murray,, E. S. Baron,, M. A. Pfaller,, F. C. Tenover, and, R. H. Yolken (ed.), Manual of Clinical Microbiology, 6th ed. ASM Press, Washington, D.C.
40. Puig, M.,, J. Jofre,, F. Lucena,, A. Allard,, G. Wadell, and, R. Girones. 1994. Detection of adenoviruses and entero-viruses in polluted waters by nested PCR amplification. Appl. Environ. Microbiol. 60:29632970.
41. Reynolds, K. A.,, C. P. Gerba, and, I. L. Pepper. 1996. Detection of infectious enteroviruses by an integrated cell culture PCR procedure. Appl. Environ. Microbiol. 62:14241427.
42. Russek, E.,, and R. R. Colwell. 1983. Computation of most probable numbers. Appl. Environ. Microbiol. 45:16461650.
43. Schmidt, N. J.,, and R. W. Emmons (ed.). 1989. Diagnostic Procedures for Viral, Rickettsial, and Chlamydial Infections, 6th ed. American Public Health Association, Washington, D.C.
44. Schmidt, N. J.,, H. H. Ho, and, E. H. Lennette. 1975. Propagation and isolation of group a coxsackieviruses in RD cells. J. Clin. Microbiol. 2:183185.
45. Sellwood, J.,, and P. Wynjones. 1995. A novel method for the detection of infectious rotavirus from water. Water Sci. Technol. 31:367370.
46. Sewell, D. L.,, and R. B. Schifman. 1995. Quality assurance: quality improvement, quality control and test validation, p. 55–66. In P. R. Murray,, E. J. Baron,, M. A. Pfaller,, F. C. Tenover, and, R. H. Yolken (ed.), Manual of Clinical Microbiology, 6th ed. ASM Press, Washington, D.C.
47. Simard, C.,, M. Trudel,, G. Paquette, and, P. Payment. 1983. Microbial investigation of the air in an apartment building. J. Hyg. Camb. 91:277286.
48. Sobsey, M. D.,, L. R. Sangermano, and, C. J. Palmer. 1993. Simple method of concentrating enteroviruses and hepatitis A virus from sewage and ocean water for rapid detection by reverse transcriptase-polymerase chain reaction. Appl. Environ. Microbiol. 59:34883491.
49. Strain, B. A.,, and D. H. M. Gröschel. 1995. Laboratory safety and infectious waste management, p. 75–85. In P. R. Murray,, E. J. Baron,, M. A. Pfaller,, F. C. Tenover, and, R. H. Yolken (ed.), Manual of Clinical Microbiology, 6th ed. ASM Press, Washington, D.C.
50. Tougianidou, D.,, M. Jacob,, K. Herbold,, T. Hahn,, B. Flehmig, and, K. Botzenhart. 1989. Assessment of various cell lines (including mixed-cell cultures) for the detection of enteric viruses in different water sources. Water Sci. Technol. 21:311314.
51. Wyshak, G.,, and K. Detre. 1972. Estimating the number of organisms in quantal assays. Appl. Environ. Microbiol. 23:784790.

Tables

Generic image for table
TABLE 1

Viruses that can potentially be found in the environment (surfaces, air, water, or soil)

Citation: Payment P. 2007. Cultivation and Assay of Animal Viruses, p 93-100. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error