1887

Chapter 14 : Bioreporters, Biosensors, and Microprobes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Bioreporters, Biosensors, and Microprobes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap14-2.gif

Abstract:

This chapter stresses on techniques that are significantly different from other molecular techniques in that they are suitable for complex environments inhabited by a diverse collection of bacteria. While there are several bioreporter genes that might be used, bioreporters that make use of light for bioreporting have significant advantages. The use of either bioluminescent or fluorescent bioreporters is now an established technology, and the uses have expanded greatly over the years. Bioreporters for bioluminescent and fluorescent gene products are described in this chapter. The advantages of bioluminescent bioreporters lie primarily in the relative ease of light measurement. A discussion of the weaknesses of bacterial bioreporters and the means by which these techniques may be improved is provided in the chapter. There are now several fluorescent proteins that can be used as bioreporters in bacterial cells, but the first successful one was green fluorescent protein (GFP). The development of microprobes for the examination of microbial environments has proceeded rapidly thanks to innovative construction techniques. Microprobes have been described for ammonium, nitrate, oxygen, denitrification (by nitrous oxide production), and sulfate reduction. In surface plasmon resonance (SPR), the surface of the waveguide is coated with a thin layer of gold. Multigene analysis will have a substantial impact on the understanding of genetic control. In the area of biosensors, the trend toward miniaturization and commercialization will continue. It is expected that fieldable biosensors will have a great impact on biowarfare monitoring and long-term ecological studies.

Citation: Burlage R. 2007. Bioreporters, Biosensors, and Microprobes, p 169-181. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch14

Key Concept Ranking

Environmental Microbiology
0.6006289
Microbial Ecology
0.59324414
0.6006289
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Genes and chemical intermediates involved in the bioluminescence reaction of

Citation: Burlage R. 2007. Bioreporters, Biosensors, and Microprobes, p 169-181. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The chromophore of GFP. Amino acids 65, 66, and 67 of GFP form a cyclical structure by an autocatalytic reaction. This chromophore is the source of the bright fluorescence seen with this protein. The dotted lines delineate the separate amino acids in the chromophore.

Citation: Burlage R. 2007. Bioreporters, Biosensors, and Microprobes, p 169-181. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Cross-section of a typical microprobe. Reprinted from reference with permission from the publisher.

Citation: Burlage R. 2007. Bioreporters, Biosensors, and Microprobes, p 169-181. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Biosensors. (Left) A generalized scheme for a biosensor. Interaction of the target analyte with the biological component results in a signal, which is transmitted to the transducer. The transducer senses the signal and converts it to an electrical signal. (Right) A DNA biosensor. The hybridization event brings the labeled DNA in contact with the transducer, a CCD camera. The CCD camera detects beta emission from P decay and converts it to an electrical signal.

Citation: Burlage R. 2007. Bioreporters, Biosensors, and Microprobes, p 169-181. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

The principle of surface plasmon resonance. The sensing surface is on the opposite side of the metal film from the illuminated surface. Here an antibody-antigen-type biosensor is shown, with the sensing surface incorporated into a flow cell. The light source can be either polarized or laser light or an electron stream. The photodetector must be able to record subtle changes in light intensity.

Citation: Burlage R. 2007. Bioreporters, Biosensors, and Microprobes, p 169-181. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch14
1. Afendra, A. S.,, C. Vargas,, J. J. Nieto, and, C. Drainas. 2004. Gene transfer and expression of recombinant proteins in moderately halophilic bacteria. Methods Mol. Biol. 267:209223.
2. Alivisatos, A. P.,, W. Gu, and, C. Larabell. 2005. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7:5576.
3. Andersen, J. B.,, C. Sternberg,, L. K. Poulsen,, S. P. Bjorn,, M. Givskov, and, S. Molin. 1998. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64:22402246.
4. Anderson, M. T.,, I. M. Tjioe,, M. C. Lorincz,, D. R. Parks,, L. A. Herzenberg,, G. P. Nolan, and, A. Herzenberg. 1996. Simultaneous fluorescence activated cell sorter analysis of two distinct transcriptional elements within a single cell using engineered green fluorescent protein. Proc. Natl. Acad. Sci. USA 93:85088511.
5. Arvanitis, N.,, C. Vargas,, G. Tegos,, A. Perysinakis,, J. J. Nieto,, A. Ventosa, and, C. Drainas. 1995. Development of a gene reporter system in moderately halophilic bacteria by employing the ice nucleation gene of Pseudomonas syringae. Appl. Environ. Microbiol. 61:38213825.
6. Baronian, K. H. R. 2004. The use of yeast and moulds as sensing elements in biosensors. Biosens. Bioelectron. 19:953962.
7. Bevis, B. J.,, and B. S. Glick. 2002. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat. Biotechnol. 20:8387.
8. Blodgett, K. B.,, and I. Langmuir. 1937. Build-up films of barium stearate and their optical properties. Phys. Rev. 51:964982.
9. Boivin, R.,, F. P. Chalifour, and, P. Dion. 1988. Construction of a Tn5 derivative encoding bioluminescence and its introduction in Pseudomonas, Agrobacterium, and Rhizobium. Mol. Gen. Genet. 213:5055.
10. Buckle, P. E.,, R. J. Davies,, T. Kinning,, D. Yeung,, P. R. Edwards, and, D. Pollard-Knight. 1993. The resonant mirror: a novel optical sensor for direct sensing of bimolecular interactions. II. Applications. Biosens. Bioelectron. 8:355363.
11. Burlage, R. S.,, and C. Kuo. 1994. Living biosensors for the management and manipulation of microbial consortia. Annu. Rev. Microbiol. 48:291309.
12. Burlage, R. S.,, Z. K. Yang, and, T. Mehlhorn. 1996. A transposon for green fluorescent protein transcriptional fusions: application for bacterial transport experiments. Gene 173:5358.
13. Chalfie, M.,, Y. Tu,, G. Euskirchen,, W. W. Ward, and, D. C. Prasher. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802805.
14. Cherian, S.,, R. K. Gupta,, B. C. Mullin, and, T. Thundat. 2003. Detection of heavy metal ions using protein-functionalized microcantilever sensors. Biosens. Bioelectron. 19:411416.
15. Christensen, P. D.,, L. P. Nielsen,, N. P. Revsbech, and, J. Sorensen. 1989. Microzonation of denitrification activity in stream sediments as studied with a combined oxygen and nitrous oxide microsensor. Appl. Environ. Microbiol. 55:12341241.
16. Cody, C. W.,, D. C. Prasher,, W. M. Westler,, F. G. Prendergast, and, W. W. Ward. 1993. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32:12121218.
17. Crameri, A.,, E. A. Whitehorn,, E. Tate, and, W. P. C. Stemmer. 1996. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14:315319.
18. Cush, R.,, J. M. Cronin,, W. J. Stewart,, C. H. Maule,, J. Molloy, and, N. J. Goddard. 1993. The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions. I: Principle of operation and associated instrumentation. Biosens. Bioelectron. 8:347353.
19. DeAngelis, K. M.,, P. Ji,, M. K. Firestone, and, S. E. Lindow. 2005. Two novel bacterial biosensors for detection of nitrate availability in the rhizosphere. Appl. Environ. Microbiol. 71:85378547.
20. DeBeer, D.,, and J. C. Van den Heuvel. 1988. Response of ammonium-selective microelectrodes based on the neutral carrier nonactin. Talanta 35:728730.
21. Decher, G.,, B. Lehr,, K. Lowack,, Y. Lvov, and, J. Schmitt. 1994. New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Biosens. Bioelectron. 9:677684.
22. Delagrave, S.,, R. E. Hawtin,, C. M. Silva,, M. M. Yang, and, D. C. Youvan. 1995. Red-shifted excitation mutants of the green fluorescent protein. Bio/Technology 13:151154.
23. DeLorenzo, V.,, M. Herrero,, U. Jakubzik, and, K. N. Timmis. 1990. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative bacteria. J. Bacteriol. 172:65686572.
24. Dickson, R. M.,, A. B. Cubitt,, R. Y. Tsien, and, W. E. Moerner. 1997. On/off blinking and switching behavior of single molecules of green fluorescent protein. Nature 388:355358.
25. Eggers, M.,, M. Hogan,, R. K. Reich,, J. Lamture,, D. Ehrlich,, M. Hollis,, B. Kosicki,, T. Powdrill,, K. Beattie,, S. Smith,, R. Varma,, R. Gangadharan,, A. Mallik,, B. Burke, and, D. Wallace. 1994. A microchip for quantitative detection of molecules utilizing luminescent and radioisotope reporter groups. BioTechniques 17:516524.
26. Escher, A.,, D. J. O’Kane,, J. Lee, and, A. A. Szalay. 1989. Bacterial luciferase αβ fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature. Proc. Natl. Acad. Sci. USA 86:65286532.
27. Gauglitz, G. 2005. Direct optical sensors: principles and selected applications. Anal. Bioanal. Chem. 381:141155.
28. Goldman, E. R.,, and D. C. Youvan. 1992. An algorithmically optimized combinatorial library screened by digital imaging spectroscopy. Bio/Technology 10:15571561.
29. Graham, C. R.,, D. Leslie, and, D. J. Squirrell. 1992. Gene probe assays on a fibre-optic evanescent wave biosensor. Biosens. Bioelectron. 7:487493.
30. Hansen, M. C.,, R. J. Palmer,, C. Udsen,, D. C. White, and, S. Molin. 2001. Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiology 147:13831391.
31. Hassler, C. S.,, and M. R. Twiss. 2006. Bioavailability of iron sensed by a phytoplanktonic Fe-bioreporter. Environ. Sci. Technol. 40:25442551.
32. Heim, R.,, D. C. Prasher, and, R. Y. Tsien. 1994. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91:1250112504.
33. Hirmo, S.,, E. Artursson,, G. Puu,, T. Wadstrom, and, B. Nilsson. 1998. Characteristics of Helicobacter pylori interactions with sialylglycoconjugates using a resonant mirror biosensor. Anal. Biochem. 257:6366.
34. Hirmo, S.,, E. Artursson,, G. Puu,, T. Wadstrom, and, B. Nilsson. 1999. Helicobacter pylori interactions with human gastric mucin studied with a resonant mirror biosensor. J. Microbiol. Methods 37:177182.
35. Hotz, C. Z. 2005. Applications of quantum dots in biology. Methods Mol. Biol. 303:117.
36. Jensen, K.,, N. P. Revsbech, and, L. P. Nielsen. 1993. Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate. Appl. Environ. Microbiol. 59:32873296.
37. Jianrong, C.,, M. Yuqing,, H. Nongyue,, W. Xiaohua, and, L. Sijiao. 2004. Nanotechnology and biosensors. Biotechnol. Adv. 22:505518.
38. Kalabat, D. Y.,, J. M. Froelich,, T. K. Phuong,, R. A. Forsyth,, V. G. Newman, and, J. W. Zyskind. 1998. Chitobiase, a new reporter enzyme. BioTechniques 25:10301035.
39. Kloepfer, J. A.,, R. E. Mielke,, M. S. Wong,, K. H. Nealson,, G. Stucky, and, J. L. Nadeau. 2003. Quantum dots as strain- and metabolism-specific microbiological labels. Appl. Environ. Microbiol. 69:42054213.
40. Koblizek, M.,, J. Masojidek,, J. Komend,, T. Kucera,, R. Pilloton,, A. K. Mattoo, and, M. T. Giardi. 1998. A sensitive photosystem II-based biosensor for detection of a class of herbicides. Biotechnol. Bioeng. 60:664669.
41. Lamture, J. B.,, K. L. Beattie,, B. E. Burke,, M. D. Eggers,, D. J. Ehrlich,, R. Fowler,, M. A. Hollis,, B. B. Kosicki,, R. K. Reich,, S. R. Smith,, R. S. Varma, and, M. E. Hogan. 1994. Direct detection of nucleic acid hybridization on the surface of a charge coupled device. Nucleic Acids Res. 22:21212125.
42. Langridge, W. H. R.,, K.. J. Fitzgerald,, C. Koncz,, J. Schell, and, A. A. Szalay. 1989. Dual promoter of Agro-bacterium tumefaciens mannopine synthase genes is regulated by plant growth hormones. Proc. Natl. Acad. Sci. USA 86:32193223.
43. Liedberg, B.,, C. Nylander, and, I. Lundstrom. 1983. Surface plasmon resonance for gas detection and biosensing. Sens. Activators 4:299304.
44. Lu, H.,, H. Chen,, Y. Lin, and, J. Lin. 2000. A reusable and specific protein A-coated piezoelectric biosensor for flow injection immunoassay. Biotechnol. Prog. 16:116124.
45. Maskos, U.,, and E. M. Southern. 1992. Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesized in situ. Nucleic Acids Res. 20:16791684.
46. Meighen, E. A. 1991. Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55:123142.
47. Meighen, E. A. 1994. Genetics of bacterial bioluminescence. Annu. Rev. Genet. 28:117139.
48. Miller, W. G.,, M. T. Brandl,, B. Quinones, and, S. E. Lindow. 2001. Biological sensor for sucrose availability: relative sensitivities of various reporter genes. Appl. Environ. Microbiol. 67:13081317.
49. Miller, W. G.,, J. H. Leveau, and, S. E. Lindow. 2000. Improved GFP and inaZ broad-host-range promoter-probe vectors. Mol. Plant-Microbe Interact. 13:12431250.
50. Miura, N.,, M. Sasaki,, K. V. Gobi,, C. Kataoka, and, Y. Shoyama. 2003. Highly sensitive and selective surface plasmon resonance sensor for detection of sub-ppb levels of benzo[a]pyrene by indirect competitive immunoreaction method. Biosens. Bioelectron. 18:953959.
51. Moaz, R.,, L. Netzer,, J. Gun, and, J. Sagiv. 1988. Self-assembling monolayers in the construction of planned supramolecular structures and as modifiers of surface properties. J. Chim. Phys. 85:10591065.
52. Mullett, W.,, E. P. C. Lai, and, J. M. Leung. 1998. Immunoassay of fumonisins by a surface plasmon resonance biosensor. Anal. Biochem. 258:161167.
53. Nelson, B. P.,, M. R. Liles,, K. B. Frederick,, R. M. Corn, and, R. M. Goodman. 2002. Label-free detection of 16S ribosomal RNA hybridization on reusable DNA arrays using surface plasmon resonance imaging. Environ. Microbiol. 4:735743.
54. Nenninger, G. G.,, J. B. Clendenning,, C. E. Furlong, and, S. S. Yee. 1998. Reference-compensated biosensing using a dual channel surface plasmon resonance sensor system based on planar lightpipe configuration. Sens. Actuators B 51:3845.
55. Nielsen, N.,, L. H. Larsen,, M. S. M. Jetten, and, N. P. Revsbech. 2004. Bacterium-based NO2 biosensor for environmental applications. Appl. Environ. Microbiol. 70:65516558.
56. Nivens, D. E.,, T. E. McKnight,, S. A. Moser,, S. J. Osborn,, M. L. Simpson, and, G. S. Sayler. 2004. Bioluminescent bioreporter integrated circuits: potentially small, rugged and inexpensive whole-cell biosensors for remote environmental monitoring. J. Appl. Microbiol. 96:3346.
57. Nomura, Y.,, K. Ikebukaro,, K. Yokoyama,, T. Takeuchi,, Y. Arikawa,, S. Ohno, and, I. Karube. 1998. Application of a linear alkylbenzene sulfonate biosensor to river water monitoring. Biosens. Bioelectron. 13:10471053.
58. O’Kane, D. J.,, M. Ahmad,, I. B. C. Matheson, and, J. Lee. 1986. Purification of bacterial luciferase by high-performance liquid chromatography. Methods Enzymol. 133:109128.
59. Ow, D. W.,, K. V. Wood,, M. DeLuca,, J. R. deWet,, D. R. Helinski, and, S. H. Howell. 1986. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856859.
60. Palomares, A. J.,, M. A. DeLuca, and, D. R. Helinski. 1989. Firefly luciferase as a reporter enzyme for measuring gene expression in vegetative and symbiotic Rhizobium meliloti and other gram-negative bacteria. Gene 81:5564.
61. Perozzo, M. A.,, K. B. Ward,, R. B. Thompson, and, W. W. Ward. 1988. X-ray diffraction and time-resolved fluorescence analyses of Aequorea green fluorescent protein crystals. J. Biol. Chem. 263:77137716.
62. Pinaud, F.,, X. Michalet,, L. A. Bentolila,, J. M. Tsay,, S. Doose,, J. J. Li,, G. Iyer, and, S. Weiss. 2006. Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27:16791687.
63. Prasher, D. C.,, V. K. Eckenrode,, W. W. Ward,, F. G. Prendergast, and, M. J. Cormier. 1992. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229233.
64. Ramsing, N. B.,, M. Kuhl, and, B. B. Jorgensen. 1993. Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl. Environ. Microbiol. 59:38403849.
65. Revsbech, N. P. 1989. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34:474478.
66. Revsbech, N. P.,, and B. B. Jorgensen. 1986. Microelectrodes: their use in microbial ecology. Adv. Microb. Ecol. 9:293352.
67. Ripp, S.,, P. Jegier,, M. Birmele,, C. M. Johnson,, K. A. Daumer,, J. L. Garland, and, G. S. Sayler. 2006. Linking bacteriophage infection to quorum sensing signaling and bioluminescent bioreporter monitoring for direct detection of bacterial agents. J. Appl. Microbiol. 100:488499.
68. Rodriguez, J. F.,, D. Rodriguez,, J. Rodriguez,, E. B. McGowan, and, M. Esteban. 1988. Expression of the firefly luciferase gene in vaccinia virus: a highly sensitive gene marker to follow virus dissemination in tissues of infected animals. Proc. Natl. Acad. Sci. USA 85:16671671.
69. Rogers, K. R. 1995. Biosensors for environmental applications. Biosens. Bioelectron. 10:533541.
70. Rogowsky, P. M.,, T. J. Close,, J. A. Chimera,, J. J. Shaw, and, C. I. Kado. 1987. Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J. Bacteriol. 169:51015112.
71. Sanseverino, J.,, R. K. Gupta,, A. C. Layton,, S. S. Patterson,, S. A. Ripp,, L. Saidak,, M. L. Simpson,, T. W. Schultz, and, G. S. Sayler. 2005. Use of Saccharomyces cerevisiae BLYES expressing bacterial bioluminescence for rapid, sensitive detection of estrogenic compounds. Appl. Environ. Microbiol. 71:44554460.
72. Santegoeds, C. M.,, A. Schramm, and, D. deBeer. 1998. Microsensors as a tool to determine chemical microgradients and bacterial activity in wastewater biofilms and flocs. Biodegradation 9:159167.
73. Scheper, T.,, C. Muller,, K. D. Anders,, F. Eberhardt,, F. Plotz,, C. Schelp,, O. Thordsen, and, K. Schugerl. 1994. Optical sensors for biotechnological applications. Biosens. Bioelectron. 9:7383.
74. Sethi, R. S. 1994. Transducer aspects of biosensors. Biosens. Bioelectron. 9:243264.
75. Shaw, J. J.,, and C. I. Kado. 1987. Direct analysis of the invasiveness of Xanthomonas campestris mutants generated by Tn4431, a transposon containing a promoterless luciferase cassette for monitoring gene expression, p. 57–60. In D. P. S. Verma and, N. Brisson (ed.), Molecular Genetics of Plant-Microbe Interactions. Martinus Nijhoff, Dordrecht, The Netherlands.
76. Silcock, D. J.,, R. N. Waterhouse,, L. A. Glover,, J. I. Prosser, and, K. Killham. 1992. Detection of a single genetically modified bacterial cell in soil by using charge coupled device-enhanced microbiology. Appl. Environ. Microbiol. 58:24442448.
77. Skladal, P.,, N. O. Morozova, and, A. N. Reshetilov. 2002. Amperometric biosensors for detection of phenol using chemically modified electrodes containing immobilized bacteria. Biosens. Bioelectron. 17:867873.
78. Svitel, J.,, O. Curilla, and, J. Tkac. 1998. Microbial cell-based biosensor for sensing glucose, sucrose or lactose. Biotechnol. Appl. Biochem. 27:153158.
79. Sweerts, J. R., and D. DeBeer. 1989. Microelectrode measurements of nitrate gradients in the littoral and profundal sediments of a meso-eutrophic lake (Lake Vechten, The Netherlands). Appl. Environ. Microbiol. 55:754757.
80. Taguchi, K.,, Y. Tanaka,, T. Imaeda,, M. Hirai,, S. Mohri,, M. Yamada, and, Y. Inoue. 2004. Development of a genotoxicity detection system using a biosensor. Environ. Sci. 11:293302.
81. Taitt, C. R.,, G. P. Anderson, and, F. S. Ligler. 2005. Evanescent wave fluorescence biosensors. Biosens. Bioelectron. 20:24702487.
82. Tsien, R. 1998. The green fluorescent protein. Annu. Rev. Biochem. 67:509544.
83. Van der Meer, J. R.,, D. Tropel, and, M. Jaspers. 2004. Illuminating the detection chain of bacterial bioreporters. Environ. Microbiol. 6:10051020.
84. Vo-Dinh, T.,, M. J. Sepaniak,, G. D. Griffin, and, J. P. Alarie. 1993. Immunosensors: principles and applications. Immunomethods 3:8592.
85. Well, M.,, M. Gosch,, R. Rigler,, H. Harms,, T. Lasser, and, J. R. van der Meer. 2005. Ultrasensitive reporter protein detection in genetically engineered bacteria. Anal. Chem. 77:26832689.
86. Wise, D. L.,, and L. B. Wingard (ed.). 1991. Biosensors with Fiberoptics. Humana Press, Clifton, N.J.
87. Won, J.,, M. Kim,, Y. Yi,, Y. H. Kim,, N. Jung, and, T. K. Kim. 2005. A magnetic nanoprobe technology for detecting molecular interactions in live cells. Science 309:121125.
88. Xu, X.,, W. J. Brownlow,, S. V. Kyriacou,, Q. Wan, and, J. J. Viola. 2004. Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 43:1040010413.
89. Youvan, D.C. 1994. Imaging sequence space. Nature 369:7980.
90. Yu, J.,, S. Liu, and, H. Ju. 2003. Mediator-free phenol sensor based on titania sol-gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method. Biosens. Bioelectron. 19:509514.
91. Zhou, C.,, P. Pivarnik,, A. G. Rand, and, S. V. Letcher. 1998. Acoustic standing wave enhancement of a fiber-optic Salmonella biosensor. Biosens. Bioelectron. 13:495500.

Tables

Generic image for table
TABLE 1

Commercially available fluorescent proteins

Citation: Burlage R. 2007. Bioreporters, Biosensors, and Microprobes, p 169-181. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error