1887

Chapter 33 : Primary Productivity and Producers

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Primary Productivity and Producers, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap33-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap33-2.gif

Abstract:

Analyses of long-term data sets have demonstrated the utility of primary productivity measurements as indicators of either natural or anthropogenic ecosystem alterations. A suite of microscopic identification and enumeration techniques including various cytological stains, immuno-and autofluorescence, and microautoradiography coupled to fluorescence in situ hybridization are available. These techniques add to the sensitivity, specificity, relevance, and utility of productivity measurements as indicators of ecosystem structure, function, and change. The general use and application of these ancillary techniques are discussed in this chapter. The chapter discusses methods for measuring primary pathways in aquatic habitats. Studies on diverse marine and freshwater systems have shown that the highest rates of primary productivity occur during mid to late morning, prior to the period of maximum irradiance. Oxygen can be measured electrochemically by using several types of electrodes. The construction and general application of cathode-style microelectrodes in microbial O production and consumption studies are discussed in detail by Revsbech and Jørgensen. Standard measurements of primary productivity can be complemented by modifications, ancillary techniques, and procedures that enhance physiological, ecological, and taxonomic interpretations of productivity measurements. Microautoradiography and radiolabeling of diagnostic microalgal pigments can enhance the specificity and dimensionality of primary productivity measurements. Both natural perturbations and human activities can strongly impact aquatic primary production by modifying nutrient, sediment, toxin, and other xenobiotic inputs. Evolving remote-sensing techniques will help clarify and evaluate the nutrient-production interactions on scales appropriate for a broad range of aquatic ecosystems.

Citation: Paerl H. 2007. Primary Productivity and Producers, p 407-420. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch33

Key Concept Ranking

High-Performance Liquid Chromatography
0.44259456
0.44259456
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Untitled
Untitled

Citation: Paerl H. 2007. Primary Productivity and Producers, p 407-420. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1
FIGURE 1

Diagram illustrating the combined use of HPLC and a matrix factorization program (ChemTax) for separating and identifying photopigments diagnostic of microalgal taxonomic groups mediating aquatic primary production.

Citation: Paerl H. 2007. Primary Productivity and Producers, p 407-420. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch33
1. Archer, D.,, and A. Devol. 1992. Benthic oxygen fluxes on the Washington shelf and slope: a comparison of in situ microelectrode and chamber flux measurements. Limnol. Oceanogr. 37:614629.
2. Azam, F.,, T. Fenchel,, J. G. Filed,, J. S. Gray,, L. A. Meyer-Reil, and, F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257263.
3. Bowles, N. D.,, H. W. Paerl, and, J. Tucker. 1985. Effective solvents and extraction periods employed in phytoplankton carotenoid and chlorophyll determinations. Can. J. Fish. Aquat. Sci. 42:11271131.
4. Buzzelli, C. P.,, J. R. Ramus, and, H. W. Paerl. 2003. Ferry-based monitoring of surface water quality in North Carolina estuaries. Estuaries 26:975984.
5. Cloud, P. 1976. Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology 2:351387.
6. Descy, J.-P.,, and A. Metens. 1996. Biomass-pigment relationships in potamoplankton. J. Plankton Res. 18:15571566.
7. Falkowski, P. G. 1980. Primary Productivity in the Sea. Plenum Press, New York, N.Y.
8. Falkowski, P. G.,, and J. A. Raven. 1997. Aquatic Photosynthesis. Blackwell Science, Malden, Mass.
9. Fee, E. J. 1975. The importance of diurnal variation of photosynthesis vs. light curves to estimate of integral primary production. Int. Ver. Theor. Angew. Limnol. Verh. 19:3946.
10. Fitzwater, S. E.,, G. A. Knauer, and, J. H. Martin. 1982. Metal contamination and its effect on primary production measurement. Limnol. Oceanogr. 27:544551.
11. Fogel, M. L.,, and L. A. Cifuentes. 1993. Isotope fractionation during primary production, p. 73–98. In M. H. Engel and, S. A. Macko (ed.), Organic Geochemistry. Plenum Press, New York, N.Y.
12. Geider, R. J.,, and B. J. Osborne. 1992. Algal Photosynthesis. Chapman & Hall, New York, N.Y.
13. Gieskes, W. W.,, and G. W. Kraay. 1984. State-of-the-art in the measurement of primary production, p. 171–190. In M. J. R. Fasham (ed.), Flow of Energy and Materials in Marine Ecosystems. Plenum Publishing Co., New York, N.Y.
14. Goericke, R.,, and N. Welschmeyer. 1993. The chlorophyll-labeling method: measuring specific rates of chlorophyll a synthesis in cultures and in the open ocean. Limnol. Oceanogr. 38:8095.
15. Goldman, C. R. 1966. Primary Productivity in Aquatic Environments. University of California Press, Berkeley.
16. Goldman, C. R. 1999. Baldi Lecture: four decades of change in two subalpine lakes. Verh. Int. Verein. Limnol. 27:726.
17. Goldman, C. R.,, D. T. Mason, and, J. E. Hobbie. 1967. Two antarctic desert lakes. Limnol. Oceanogr. 12:295310.
18. Harding, L. W.,, T. R. Fisher, and, M. A. Tyler. 1987. Adaptive responses of photosynthesis in phytoplankton: specificity to time-scale of change in light. Biol. Oceanogr. 4:403437.
19. Harding, L. W.,, D. Degobbis, and, R. Precali. 1999. Production and fate of phytoplankton: annual cycles and interannual variability, p. 131–172. In T. C. Malone et al. (eds.), Coastal and Estuarine Studies, vol. 55. Ecosystems at the Land-Sea Margin: Drainage Basin to Coastal Sea. American Geophysical Union, Washinton, D.C.
20. Harris, G. P.,, and B. B. Piccinin. 1977. Photosynthesis by natural phytoplankton populations. Arch. Hydrobiol. 80:405457.
21. Hickman, M. 1969. Methods for determining the primary productivity of epipelic and epipsamnic algal associations. Limnol. Oceanogr. 14:936941.
22. Hunding, C.,, and B. Hargrave. 1973. A comparison of benthic microalgal production measured by 14C and oxygen methods. J. Fish. Res. Board Can. 30:309312.
23. Jeffrey, S. W.,, R. C. F. Mantoura, and, S. W. Wright. 1997. Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. UNESCO, Paris, France.
24. Kemp, M.,, P. A. Sampou,, J. Garber,, J. Tuttle, and, W. R. Boynton. 1992. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: roles of benthic and planktonic respiration and physical exchange processes. Mar. Ecol. Prog. Ser. 85:137152.
25. Lewitus, A. J.,, D. L. White,, R. G. Tymowski,, M. E. Geesey,, S. N. Hymel, and, P. A. Noble. 2005. Adapting the CHEMTAX method for assessing phytoplankton taxonomic composition in southeastern U.S. estuaries. Estuaries 28:160172.
26. Lindeboom, H.,, A. Sandee, and, H. Driessche. 1985. A new bell jar/microelectrode method to measure changing oxygen fluxes in illuminated sediments with microalgal cover. Limnol. Oceanogr. 30:693698.
27. Mallin, M. A.,, and H. W. Paerl. 1992. Effects of variable irradiance on phytoplankton productivity in shallow estuaries. Limnol. Oceanogr. 37:5462.
28. Mantoura, R. F. C.,, and C. A. Llewellyn. 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal. Chim. Acta 151:297314.
29. Millie, D. F.,, M. C. Baker,, C. S. Tucker,, B. T. Vinyard, and, C. P. Dionigi. 1992. High-resolution, airborne remote-sensing of bloom-forming phytoplankton. J. Phycol. 28:281290.
30. Millie, D. F.,, H. W. Paerl, and, J. P. Hurley. 1993. Microalgal pigment assessments using high-performance liquid chromatography: a synopsis of organismal and ecological applications. Can. J. Fish. Aquat. Sci. 50:25132527.
31. Millie, D. F.,, O. M. Schofield,, G. B. Kirkpatrick,, G. Johnsen,, P. A. Tester, and, B. T. Vinyard. 1997. Detection of harmful algal blooms using photopigment and absorption signatures: a case study of the Florida red-tide dinoflagellate, Gymnodinium breve. Limnol. Oceanogr. 42:12401251.
32. Paerl, H. W. 1974. Bacterial uptake of dissolved organic matter in relation to detrital aggregation in marine and freshwater systems. Limnol. Oceanogr. 19:966972.
33. Paerl, H. W. 1978. Microbial organic carbon recovery in aquatic ecosystems. Limnol. Oceanogr. 23:927935.
34. Paerl, H. W. 1984. An evaluation of freeze-fixation as a phytoplankton preservation method for microautoradiography. Limnol. Oceanogr. 29:417426.
35. Paerl, H. W. 1984. Transfer of N2 and CO2 fixation products from Anabaena oscillarioides to associated bacteria during inorganic carbon sufficiency and deficiency. J. Phycol. 20:600608.
36. Paerl, H. W. 1987. Dynamics of Blue-Green Algal (Microcystis aeruginosa) Blooms in the Lower Neuse River, North Carolina: Causative Factors and Potential Controls. University of North Carolina Water Resources Research Institute report no. 229. University of North Carolina, Raleigh.
37. Paerl, H. W.,, and E. A. Stull. 1979. In defense of grain density autoradiography. Limnol. Oceanogr. 24:11661169.
38. Paerl, H. W.,, and D. F. Millie. 1991. Evaluations of Spectrophotometric, Fluorometric and High Performance Liquid Chromatographic Methods for Algal Pigment Determinations in Aquatic Ecosystems. Workshop Report. U.S. Environmental Protection Agency, Cincinnati, Ohio.
39. Paerl, H. W.,, B. M. Bebout,, S. B. Joye, and, D. J. Des Marais. 1993. Microscale characterization of dissolved organic matter production and uptake in marine microbial mat communities. Limnol. Oceanogr. 38:11591161.
40. Paerl, H. W.,, L. M. Valdes,, J. L. Pinckney,, M. F. Piehler,, J. Dyble, and, P. H. Moisander. 2003. Phytoplankton photopigments as indicators of estuarine and coastal eutrophication. BioScience 53:953964.
41. Paerl, H. W.,, J. Dyble,, P. H. Moisander,, R. T. Noble,, M. F. Piehler,, J. T. Pinckney,, L. Twomey, and, L. M. Valdes. 2003. Microbial indicators of aquatic ecosystem change: current applications to eutrophication studies. FEMS Microb. Ecol. 46:233246.
42. Parsons, T. R.,, Y. Maita, and, C. M. Lalli. 1992. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford, United Kingdom.
43. Pernthaler, A.,, and R. Amann. 2004. Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl. Environ. Microbiol. 70:54265433.
44. Peterson, B. J. 1980. Aquatic primary productivity and the 14C-CO2 method: a history of the productivity problem. Annu. Rev. Ecol. Syst. 11:359385.
45. Pinckney, J. L.,, and R. G. Zingmark. 1993. Photophysiological responses of intertidal benthic microagal communities to in situ light environments: methodological considerations. Limnol. Oceanogr. 38:13731383.
46. Pinckney, J. L.,, D. F. Millie,, K. E. Howe,, H. W. Paerl, and, J. P. Hurley. 1996. Flow scintillation counting of 14C-labeled microalgal photosynthetic pigments. J. Plankton Res. 18:18671880.
47. Pinckney, J. L.,, H. W. Paerl,, M. B. Harrington, and, K. E. Howe. 1998. Annual cycles of phytoplankton community-structure and bloom dynamics in the Neuse River Estuary, North Carolina, USA. Mar. Biol. 131:371382.
48. Pinckney, J. L.,, T. L. Richardson,, D. F. Millie, and, H. W. Paerl. 2001. Application of photopigment bio-markers for quantifying microalgal community composition and in situ growth rates. Org. Geochem. 32:585595.
49. Pomeroy, L. 1959. Algal productivity in salt marshes of Georgia. Limnol. Oceanogr. 4:386397.
50. Rantajärvi, E.,, V. Gran,, S. Hällfors, and, R. Olsonen. 1998. Effects of environmental factors on the planktonic community in the Gulf of Finland: unattended high frequency measurements and multivariate analyses. Hydrobiologia 363:127139.
51. Redalje, D. 1993. The labeled chlorophyll a technique for determining photoautotrophic carbon specific growth rates and carbon biomass, p. 563-572. In P. Kemp,, B. Sherr,, E. Sherr, and, J. Cole (ed.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishing Co., Boca Raton, Fla.
52. Redfield, A. C. 1958. The biological control of chemical factors in the environment. Am. Sci. 46:205221.
53. Revsbech, N. P.,, and B. B. Jørgensen. 1986. Microelectrodes: their use in microbial ecology. Adv. Microb. Ecol. 9:273352.
54. Revsbech, N. P.,, B. B. Jørgensen, and, O. Brix. 1981. Primary production of microalgae in sediments measured by oxygen microprofile, H14CO3- fixation, and oxygen evolution methods. Limnol. Oceanogr. 26:717730.
55. Revsbech, N. P.,, J Nielsen, and, P. K. Hansen. 1988. Benthic primary production and oxygen profiles, p. 69–83. In T. H. Blackburn and, J. Sørensen (ed.), Nitrogen Cycling in Coastal Marine Environments. John Wiley & Sons, New York, N.Y.
56. Roy, S.,, J. P. Chanut,, M. Gosselin, and, T. Sime-Ngando. 1996. Characterization of phytoplankton communities in the lower St. Lawrence Estuary using HPLC-detected pigments and cell microscopy. Mar. Ecol. Prog. Ser. 142:5573.
57. Schlüter, L,, F. Møhlenberg,, H. Havskum, and, S. Larsen. 2000. The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios. Mar. Ecol. Prog. Ser. 192:4963.
58. Sharp, J. H. 1977. Excretion of organic matter by marine phytoplankton. Do healthy cells do it? Limnol. Oceanogr. 22:381399.
59. Sheldon, R. W.,, and W. H. Sutcliffe. 1978. Generation times of 3 h for Sargasso Sea microplankton determined by ATP analysis. Limnol. Oceanogr. 23:10511054.
60. Shulenberger, E.,, and J. L. Reid. 1981. The Pacific shallow oxygen maximum, deep chlorophyll maximum, and primary productivity, reconsidered. Deep Sea Res. 28A:2935.
61. Steeman Nielsen, E. 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Int. Explor. Mer. 18:117140.
62. Strickland, J. D. H.,, and T. R. Parsons. 1972. A Practical Handbook of Seawater Analysis. Fishery Research Board, Ottawa, Canada.
63. Stull, E. A.,, E. De Amezaga, and, C. R. Goldman. 1973. The contribution of individual species of algae to primary productivity of Castle Lake, California. Int. Ver. Theor. Angew. Limnol. Verh. 18:17761783.
64. Tester, P. A.,, M. R. Geesey,, C. Guo,, H. W. Paerl, and, D. F. Millie. 1995. Evaluating phytoplankton dynamics in the Newport River Estuary (North Carolina, USA) by HPLC-derived pigment profiles. Mar. Ecol. Prog. Ser. 124:237245.
65. Van Heukelem, L.,, A. Lewitus,, T. Kana, and, N. Craft. 1994. Improved separations of phytoplankton pigments using temperature-controlled high performance liquid chromatography. Mar. Ecol. Prog. Ser. 114:303313.
66. Vollenweider, R. A.,, and A. Nauwerck. 1961. Some observations on the 14C method for measuring primary production. Int. Ver. Theor. Angew. Limnol. Verh. 14:134139.
67. Watt, W. 1971. Measuring the primary production rates of individual phytoplankton species in natural mixed populations. Deep Sea Res. 18:329339.
68. Wetzel, R. G.,, and G. E. Likens. 1991. Limnological Analyses. Springer-Verlag, New York, N.Y.
69. Williams, P. J. L. B.,, K. R. Heinemann,, J. Marra, and, D. A. Purdie. 1983. Comparison of 14C and O2 measurements of phytoplankton production in oligotrophic waters. Nature 305:4950.
70. Woitke, P.,, P. Schiwietz,, K. Teubner, and, J.-G. Kohl. 1996. Annual profiles of photosynthetic lipophilic pigments in four freshwater lakes in relation to phytoplankton cultures as well as nutrient data. Arch. Hydrobiol. 137:363384.
71. Wright, S. W.,, D. P. Thomas,, H. J. Marchant,, H. W. Higgins,, M. D. Mackey, and, D. J. Mackey. 1996. Analysis of phytoplankton of the Australian section of the Southern Ocean: comparisons of microscopy and size frequency data with the interpretations of pigment HPLC data using the ‘CHEMTAX’ matrix factorization program. Mar. Ecol. Prog. Ser. 144:285298.

Tables

Generic image for table
Untitled

Citation: Paerl H. 2007. Primary Productivity and Producers, p 407-420. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch33
Generic image for table
Untitled

Citation: Paerl H. 2007. Primary Productivity and Producers, p 407-420. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch33
Generic image for table
Untitled

Citation: Paerl H. 2007. Primary Productivity and Producers, p 407-420. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch33
Generic image for table
TABLE 1

Major functional groups of aquatic microbial autotrophs, categorized according to environmental requirements and oxic/anoxic characteristics

Citation: Paerl H. 2007. Primary Productivity and Producers, p 407-420. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch33
Generic image for table
TABLE 2

Commonly used methods for determining primary production in planktonic and benthic aquatic environments

Citation: Paerl H. 2007. Primary Productivity and Producers, p 407-420. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch33

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error