1887

Chapter 41 : Sulfur Cycling

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Sulfur Cycling, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap41-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap41-2.gif

Abstract:

Microorganisms of the S cycle are extremely diverse. The anaerobic sulfate-reducing bacteria (SRB), which are unique physiologically and genetically, are represented by several genera, most of which were discovered in the last 20 years. Chemolithotrophic S oxidation is mediated aerobically by colorless S bacteria, some purple S bacteria, and SRB. For enumeration, isolation, and rate measurements, it is important to process samples quickly after they are obtained and to maintain samples near ambient temperatures. Rates of SO reduction have become routine measurements in studies of the biogeochemistry of anoxic aquatic environments. SRB are readily isolated from many environments, including freshwater and salt water, soils, oil-bearing shales and strata, intestinal contents, sewage, and paper mill effluent. In recent years, molecular methods based on PCR, gene cloning, and hybridization probes have been developed to examine natural populations of bacteria directly without cultivation. Fluorescence in situ hybridization (FISH) is widely used for detection, identification, and quantification of microorganisms in the environment; the analysis of sulfur-oxidizing bacteria gives particularly interesting examples for FISH applications. Sulfide is produced from degradation of sulfur-containing organic matter and by dissimilatory sulfate reduction. Microbial metabolism of sulfide competes with chemical oxidation, either by O or Fe. Cultivation and enumeration of sulfur oxidizers are most successful in CO buffered media. High-performance liquid chromatography with fluorometric detection can also be used to measure oxidized and reduced S species.

Citation: Hines M, Visscher P, Teske A, Devereux R. 2007. Sulfur Cycling, p 497-510. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch41

Key Concept Ranking

Denaturing Gradient Gel Electrophoresis
0.41222772
0.41222772
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Untitled
Untitled

Citation: Hines M, Visscher P, Teske A, Devereux R. 2007. Sulfur Cycling, p 497-510. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch41
1. Ahmad, A,, J. P. Barry, and, D. C. Nelson. 1999. Phylogenetic affinity of a wide, vacuolate, nitrate-accumulating Beggiatoa sp. from Monterey Canyon, California, with Thioploca spp. Appl. Environ. Microbiol. 65:270277.
2. Amann, R. I.,, B. Binder,, S. W. Chisholm,, R. Olsen,, R. Devereux, and, D. A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56:19191925.
3. Amann, R. I.,, W. Ludwig, and, K.-H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual cells without cultivation. Microbiol. Rev. 59:143169.
4. Amann, R. I.,, J. Stromley,, R. Devereux,, R. Key, and, D. A. Stahl. 1992. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58:614623.
5. Bacic, M. K.,, S. Y. Newell, and, D. C. Yoch. 1998. Release of dimethylsulfide from dimethylsulfoniopropionate by plant-associated salt marsh fungi. Appl. Environ. Microbiol. 64:14841489.
6. Bahr, M.,, B. C. Crump,, V. Klepac-Ceraj,, A. Teske,, M. L. Sogin, and, J. E. Hobbie. 2005. Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environ. Microbiol. 7:11751185.
7. Bak, F.,, A. Schuhmann, and, K. H. Jansen. 1993. Determination of tetrathionate and thiosulfate in natural samples and microbial cultures by a new, fast and sensitive ion chromatographic technique. FEMS Microbiol. Ecol. 12:257264.
8. Beechey, R. B.,, and D. W. Ribbons. 1972. Oxygen electrode measurements. Methods Microbiol. 6B:2553.
9. Bendschneider, K.,, and R. J. Robinson. 1957. A new spectrophotometric method for the determination of nitrite in sea water. J. Mar. Res. 11:8796.
10. Blazejak, A.,, C. Erséus,, R. Amann, and, N. Dubilier. 2005. Coexistence of bacterial sulfide oxidizers, sulfate reducers, and spirochetes in a gutless worm (Oligochaeta) from the Peru Margin. Appl. Environ. Microbiol. 71:15531561.
11. Brinkhoff, T.,, C. M. Santegoeds,, K. Sahm,, J. Küver, and, G. Muyzer. 1998. A polyphasic approach to study the diversity and vertical distribution of sulfur-oxidizing Thiomicrospira species in coastal sediments of the German Wadden Sea. Appl. Environ. Microbiol. 64:46504657.
12. Canfield, D. E.,, R. Raiswell,, J. T. Westrich,, C. M. Reaves, and, R. A. Berner. 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54:149155.
13. Canfield, D. E.,, B. Thamdrup, and, J. W. Hansen. 1993. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Acta 57:38673883.
14. Carignan, R.,, S. St. Pierre, and, R. Gachter. 1994. Use of diffusion samplers in oligotrophic lake sediments—effects of free oxygen in sampler material. Limnol. Oceanogr. 39:468474.
15. Chambers, R. M.,, J. T. Hollibaugh, and, S. M. Vink. 1994. Sulfate reduction and sediment metabolism in Tomales Bay, California. Biogeochemistry 25:118.
16. Cline, J. D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14:454458.
17. Cooling, F. B.,, III, C. L. Maloney,, E. Nagel,, J. Tabinowski, and, J. M. Odom. 1996. Inhibition of sulfate respiration by 1,8-dihydroxyanthraquinone and other anthraquinone derivatives. Appl. Environ. Microbiol. 62:29993004.
18. Cottrell, M. T.,, and S. C. Cary. 1999. Diversity of dissimilatory bisulfite reductase genes of bacteria associated with the deep-sea hydrothermal vent polychaete annelid Alvinella pompejana. Appl. Environ. Microbiol. 65:11271132.
19. Daly, K.,, R. J. Sharp, and, A. J. McCarthy. 2000. Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria. Microbiology 146:16931705.
20. Dar, S. A.,, J. G. Kuenen, and, G. Muyzer. 2005. Nested PCR-denaturing gradient gel electrophoresis approach to determine the diversity of sulfate-reducing bacteria in complex microbial communities. Appl. Environ. Microbiol. 71:23252330.
21. de Beer, D.,, and J. P. R. A. Sweerts. 1989. Measurement of nitrate gradients with an ion selective microelectrode. Anal. Chim. Acta 219:351356.
22. Devereux, R.,, M. Delaney,, F. Widdel, and, D. A. Stahl. 1989. Natural relationships among sulfate-reducing eubacteria. J. Bacteriol. 171:66896695.
23. Devereux, R.,, S.-H. He,, C. L. Doyle,, S. Orklnad,, D. A. Stahl,, J. LeGall, and, W. B. Whitman. 1990. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J. Bacteriol. 172:36093619.
24. Devereux, R.,, and G. W. Mundfrom. 1994. A phylogenetic tree of 165 rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment. Appl. Environ. Microbiol. 60:34373439.
25. Devereux, R.,, and D. A. Stahl. 1993. Phylogeny of sul-fate-reducing bacteria and a perspective for analyzing their natural communities, p. 131–160. In J. M. Odom and, R. Singleton, Jr. (ed.), Sulfate-Reducing Bacteria: Contemporary Perspectives. Springer-Verlag, New York, N.Y.
26. Dhillon, A.,, A. Teske,, J. Dillon,, D. A. Stahl, and, M. L. Sogin. 2003. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl. Environ. Microbiol. 69:27652772.
27. Dhillon, A.,, S. Goswami,, M. Riley,, A. Teske, and, M. L. Sogin. 2005. Domain evolution and functional diversification of sulfite reductases. Astrobiology 5:1829.
28. Dubilier, N.,, C. Mülders,, T. Ferdelman,, D. de Beer,, A. Pernthaler,, M. Klein,, M. Wagner,, C. Erséus,, F. Thiermann,, J. Krieger,, O. Giere, and, R. Amann. 2001. Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature 411:298302.
29. Edgcomb, V. P.,, J. H. McDonald,, R. Devereux, and, D. W. Smith. 1999. Estimation of bacterial cell numbers in humic acid-rich salt marsh sediments with probes directed to 16S ribosomal DNA. Appl. Environ. Microbiol. 65:15161523.
30. Elsgaard, L.,, and B. B. Jørgensen. 1992. Anoxic transformations of radiolabeled hydrogen sulfide in marine and freshwater sediments. Geochim. Cosmochim. Acta 56:24252435.
31. Fishbain, S.,, J. G. Dillon,, H. L. Gough, and, D. A. Stahl. 2003. Linkage of high rates of sulfate reduction in Yellowstone hot springs to unique sequence types in the dissimilatory sulfate respiration pathway. Appl. Environ. Microbiol. 69:36633667.
32. Fossing, H.,, and B. B. Jørgensen. 1989. Measurement of bacterial sulfate reduction in sediments: evaluation of a single step chromium reduction. Biogeochemistry 8:205222.
33. Fossing, H.,, S. Thode-Andersen, and, B. B. Jørgensen. 1992. Sulfur isotope exchange between S-35-labeled inorganic sulfur compounds in anoxic marine sediments. Mar. Chem. 38:117132.
34. Friedrich, M. 2002. Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J. Bacteriol. 184:278289.
35. Fukui, M.,, A. Teske,, B. Assmuss,, G. Muyzer, and, F. Widdel. 1999. Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (Genus Desulfonema). Arch. Microbiol. 172:193203.
36. Gibson, G. R. 1990. Physiology and ecology of the sulphate-reducing bacteria. J. Appl. Bacteriol. 69:769797.
37. Glöckner, F. O.,, H.-D. Babenzien,, J. Wulf, and, R. Amann. 1999. Phylogeny and diversity of Achromatium oxaliferum. Syst. Appl. Microbiol. 22:2838.
38. Gray, N. D.,, R. Howarth,, R. W. Pickup,, J. G. Jones, and, I. M. Head. 2000. Use of microautoradiography and fluorescence in situ hybridization to determine carbon metabolism in mixed natural communities of uncultured bacteria from the genus Achromatium. Appl. Environ. Microbiol. 66:45184522.
39. Gray, N. D.,, D. Comaskey,, I. P. Miskin,, R. W. Pickup,, K. Suzuki, and, I. M. Head. 2004. Adaptation of sympatric Achromatium spp. to different redox conditions as a mechanism for coexistence of functionally similar sulphur bacteria. Environ. Microbiol. 6:669677.
40. Harms, G.,, K. Zengler,, R. Rabus,, F. Aeckersberg,, D. Minz,, R. Rossello-Mora, and, F. Widdel. 1999. Anaerobic oxidation of o-xylene, m-xylene, and homologous alkyl-benzenes by new types of sulfate-reducing bacteria. Appl. Environ. Microbiol. 65:9991004.
41. Hesslein, R. H. 1976. An in situ sampler for close interval pore water studies. Limnol. Oceanogr. 21:912914.
42. Hines, M. E.,, G. T. Banta,, A. E. Giblin,, J. E. Hobbie, and, J. T. Tugel. 1994. Acetate concentrations and oxidation in salt marsh sediments. Limnol. Oceanogr. 39:140148.
43. Hines, M. E.,, R. S. Evans,, B. R. S. Genthner,, S. G. Willis,, S. Friedman,, J. N. Rooney-Varga, and, R. Devereux. 1999. Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl. Environ. Microbiol. 65:22092216.
44. Hines, M. E.,, and G. E. Jones. 1985. Microbial biogeo-chemistry in the sediments of Great Bay, New Hampshire. Estuar. Coast. Shelf Sci. 20:729742.
45. Hines, M. E.,, S. L. Knollmeyer, and, J. B. Tugel. 1989. Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh. Limnol. Oceanogr. 34:578590.
46. Hines, M. E.,, R. S. Evans,, B. R. S. Genthner,, S. G. Willis,, S. Friedman,, J. N. Rooney-Varga, and, R. Devereux. 1999. Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizo-sphere of Spartina alterniflora. Appl. Environ. Microbiol. 65:22092216.
47. Hipp, W. M.,, A. S. Pott,, N. T. Schmitz,, I. Faath,, C. Dahl, and, H. G. Trüper. 1997. Towards the phylogeny of APS reductase and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. Microbiology 143:28912902.
48. Howarth, R. W. 1979. Pyrite: its rapid formation in a salt marsh and its importance in ecosystem metabolism. Science 203:4951.
49. Howes, B. L.,, J. W. H. Dacey, and, S. G. Wakeham. 1985. Effects of sampling technique on measurements of porewater constituents in salt marsh sediments. Limnol. Oceanogr. 30:221227.
50. Jørgensen, B. B. 1978. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I. Measurements with radiotracer techniques. Geomicrobiol. J. 1:1127.
51. Jørgensen, B. B. 1982. Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Philos. Trans. R. Soc. Lond. 298:543561.
52. Jørgensen, B. B. 1988. Ecology of the sulphur cycle: oxidative pathways in sediments, p. 31–63. In J. A. Cole and, S. J. Ferguson (ed.), The Nitrogen and Sulphur Cycles. Cambridge University Press, Cambridge, United Kingdom.
53. Jørgensen, B. B. 1994. Sulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel oxygen cycle. FEMS Microbiol. Ecol. 13:303312.
54. Jørgensen, B. B. 1990. A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249:152154.
55. Jørgensen, B. B.,, and F. Bak. 1991. Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl. Environ. Microbiol. 57:847856.
56. Kallmeyer, J.,, T. G. Ferdelman,, A. Weber,, H. Fossing, and, B. B. Jørgensen. 2004. A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnol. Oceanogr. Methods 2:171180.
57. Karkoff-Schweizer, R. R.,, D. P. Huber, and, G. Voordouw. 1995. Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidis allows their detection by PCR. Appl. Environ. Microbiol. 61:290296.
58. Kelly, D. P. 1989. Physiology and biochemistry of unicellular bacteria, p. 193–218. In H. G. Schlegel and, B. Bowien (ed.), Autotrophic Bacteria. Springer-Verlag, Berlin, Germany.
59. Kelly, D. P.,, L. A. Chambers, and, P. A. Trudinger. 1969. Cyanolysis and spectrometric estimation of trithionate in a mixture with thiosulfate and tetrathionate. Anal. Chem. 41:898901.
60. Kiene, R. P. 1991. Evidence for the biological turnover of thiols in anoxic marine sediments. Biogeochemistry 13:117135.
61. Kiene, R. P. 1993. Measurement of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in sea-water and estimation of DMS turnover rates, p. 601–610. In P. F. Kemp,, B. F. Sherr,, E. B. Sherr, and, J. J. Cole (ed.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, Fla.
62. Kiene, R. P.,, and G. Gerard. 1994. Determination of trace levels of dimethylsulfoxide (DMSO) in seawater and rain water. Mar. Chem. 47:112.
63. Kiene, R. P.,, and M. E. Hines. 1995. Microbial formation of dimethyl sulfide in anoxic Sphagnum peat. Appl. Environ. Microbiol. 61:27202726.
64. Kiene, R. P.,, and S. K. Service. 1991. Decomposition of dissolved DMSP and DMS in estuarine waters: dependence on temperature and substrate concentration. Mar. Ecol. Prog. Ser. 76:111.
65. Kiene, R. P.,, and P. T. Visscher. 1987. Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments. Appl. Environ. Microbiol. 53:24262434.
66. Klein, M.,, M. Friedrich,, A. J. Rogers,, P. Hugenholtz,, S. Fishbain,, H. Abicht,, L. L. Blackall,, D. A. Stahl, and, M. Wagner. 2001. Multiple lateral transfers of dissimila-tory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J. Bacteriol. 183:60286035.
67. Koch, A. L. 1994. Growth measurement, p. 248–277. In P. Gerhardt,, R. G. E. Murray,, W. A. Wood, and, N. R. Krieg (ed.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C.
68. Kojima, H.,, A. Teske, and, M. Fukui. 2003. Morphological and phylogenetic characterizations of freshwater Thioploca species from Lake Biwa, Japan, and Lake Constance, Germany. Appl. Environ. Microbiol. 69:390398.
69. Kühl, M.,, C. Steuckart,, G. Eickert, and, P. Jeroschewski. 1998. A H2S microsensor for profiling biofilms and sediments: application in an acidic lake sediment. Aquat. Microb. Ecol. 15:201209.
70. Küsel, K.,, H. C. Pinkart,, H. L. Drake, and, R. Devereux. 1999. Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii. Appl. Environ. Microbiol. 65:51175123.
71. Lie, T. J.,, J. R. Leadbetter, and, E. R. Leadbetter. 1998. Metabolism of sulfonic acids and other organosulfur compounds by sulfate-reducing bacteria. Geomicrobiol. J. 15:135149.
72. Llobet-Brossa, R., Rabus,, M. E. Böttcher,, M. Könneke,, N. Finke,, A. Schramm,, R. L. Meyer,, S. Grötzschel,, R. Rossello-Mora, and, R. Amann. 2002. Community structure and activity of sulfate-reducing bacteria in an intertidal surface sediment: a multi-method approach. Aquat. Microb. Ecol. 29:211226.
73. Lovley, D. R.,, and E. J. P. Phillips. 1994. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria. Appl. Environ. Microbiol. 60:23942399.
74. Loy, A.,, A. Lehner,, N. Lee,, J. Adamczyk,, H. Meier,, J. Ernst,, K.-H. Schleifer, and, M. Wagner. 2002. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol. 68:50645081.
75. Loy, A.,, K. Kusel,, A. Lehner,, H. L. Drake, and, M. Wagner. 2004. Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal cooccurrence of recognized genera and novel lineages. Appl. Environ. Microbiol. 70:69987009.
76. Manz, W.,, M. Eisenbrecher,, T. R. Neu, and, U. Szewzyk. 1998. Abundance and spatial organization of gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol. Ecol. 25:4361.
77. Minz, D.,, S. Fishbain,, S. J. Green,, G. Muyzer,, Y. Cohen,, B. E. Rittmann, and, D. A. Stahl. 1999. Unexpected population distribution in a microbial mat community: sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl. Environ. Microbiol. 65:46594665.
78. Minz, D.,, J. L. Flax,, S. J. Green,, G. Muyzer,, Y. Cohen,, M. Wagner,, B. E. Rittmann, and, D. A. Stahl. 1999. Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl. Environ. Microbiol. 65:46664671.
79. Mori, K.,, H. Kim,, T. Kakegawa, and, S. Hanada. 2003. A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 7:283290.
80. Morrison, M. C.,, and M. E. Hines. 1990. The variability of biogenic sulfur flux from a temperate salt marsh on short time and space scales. Atmos. Environ. 24:17711779.
81. Mussmann, M.,, H. N. Schulz,, B. Strothmann,, T. Kjaer,, L. P. Nielsen,, R. A. Rossello-Mora,, R. I. Amann, and, B. B. Jørgensen. 2003. Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal sediments. Environ. Microbiol. 5:523533.
82. Muyzer, G.,, E. C. De Waal, and, A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of poly-merase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695700.
83. Muyzer, G.,, A. Teske,, C. O. Wirsen, and, H. W. Jannasch. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydro-thermal vent samples by denaturing gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164:165172.
84. Muyzer, G.,, E. Yildirim,, U. van Dongen,, M. Kühl, and, R. Thar. 2005. Identification of “Candidatus Thioturbo danicus,” a microaerophilic bacterium that builds conspicuous veils of sulfidic sediments. Appl. Environ. Microbiol. 71:89298933.
85. Nakagawa, T.,, J.-I. Ishibashi,, A. Maruyama,, T. Yamanaka,, Y. Morimoto,, H. Kimura,, T. Urabe, and, M. Fukui. 2004. Analysis of dissimilatory sulfite reductase and 16S rRNA gene fragments from deep-sea hydrothermal sites of the Suijo Seamount, Izu-Bonin Arc, Western Pacific. Appl. Environ. Microbiol. 70:393403.
86. Nelson, D. C.,, B. B. Jørgensen, and, N. P. Revsbech. 1986. Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients. Appl. Environ. Microbiol. 52:225233.
87. Neretin, L. N.,, A. Schippers,, A. Pernthaler,, K. Hamann,, R. Amann, and, B. B. Jørgensen. 2003. Quantification of dissimilatory (bi)sulphite reductase gene expression in Desulfobacterium autotrophicum using real-time RT-PCR. Environ. Microbiol. 5:660671.
88. Odom, J. M.,, and R. Singleton, Jr. 1993. The Sulfate-Reducing Bacteria: Contemporary Perspectives. Springer-Verlag, New York, N.Y.
89. Okabe, S.,, T. Itoh,, H. Satoh, and, Y. Watanabe. 1999. Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl. Environ. Microbiol. 65:51075116.
90. Oremland, R. S.,, and D. G. Capone. 1988. Use of “specific” inhibitors in biogeochemistry and microbial ecology. Adv. Microb. Ecol. 10:285383.
91. Pernthaler, J.,, F. O. Glöckner,, W. Schönhuber, and, R. Amann. 2001. Fluorescence in situ hybridization with rRNA-targeted oligonucleotide probes. Methods Microbiol. 30:207226.
92. Pfennig, N. 1978. Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the Rhodspirillaceae. Int. J. Syst. Bacteriol. 28:283288.
93. Postgate, J. R. 1984. The Sulphate-Reducing Bacteria, 2nd ed. Cambridge University Press, Cambridge, United Kingdom.
94. Rabus, R.,, M. Fukui,, H. Wilkes, and, F. Widdel. 1996. Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl. Environ. Microbiol. 62:36053613.
95. Ramsing, N. B.,, H. Fossing,, T. G. Ferdelman,, F. Andersen, and, B. Thamdrup. 1996. Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl. Environ. Microbiol. 62:13911404.
96. Ramsing, N. B.,, M. Kühl, and, B. B. Jørgensen. 1993. Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl. Environ. Microbiol. 59:38403849.
97. Raskin, L.,, B. E. Rittmann, and, D. A. Stahl. 1996. Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms. Appl. Environ. Microbiol. 62:38473857.
98. Ravenschlag, K.,, K. Sahm,, C. Knoblauch,, B. B. Jørgensen, and, R. Amann. 2000. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl. Environ. Microbiol. 66:35923602.
99. Ravenschlag, K.,, K. Sahm, and, R. Amann. 2001. Quantitative molecular analysis of the microbial community in marine Arctic sediments. Appl. Environ. Microbiol. 67:387395.
100. Reeburgh, W. S. 1967. An improved interstitial water sampler. Limnol. Oceanogr. 12:163165.
101. Repeta, D. J.,, D. J. Simpson,, B. B. Jørgensen, and, H. W. Jannasch. 1989. Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea. Nature 342:6972.
102. Rethmeier, J.,, A. Rabenstein,, M. Langer, and, U. Fischer. 1997. Detection of traces of oxidized and reduced sulfur compounds in small sample quantities by combination of different HPLC methods. J. Chromatogr. A 760:295302.
103. Revsbech, N. P.,, and B. B. Jørgensen. 1986. Microelectrodes: their use in microbial ecology. Adv. Microb. Ecol. 9:293352.
104. Risatti, J. B.,, W. C. Chapman, and, D. A. Stahl. 1994. Community structure of a microbial mat: the phylogenetic dimension. Proc. Natl. Acad. Sci. USA 91:1017310177.
105. Rooney-Varga, J. N.,, R. Devereux,, R. S. Evans, and, M. E. Hines. 1997. Seasonal changes in the relative abundance of uncultivated sulfate-reducing bacteria in a salt marsh sediment and rhizosphere of Spartina alterniflora. Appl. Environ. Microbiol. 63:38953901.
106. Rooney-Varga, J. N.,, B. R. S. Genthner,, R. Devereux,, S. G. Willis,, S. D. Friedman, and, M. E. Hines. 1998. Phylogenetic and physiologic diversity of sulfate-reducing bacteria isolated from a salt marsh sediment. Syst. Appl. Microbiol. 21:557568.
107. Sahm, K.,, C. Knoblauch, and, R. Amann. 1999. Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine Arctic sediments. Appl. Environ. Microbiol. 65:39763981.
108. Santegoeds, C. M.,, L. R. Damgaard,, C. Hesselink,, J. Zopfi,, P. Lens,, G. Muyzer, and, D. de Beer. 1999. Distribution of sulfate-reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analyses. Appl. Environ. Microbiol. 65:46184629.
109. Santegoeds, C. M.,, T. G. Ferdelman,, G. Muyzer, and, D. de Beer. 1998. Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Appl. Environ. Microbiol. 64:37313739.
110. Schramm, A.,, C. M. Santegoeds,, H. K. Nielsen,, H. Ploug,, M. Wagner,, M. Pribyl,, J. Wanner,, R. Amann, and, D. de Beer. 1999. On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge. Appl. Environ. Microbiol. 65:41894196.
111. Schulz, H. N.,, T. Brinkhoff,, T. G. Ferdelman,, M. Hernández Mariné,, A. Teske, and, B. B. Jørgensen. 1999. Giant sulphur bacteria discovered in Namibian shelf sediments. Science 284:493495.
112. Skyring, G. W. 1987. Sulfate reduction in coastal ecosystems. Geomicrobiol. J. 5:295374.
113. So, C. M.,, and L. Y. Young. 1999. Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl. Environ. Microbiol. 65:29692976.
114. Stal, L. J.,, H. van Gemerden, and, W. E. Krumbein. 1984. The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J. Microbiol. Methods 2:295306.
115. Telang, A. J.,, G. Voordouw,, S. Ebert,, N. Sifeldeen,, J. M. Foght,, P. M. Fedorak, and, D. W. S. Westlake. 1994. Characterization of the diversity of sulfate-reducing bacteria in soil and mining waste water environments by nucleic acid hybridization techniques. Can. J. Microbiol. 40:955964.
116. Teske, A.,, N. B. Ramsing,, J. Küver, and, H. Fossing. 1995. Phylogeny of Thioploca and related filamentous sulfide-oxidizing bacteria. Syst. Appl. Microbiol. 18:517526.
117. Teske, A.,, M. L. Sogin,, L. P. Nielsen, and, H. W. Jannasch. 1999. Phylogenetic position of a large marine Beggiatoa. Syst. Appl. Microbiol. 22:3944.
118. Teske, A.,, N. B. Ramsing,, K. Habicht,, M. Fükui,, J. Kuver,, B. B. Jørgensen, and, Y. Cohen. 1998. Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl. Environ. Microbiol. 64:29432951.
119. Teske, A.,, C. Wawer,, G. Muyzer, and, N. B. Ramsing. 1996. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Environ. Microbiol. 62:14051415.
120. Thamdrup, B.,, K. Finster,, H. Fossing,, J. W. Hansen, and, B. B. Jørgensen. 1994. Thiosulfate and sulfite distributions in porewater of marine sediments related to manganese, iron, and sulfur geochemistry. Geochim. Cosmochim. Acta 58:6773.
121. Trüper, H. G. 1989. Chemosynthetically sustained ecosystems in the deep sea, p. 147–166. In H. G. Schlegel and, B. Bowien (ed.), Autotrophic Bacteria. Springer-Verlag, Berlin, Germany.
122. Ulrich, G. A.,, L. R. Krumholz, and, J. M. Suflita. 1997. A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides. Appl. Environ. Microbiol. 63:16271630.
123. van Gemerden, H.,, and H. H. Beeftink. 1978. Specific rates of substrate oxidation and product formation in autotrophically growing Chromatium vinosum cultures. Arch. Microbiol. 119:135143.
124. van Niel, E. W. J.,, and J. C. Gottschal. 1998. Oxygen consumption by Desulfovibrio strains with and without polyglucose. Appl. Environ. Microbiol. 64:10341039.
125. Velji, M. I.,, and L. J. Albright. 1993. Improved sample preparation for enumeration of aggregated aquatic subtrate bacteria, p. 139–142. In P. F. Kemp,, B. F. Sherr,, E. B. Sherr, and, J. J. Cole (ed.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, Fla.
126. Vester, F.,, and K. Ingvorsen. 1998. Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer. Appl. Environ. Microbiol. 64:17001707.
127. Visscher, P. T.,, J. W. Nijburg, and, H. van Gemerden. 1990. Polysulfide utilization by Thiocapsa roseopersicina. Arch. Microbiol. 155:7581.
128. Visscher, P. T.,, R. A. Prins, and, H. van Gemerden. 1992. Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiol. Ecol. 86:283294.
129. Visscher, P. T.,, P. Quist, and, H. van Gemerden. 1991. Methylated sulfur compounds in microbial mats: in situ concentrations and metabolism by a colorless sulfur bacterium. Appl. Environ. Microbiol. 57:17581763.
130. Visscher, P. T.,, and B. F. Taylor. 1993. Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium. Appl. Environ. Microbiol. 59:40834089.
131. Visscher, P. T.,, and B. F. Taylor. 1993. Organic thiols as organolithotrophic substrates for growth of phototrophic bacteria. Appl. Environ. Microbiol. 59:9396.
132. Visscher, P. T.,, and H. van Gemerden. 1991. Photo-autotrophic growth of Thiocapsa roseopersicina on dimethyl sulfide. FEMS Microbiol. Lett. 81:247250.
133. Visscher, P. T.,, F. P. Vandenende,, B. E. M. Schaub, and, H. van Gemerden. 1992. Competition between anoxygenic phototrophic bacteria and colorless sulfur bacteria in a microbial mat. FEMS Microbiol. Ecol. 101:5158.
134. Voordouw, G.,, Y. Shen,, C. S. Harrington,, A. J. Telang,, T. R. Jack, and, D. W. S. Westlake. 1993. Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters. Appl. Environ. Microbiol. 59:41014114.
135. Wagner, M.,, A. J. Roger,, J. L. Flax,, G. A. Brusseau, and, D. A. Stahl. 1998. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180:29752982.
136. Wawer, C.,, and G. Muyzer. 1995. Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments. Appl. Environ. Microbiol. 61:22032210.
137. Widdel, F.,, and T. A. Hansen. 1991. The dissimilatory sulfate- and sulfur-reducing bacteria, p. 583–634. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder, and, K.-H. Schleifer (ed.), The Prokaryotes, 2nd ed. Springer-Verlag, New York, N.Y.
138. Widdel, F.,, G.-W. Kohring, and, F. Mayer. 1983. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol. 134:286294.
139. Yacobi, Y. Z.,, W. Eckert,, H. G. Trüper, and, T. Berman. 1990. High-performance liquid chromatography detection of phototrophic bacterial pigments in aquatic environments. Microb. Ecol. 19:127136.
140. Zhabina, N. N.,, and I. I. Volkov. 1978. A method of determination of various sulfur compounds in sea, sediments and rocks, p. 735–745. In W. E. Krumbein (ed.), Environmental Biogeochemistry and Geomicrobiology, vol. 3. Ann Arbor Science Publishers, Ann Arbor, Mich.
141. Zverlov, V.,, M. Klein,, S. Lücker,, M. W. Friedrich,, J. Kellermann,, D. A. Stahl,, A. Loy, and, M. Wagner. 2005. Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J. Bacteriol. 187:22032208.

Tables

Generic image for table
Untitled

Citation: Hines M, Visscher P, Teske A, Devereux R. 2007. Sulfur Cycling, p 497-510. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch41
Generic image for table
Untitled

Citation: Hines M, Visscher P, Teske A, Devereux R. 2007. Sulfur Cycling, p 497-510. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch41
Generic image for table
Untitled

Citation: Hines M, Visscher P, Teske A, Devereux R. 2007. Sulfur Cycling, p 497-510. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch41
Generic image for table
Untitled

Citation: Hines M, Visscher P, Teske A, Devereux R. 2007. Sulfur Cycling, p 497-510. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch41
Generic image for table
Untitled

Citation: Hines M, Visscher P, Teske A, Devereux R. 2007. Sulfur Cycling, p 497-510. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch41
Generic image for table
Untitled

Citation: Hines M, Visscher P, Teske A, Devereux R. 2007. Sulfur Cycling, p 497-510. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch41
Generic image for table
Untitled

Citation: Hines M, Visscher P, Teske A, Devereux R. 2007. Sulfur Cycling, p 497-510. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch41
Generic image for table
Untitled

Citation: Hines M, Visscher P, Teske A, Devereux R. 2007. Sulfur Cycling, p 497-510. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch41
Generic image for table
Untitled

Citation: Hines M, Visscher P, Teske A, Devereux R. 2007. Sulfur Cycling, p 497-510. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch41
Generic image for table
Untitled

Citation: Hines M, Visscher P, Teske A, Devereux R. 2007. Sulfur Cycling, p 497-510. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch41
Generic image for table
Untitled

Citation: Hines M, Visscher P, Teske A, Devereux R. 2007. Sulfur Cycling, p 497-510. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch41
Generic image for table
Untitled

Citation: Hines M, Visscher P, Teske A, Devereux R. 2007. Sulfur Cycling, p 497-510. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch41

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error