1887

Chapter 48 : Surface Soil Microbial Sampling Methods

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Surface Soil Microbial Sampling Methods, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap48-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap48-2.gif

Abstract:

This chapter provides a first step into the analysis of the complex world of surface soil and a selection of conceptual approaches and resources for sampling surface soils so that the components of interest can be properly acquired and handled for subsequent microbial ecological studies. The focus on surface soils is one that distinguishes the chapter from others dealing with subsurface or aquifer sampling. The chapter also focuses on approaches that enable the scientist to acquire surface soil materials that are of appropriate quality and quantity for subsequent studies and provides information and resources for ensuring that soils are appropriately transported, stored, and distributed prior to use in experiments. The methods and approaches discussed are general ones that are provided to enable scientists to address their questions. The intact systems are generally more difficult to implement and maintain than those soil microbiological studies for which no such maintenance is required. Even in cases where the rhizosphere relationship is maintained, sampling from such chambers is problematic due to the immediate disturbance and destruction of the rhizosphere zone that takes place upon sample removal. Air drying is preferably done under a stream of sterile air flow to decrease the likelihood of introduction of laboratory microbial strains or other airborne propagules into the soil samples. The purpose of sieving is both to remove rocks and larger plant debris and invertebrates and to make the soils easier to distribute to experimental chambers.

Citation: Knaebel D. 2007. Surface Soil Microbial Sampling Methods, p 597-607. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch48
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Soil sampling options for a hypothetical turfgrass microbial ecology study site (see the text).

Citation: Knaebel D. 2007. Surface Soil Microbial Sampling Methods, p 597-607. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch48
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch48
1. Atlas, R. M.,, and R. Bartha. 1998. Microbial Ecology: Fundamentals and Applications, 4th ed. Benjamin Cummings Science Publishing, Menlo Park, Calif.
2. Barber, D. A.,, and J. M. Lynch. 1977. Microbial growth in the rhizosphere. Soil Biol. Biochem. 9:305308.
3. Barber, D. A.,, and J. K. Martin. 1976. The release of organic substance by cereal roots in the soil. New Phytol. 76:6980.
4. Box, G. E.,, W. G. Hunter, and, J. S. Hunter. 1978. Statistics for Experimenters: an Introduction to Design, Data Analysis, and Model Building. John Wiley and Sons, New York, N.Y.
5. Calderon, F. J.,, and L. E. Jackson. 2002. Rototillage, disking, and subsequent irrigation: effects on soil nitrogen dynamics, microbial biomass, and carbon dioxide efflux. J. Environ. Qual. 31:752758.
6. Curtis, T. P.,, W. T. Sloan, and, J. W. Scannell. 2002. Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA 99:1049410499.
7. Dunbar, J.,, S. M. Barns,, L. O. Ticknor, and, C. R. Kuske. 2002. Empirical and theoretical bacterial diversity in four Arizona soils. Appl. Environ. Microbiol. 68:30353045.
8. Gardner, W. R. 1991. Soil science as a basic science. Soil Sci. 151:26.
9. Gomes, N. C. M.,, O. Fagbola,, R. Costa,, N. G. Rumjanek,, A. Buchner,, L. Mendona-Hagler, and, K. Smalla. 2003. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl. Environ. Microbiol. 69:37583766.
10. Griffiths, R. I.,, A. S. Whiteley,, A. G. O’Donnell, and, M. J. Bailey. 2003. Physiological and community responses of established grassland bacterial populations to water stress. Appl. Environ. Microbiol. 69:69616968.
11. Ibekwe, A. M.,, S. K. Papiernik,, J. Gan,, S. R. Yates,, C. H. Yang, and, D. E. Crowley. 2001. Impact of fumigants on soil microbial communities. Appl. Environ. Microbiol. 67:32453257.
12. Knaebel, D. B.,, T. W. Federle,, D. C. McAvoy, and, J. R. Vestal. 1994. Effect of mineral and organic soil constituents on microbial mineralization of organic compounds in a natural soil. Appl. Environ. Microbiol. 60:45004508.
13. Knaebel, D. B.,, T. W. Federle, and, J. R. Vestal. 1990. Mineralization of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) in 11 contrasting soils. Environ. Toxicol. Chem. 9:981988.
14. Knaebel, D. B.,, and J. R. Vestal. 1992. Effects of intact rhizosphere microbial communities on the mineralization of surfactants in surface soils. Can. J. Microbiol. 38:643653.
15. Knaebel, D. B.,, and J. R. Vestal. 1994. Intact rhizosphere microbial communities used to study microbial biodegradation in agricultural and natural soils: influence of soil organic matter on mineralization kinetics, p. 56–69. In T. A. Anderson and, J. R. Coats (ed.), ACS Symposium Series, vol. 563. Bioremediation through Rhizosphere Technology. American Chemical Society, Washington, D.C.
16. Maier, R. M.,, I. A. Pepper, and, C. P. Gerba. 2000. Environmental Microbiology. Academic Press, San Diego, Calif.
17. Mazzola, P. G.,, T. C. V. Penna, and, A. M. da S. Martins. 2003. Determination of decimal reduction times (D value) of chemical agents used in hospitals for disinfection purposes. BMC Infect. Dis. 3:2434.
18. Morris, C. E.,, M. Bardin,, O. Berge,, P. Frey-Klett,, N. Fromin,, H. Girardin,, M.-H. Guinebretière,, P. Lebaron,, J. M. Thiéry, and, M. Troussellier. 2002. Microbial biodiversity: approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999. Microbiol. Mol. Biol. Rev. 66:592616.
19. Mortensen, G. K.,, H. Egsgaard,, P. Ambus,, E. S. Jensen, and, C. Gron. 2001. Influence of plant growth on degradation of linear alkylbenzene sulfonate in sludge-amended soil. J. Environ. Qual. 30:12661270.
20. Paul, E. A.,, and F. E. Clark. 1996. Soil Microbiology and Biochemistry, 2nd ed. Academic Press, San Diego, Calif.
21. Peterson, S. O.,, and M. J. Klug. 1994. Effects of sieving, storage, and incubation temperature on the phospholipid fatty acid profile of a soil microbial community. Appl. Environ. Microbiol. 60:24212430.
22. Reinhardt, C. H.,, C. A. Cole, and, L. R. Stover. 2000. A method for coring inland, freshwater wetland soils. Wetlands 20:421425.
23. Rösch, C.,, A. Mergel, and, H. Bothe. 2002. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl. Environ. Microbiol. 68:38183829.
24. Silvia, D. M.,, J. J. Fuhrmann,, P. G. Hartel, and, D. A. Zuberer. 1998. Principles and Applications of Soil Microbiology. Prentice Hall, Upper Saddle River, N.J.
25. Torsvik, V.,, J. Goksøyr, and, F. L. Daae. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56:782787.
26. van Elsas, J. D.,, K. Smalla,, A. K. Lilley, and, M. J. Bailey. 2002. Methods for sampling soil microbes, p. 505–515. In C. J. Hurst,, R. L. Crawford,, G. R. Knudsen,, M. J. McInerney, and, L. D. Stetzenbach (ed.), Manual of Envi-ronmental Microbiology, 2nd ed. ASM Press, Washington, D.C.
27. Whipps, J. M.,, and J. M. Lynch. 1986. The influence of the rhizosphere on crop productivity. Adv. Microb. Ecol. 9:187244.
28. Williamson, K. E.,, K. E. Wommack, and, M. Radosevich. 2003. Sampling natural viral communities from soil for culture-independent analyses. Appl. Environ. Microbiol. 69:66286633.
29. Winding, A.,, S. J. Binnerup, and, J. Sørensen. 1994. Viability of indigenous soil bacteria assayed by respiratory activity and growth. Appl. Environ. Microbiol. 60:28692875.
30. Winding, A.,, R. Rønn, and, N. B. Hendriksen. 1997. Bacteria and protozoa in soil microhabitats as affected by earthworms. Biol. Fertil. Soils 24:133140.
31. Zhou, J.,, B. Xia,, D. S. Treves,, L.-Y. Wu,, T. L. Marsh,, R. V. O’Neill,, A. V. Palumbo, and, J. M. Tiedje. 2002. Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. Microbiol. 68:326334.

Tables

Generic image for table
TABLE 1

Factors to consider in the design of soil sampling activities

Citation: Knaebel D. 2007. Surface Soil Microbial Sampling Methods, p 597-607. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch48
Generic image for table
TABLE 2

Soil sampling resources

Citation: Knaebel D. 2007. Surface Soil Microbial Sampling Methods, p 597-607. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch48

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error