1887

Chapter 59 : Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap59-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap59-2.gif

Abstract:

This chapter describes the application of fluorescent molecular probes used with immunofluorescence microscopy (IFM) and fluorescence in situ hybridization (FISH) techniques for studies of microbial autecology, with an emphasis on soil and root-associated microbes. Proper filter sets must be used to match the specific optical requirements for excitation and emission of fluorescent light by different fluorochromes. Fluorescein isothiocyanate (FITC), and to a lesser extent tetramethyl rhodamine isothiocyanate (TRITC), are common fluorochromes for single labeling experiments of IFM. There are two general approaches in immunofluorescence staining: direct and indirect. Both approaches involve the production, in an immunologically competent animal (e.g., rabbit), of a primary specific antibody against the antigen of interest. The exciting innovations in image analysis technology featured in Center for Microbial Ecology Image Analysis System (CMEIAS) v. 3.0 software will undoubtedly enhance the ecological analysis of in situ bacterial colonization using immunofluorescence and other discriminating microscopy techniques operating at single cell resolution. A large online probeBase database provides an overview of more than 700 published oligonucleotide probes and their characteristics for prokaryotic rRNAs suitable for FISH. The potential ability of FISH-MAR techniques to target the ecological niche for physiological groups of microorganisms in environmental samples may help to close the gap to the general enzymatic measurements, which are also very much increased in sensitivity. CMEIAS can extract an abundance of quantitative information on microbial community structure from the multiprobe FISH image.

Citation: Dazzo F, Schmid M, Hartmann A. 2007. Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , p 712-733. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch59

Key Concept Ranking

Microbial Ecology
0.6735333
Confocal Laser Scanning Microscopy
0.42653263
0.6735333
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Untitled
Untitled

Citation: Dazzo F, Schmid M, Hartmann A. 2007. Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , p 712-733. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch59
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Dazzo F, Schmid M, Hartmann A. 2007. Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , p 712-733. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch59
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1
FIGURE 1

Differences in mean cell luminosity between typical 4+ and 3+ immunofluorescence reactions. Cells of bv. trifolii E11 are reacted with different dilutions of a strain-specific, polyvalent rabbit antiserum. (Left) Typical 4+ and 3+ reactions; (right) ascending sort of mean cell luminosity for 4+ and 3+ immunofluorescent reactions measured by CMEIAS image analysis. Note the higher, more uniform mean luminosity for the population of cells producing the 4+ reaction.

Citation: Dazzo F, Schmid M, Hartmann A. 2007. Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , p 712-733. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch59
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

In situ detection of bv. trifolii on the root surface of its host, white clover (), using indirect IFM with a monoclonal antibody specific for its lipopolysaccharide O-antigen. (A) Conventional epifluorescence. Immunofluorescent cells have aggregated at the tip of a root hair, where the host lectin, trifoliin A, accumulates. (B) Confocal laser scanning epifluorescence. Immunofluorescent cells have developed a microcolony on the rhizoplane.

Citation: Dazzo F, Schmid M, Hartmann A. 2007. Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , p 712-733. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch59
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Use of optical sectioning with the laser scanning confocal microscope to detect bv. trifolii cells within the overlap of a markedly curled root hair of white clover. This step precedes primary host infection in the -legume symbiosis. Bacteria are stained by immunofluorescence using a monoclonal antibody against their somatic O-antigen. Bar, 10 µm.

Citation: Dazzo F, Schmid M, Hartmann A. 2007. Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , p 712-733. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch59
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Epifluorescence micrograph of immunofluorescent cells of bv. trifolii 0403 colonized on the root surface (especially at junctions between epidermal cells) below the root hair region of a white clover seedling. Bar scale, 20.0 µm.

Citation: Dazzo F, Schmid M, Hartmann A. 2007. Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , p 712-733. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch59
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Frequency (left) and 2-D scatterplots (right) of the CMEIAS plotless spatial distribution analyses of the first and second nearest neighbor distances (NND) separating each individual bacterium shown in Fig. 4 .

Citation: Dazzo F, Schmid M, Hartmann A. 2007. Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , p 712-733. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch59
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Geostatistical analysis of the bacterial colonization of the root surface shown in Fig. 4 . (Left) Semivariogram autocorrelation plot and best-fit spherical model of the local spatial density; (right) 2-D kriging map derived from the autocorrelation model depicting the local density of bacteria interpolated over the entire spatial domain.

Citation: Dazzo F, Schmid M, Hartmann A. 2007. Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , p 712-733. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch59
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

(Top) 2-D projection of a 3-D confocal image stack showing microcolonies of two different ribotypes of nitrite-oxidizing bacteria, genus , in a biofilm from a wastewater treatment plant. The image was rendered by the program DAIME and provided courtesy of Frank Maixner and Holger Daims (University of Vienna, Vienna, Austria). (Bottom) Formamide concentration series for the determination of optimal hybridization conditions for a newly designed 16S rRNA-targeted oligonucleotide probe using the program DAIME. Data courtesy of Sebastian Lücker and Holger Daims (University of Vienna, Vienna, Austria).

Citation: Dazzo F, Schmid M, Hartmann A. 2007. Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , p 712-733. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch59
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

(Left) Bacteria with ectomycorrhizal hyphae. The ectomycorrhizal fungus was retrieved from roots of beech trees in the Kranzberg forest near Freising, Germany. For FISH analysis, the following probes were applied: EUB338Mix Cy3, Bet42a Fluos, and Gam42a Cy5. Due to concomitant binding of probes, beta-proteobacteria are stained yellow (Beta42a Fluos plus EUB338Mix Cy3) and other (non-beta- or -gamma proteobacteria) are labeled red (EUB338Mix Cy3). Another unidentified organism that hybridized with none of the three fluorescent probes is included in the image because of its blue autofluorescence. (Right) on wheat roots. Wheat seedlings were inoculated with Sp245, and their colonization was visualized by FISH analysis. The following oligonucleotide probes were applied: EUB-338Mix Cy3 and Abras-1420-Cy5. Due to concomitant binding of both probes, the bacterial cells display magenta fluorescence. The computer-rendered orthogonal view displays the third dimension in the 3-D--stack of -optisections.

Citation: Dazzo F, Schmid M, Hartmann A. 2007. Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , p 712-733. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch59
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Distribution of microbial abundance in the community represented by the FISH image of Fig. 8 , left panel. CMEIAS was used to segment the microbes in the image according to their foreground color ranges and then measure the cumulative cell bio-volume for each microbial ribotype.

Citation: Dazzo F, Schmid M, Hartmann A. 2007. Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , p 712-733. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch59
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch59
1. Alm, E. W.,, D. B. Oerther,, N. Larsen,, D. A. Stahl, and, L. Raskin. 1996. The oligonucleotide probe database. Appl. Environ. Microbiol. 62:35573559.
2. Alm, E. W.,, D. Zheng, and, L. Raskin. 2000. The presence of humic substances and DNA in RNA extracts affects hybridization results. Appl. Environ. Microbiol. 66:45474554.
3. Amann, R.,, B. M. Fuchs, and, S. Behrens. 2001. The identification of microorganisms by fluorescence in situ hybridization. Curr. Opin. Biotechnol. 12:231236.
4. Amann, R.,, and W. Ludwig. 2000. Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol. Rev. 24:555565.
5. Amann, R.,, and K.-H. Schleifer. 2001. Nucleic acid probes and their application in environmental microbiology, p. 67–82. In D. R. Boone,, R. W. Castenholz, and, G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, vol. 1. Springer-Verlag, New York, N.Y.
6. Amann, R. I.,, B. J. Binder,, R. J. Olson,, S. W. Chisholm,, R. Devereux, and, D. A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56:19191925.
7. Amann, R. I.,, W. Ludwig, and, K.-H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143169.
8. Ashelford, K. E.,, A. J. Weightman, and, J. C. Fry. 2002. PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDPII database. Nucleic Acids Res. 30:34813489.
9. Assmus, B.,, P. Hutzler,, G. Kirchhof,, R. Amann,, J. R. Lawrence, and, A. Hartmann. 1995. In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl. Environ. Microbiol. 61:10131019.
10. Assmus, B.,, M. Schloter,, G. Kirchhof,, P. Hutzler, and, A. Hartmann. 1997. Improved in situ tracking of rhizosphere bacteria using dual staining with fluorescence-labeled antibodies and rRNA-targeted oligonucleotides. Microb. Ecol. 33:3240.
11. Behrens, S.,, B. M. Fuchs,, F. Mueller, and, R. Amann. 2003. Is the in situ accessibility of the 16S rRNA of Escherichia coli for Cy3-labeled oligonucleotide probes predicted by a three-dimensional structure model of the 30S ribosomal subunit? Appl. Environ. Microbiol. 69:49354941.
12. Behrens, S.,, C. Ruhland,, J. Inacio,, H. Huber,, A. Fonseca,, I. Spencer-Martins,, B. M. Fuchs, and, R. Amann. 2003. In situ accessibility of small-subunit rRNA of members of the domains Bacteria, Archaea, and Eucarya to Cy3-labeled oligonucleotide probes. Appl. Environ. Microbiol. 69:17481758.
13. Benson, D. A.,, M. S. Boguski,, D. J. Lipman,, J. Ostell, and, B. F. Ouellette. 1998. GenBank. Nucleic Acids Res. 26:17.
14. Bothe, H.,, G. Jost,, M. Schloter,, B. B. Ward, and, K.-P. Witzel. 2000. Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol. Rev. 24:673690.
15. Bishop, P. E,, F. B. Dazzo,, E. R. Appelbaum,, R. J. Maier, and, W. J. Brill. 1977. Intergeneric transfer of genes involved in the Rhizobium-legume symbiosis. Science 198:938940.
16. Bohlool, B. B.,, and E. L. Schmidt. 1968. Nonspecific staining: its control in immunofluorescence examination of soil. Science 162:10121014.
17. Bohlool, B. B.,, and E. L. Schmidt. 1980. The immunofluorescence approach in microbial ecology. Adv. Microb. Ecol. 4:203241.
18. Bottomley, P. J. 1994. Light microscopic methods for studying soil microorganisms, p. 81–105. In R. Weaver,, J. S. Angle, and, P. J. Bottomley (ed.), Methods of Soil Analysis. Soil Science Society of America, Madison, Wis.
19. Bouvier, T. C.,, and P. A. del Giorgio. 2003. Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a qualitative review of published reports. FEMS Microbiol. Ecol. 44:315.
20. Chatzinotas, A.,, R. A. Sandaa,, W. Schonhuber,, R. Amann,, F. L. Daae,, V. Torsvik,, J. Zeyer, and, D. Hahn. 1998. Analysis of broad-scale differences in microbial community composition of two pristine forest soils. Syst. Appl. Microbiol. 21:579587.
21. Chauhan, A. K.,, and D. Apirion. 1989. The gene for a small stable RNA (10Sa RNA) of Escherichia coli. Mol. Microbiol. 3:14811485.
22. Chelius, M.,, and E. W. Triplett. 2000. Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays. Appl. Environ. Microbiol. 66:783787.
23. Cherry, W. B.,, M. Goldman, and, T. R. Carski. 1960. Fluorescent Antibody Techniques. U.S. Department of Health, Education, and Welfare, Atlanta, Ga.
24. Chi, F.,, Shi-Hua Shen,, Hai-Ping Cheng,, Yu-Xiang Jing,, Y. G. Yanni, and, F. B. Dazzo. 2005. Ascending migration of endophytic rhizobia from roots to leaves inside rice plants and assessment of their benefits to the growth physiology of rice. Appl. Environ. Microbiol. 71:72717278.
25. Cole, J. R.,, B. Chai,, R. J. Farris,, Q. Wang,, S. A. Kulam,, D. M. McGarrell,, G. M. Garrity, and, J. M. Tiedje. 2005. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33:294296.
26. Coons, A. H.,, H. J. Creech,, R. N. Jones, and, E. Berliner. 1942. The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J. Immunol. 45:159164.
27. Cottrell, M. T.,, and D. L. Kirchmann. 2003. Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnol. Oceanogr. 48:168178.
28. Daims, H.,, A. Bruhl,, R. Amann,, K. H. Schleifer, and, M. Wagner. 1999. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22:434444.
29. Daims, H.,, S. Lucker, and, M. Wagner. 2006. DAIME, a novel image analysis program for microbial ecology and biofilm research. Environ. Microbiol. 8:200213.
30. Daims, H.,, N. B. Ramsing,, K. H. Schleifer, and, M. Wagner. 2001. Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization. Appl. Environ. Microbiol. 67:58105818.
31. Dandurand, L. M.,, D. Schotzko, and, G. Knudsen. 1997. Spatial patterns of rhizoplane populations of Pseudomonas fluorescens. Appl. Environ. Microbiol. 63:32113217.
32. Davidson, R. S.,, and D. Goodwin. 1983. An effective way of retarding the fading of fluorescence of labeled material during microscopical examination. Proc. R. Med. Soc. 18:151153.
33. Dazzo, F. B. 2004. Applications of quantitative microscopy in studies of plant surface microbiology, p. 503–550. In A. Varma,, L. Abbott,, D. Werner, and, R. Hampp (ed.), Plant Surface Microbiology. Springer-Verlag, Berlin, Germany,
34. Dazzo, F. B. 2004. Production of anti-microbial antibodies and their utilization in studies of microbial autecology by IFM and in situ CMEIAS image analysis, p. 911–932. In G. Kowalchuk,, F. deBruijn,, I. Head,, A. Akkermans,, J. Elsas (ed.), Molecular Microbial Ecology Manual, 2nd ed. Kluwer Publishers, Dordrecht, The Netherlands.
35. Dazzo, F. B. Visualization of rhizoplane microflora by computer-assisted microscopy and spatial analysis by CMEIAS image analysis. In J. Luster and, R. Fidlay (ed.), Handbook of Methods Used in Rhizosphere Research, in press. Swiss Federal Institute for Forest, Snow, and Landscape Research, Birmensdorf, Switzerland. www.rhizo.at/handbook.
36. Dazzo, F. B.,, A. R. Joseph,, A. B. Gomaa,, P. Robertson, and, Y. G. Yanni. 2003. Quantitative indices for the autecological biogeography of a Rhizobium endophyte of rice at two spatial scales. Symbiosis 35:147158.
37. Dazzo, F. B.,, G. Tang,, G. Zhu,, C. Gross,, D. Nasr,, C. Passmore,, E. Polone,, A. Squartini,, A. Prabhu,, C. Reddy,, R. Peretz,, L. Gao,, R. Bollempalli,, D. Trione,, E. Marshall,, J. Wang,, M. Li,, D. McGarrell,, S. Gantner,, J. Liu, and, Y. Yanni. 2006. CMEIAS v3.0: advanced image analysis software to strengthen microscopy-based approaches for understanding microbial ecology. Presented at the 2006 All Investigator Meeting, Kellogg Biological Station—Long Term Ecological Research Program, Michigan State University, May 9, 2006. [Online.] lter.kbs.msu.edu/Meetings/2006ASM/Abstracts/Dazzo.htm.
38. Dazzo, F.,, P. Mateos,, G. Orgambide,, S. Philip-Hollingsworth,, S. Squartini,, N. Subba-Rao,, H. S. Pankratz,, D. Baker,, R. Hollingsworth, and, J. Whallon. 1993. The infection process in the Rhizobium-legume symbiosis and visualization of rhizoplane microorganisms by laser scanning confocal microscopy, p. 259–262. In R. Guerrero and, C. Pedros-Alio (ed.), Trends in Microbial Ecology, Spanish Society for Microbiology, Barcelona, Spain.
39. Dazzo, F. B.,, G. L. Truchet,, J. E. Sherwood,, E. M. Hrabak, and, A. E. Gardiol. 1982. Alteration of the trifoliin A-binding capsule of Rhizobium trifolii 0403 by enzymes released from clover roots. Appl. Environ. Microbiol. 44:478490.
40. Dazzo, F. B.,, G. L. Truchet,, J. E. Sherwood,, E. M. Hrabak,, M. Abe, and, H. S. Pankratz. 1984. Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis. Appl. Environ. Microbiol. 48:11401150.
41. Dazzo, F. B.,, and J. Wopereis. 2000. Unraveling the infection process in the Rhizobium-legume symbiosis by microscopy, p. 295–347. In E. Triplett (ed.), Prokaryotic Nitrogen Fixation: a Model System for the Analysis of a Biological Process. Horizon Scientific Press, Norwich, United Kingdom.
42. Dazzo, F. B.,, and S. Wright. 1996. Production of antimicrobial antibodies and their use in IFM, p. 1–27. In A. Akkermans,, J. van Elsas, and, F. de Bruijn (ed.), Molecular Microbial Ecology Manual, vol. 4:12. Kluwer Academic Publishers, Dordrecht, The Netherlands.
43. Dazzo, F. B.,, and Y. G. Yanni. 2006. The natural Rhizobium-cereal crop association as an example of plant-bacterial interaction, p. 109–127. In N. Uphoff,, A. Ball,, E. Fernandes,, H. Herren,, O. Husson,, M. Laing,, C. Palm,, J. Pretty,, N. Sanginga, and, J. Thies (ed.), Biological Approaches to Sustainable Soil Systems. CRC Press, Boca Raton, Fla.
44. DeLong, E. F.,, L. T. Taylor,, T. L. Marsh, and, C. M. Preston. 1999. Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Appl. Environ. Microbiol. 65:55545563.
45. DeLong, E. F.,, G. S. Wickham, and, N. R. Pace. 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:13601363.
46. Demezas, D. H.,, and P. J. Bottomley. 1986. Autecology in rhizospheres and nodulating behavior of indigenous Rhizobium trifolii. Appl. Environ. Microbiol. 52:10141019.
47. Elifantz, H.,, R. R. Malmstrom,, M. T. Cottrell, and, D. L. Kirchman. 2005. Assimilation of polysaccharides and glucose by major bacterial groups in the Delaware estuary. Appl. Environ. Microbiol. 71:77997805.
48. Ferrari, B. C.,, N. Tujula,, K. Stoner, and, S. Kjelleberg. 2006. Catalyzed reporter deposition-FISH allows for enrichment-independent detection of microolony-forming soil bacteria. Appl. Environ. Microbiol. 72:918922.
49. Friese, C. F.,, and M. F. Allen. 1991. Tracking the fates of exotic and local VA mycorrhizal fungi: methods and patterns. Agric. Ecosyst. Environ. 34:8796.
50. Fuchs, B. M.,, F. O. Glockner,, J. Wulf, and, R. Amann. 2000. Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 66:36033607.
51. Fuchs, B. M.,, K. Syutsubo,, W. Ludwig, and, R. Amann. 2001. In situ accessibility of Escherichia coli 23S rRNA to fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 67:961968.
52. Fuchs, B. M.,, G. Wallner,, W. Beisker,, I. Schwippl,, W. Ludwig, and, R. Amann. 1998. Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 64:49734982.
53. Gantner, S.,, M. Schmid,, C. Dürr,, R. Schuhegger,, A. Steidle,, P. Hutzler,, C. Langebartels,, L. Eberl,, A. Hart-mann, and, F. B. Dazzo. 2006. In situ spatial scale of calling distances and population density-independent N-acylhomoserine lactone mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol. Ecol. 56:188194.
54. Ginige, M. P.,, P. Hugenholtz,, H. Daims,, M. Wagner,, J. Keller, and, L. L. Blackall. 2004. Use of stable-isotope probing, full-cycle rRNA analysis, and FISH-microautoradiography to study a methanol-fed denitrifying microbial community. Appl. Environ. Microbiol. 70:588596.
55. Giovannoni, S. J.,, E. F. DeLong,, G. J. Olsen, and, N. R. Pace. 1988. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J. Bacteriol. 170:720726.
56. Gray, T. R. G. 1990. Methods for studying the microbial ecology of soil. Methods Microbiol. 22:309342.
57. Gray, N. D.,, and I. M. Head. 2001. Linking genetic identity and function in communities of uncultured bacteria. Environ. Microbiol. 3:481492.
58. Gray, N. D.,, R. Howarth,, R. W. Pickup,, J. G. Jones, and, I. M. Head. 2000. Use of combined microautoradiography and FISH to determine carbon metabolism in mixed natural communities of uncultured bacteria from the genus Achromatium. Appl. Environ. Microbiol. 66:45184522.
59. Griffiths, R. I.,, A. S. Whiteley,, A. G. O’Donnell, and, M. J. Bailey. 2000. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66:54885491.
60. Harlow, E.,, and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor, New York, N.Y.
61. Hartmann, A.,, R. Pukall,, M. Rothballer,, S. Gantner,, S. Metz,, M. Schloter, and, B. Mooge. 2004. Microbial community analysis in the rhizosphere by in situ and ex situ analysis molecular probing, biomarker and cultivation techniques, p. 449–469. In A. Varma,, L. Abbott,, D. Werner, and, R. Hampp (ed.), Plant Surface Microbiology. Springer-Verlag, Berlin, Germany.
62. Hill, I. R.,, and T. R. G. Gray. 1967. Application of the fluorescent antibody technique to an ecological study of bacteria in soil. J. Bacteriol. 93:18881897.
63. Ito, T.,, J. L. Nielsen,, S. Okabe,, Y. Watanabe, and, P. H. Nielsen. 2002. Phylogenetic identification and substrate uptake patterns of sulfate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm determined by combining microautoradiography and fluorescent in situ hybridization. Appl. Environ. Microbiol. 68:356364.
64. Jansson, J. K. 2003. Marker and reporter genes: illuminating tools for environmental microbiologists. Curr. Opin. Microbiol. 6:310316.
65. Juretschko, S.,, G. Timmermann,, M. Schmid,, K. H. Schleifer,, A. Pommerening-Roser,, H. P. Koops, and, M. Wagner. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64:30423051.
66. Karner, M. B.,, E. F. DeLong, and, D. M. Karl. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507510.
67. Kingsley, M. T.,, and B. B. Bohlool. 1981. Release of Rhizobium spp. from tropical soils and recovery for immuno-fluorescence enumeration. Appl. Environ. Microbiol. 42:241248.
68. Kough, J. E.,, N. Malajczuk, and, R. G. Linderman. 1983. Use of the indirect immunofluorescent technique to study the vesicular-arbuscular fungus Glomus epigaeum and other Glomus species. New Phytol. 94:5762.
69. Krige, D. G. 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metal and Mining Soc. S. Afr. 52:119139.
70. Kuehn, M.,, M. Hausner,, H. J. Bungartz,, M. Wagner,, P. A. Wilderer, and, S. Wuertz. 1998. Automated confocal laser scanning microscopy and semiautomated image processing for analysis of biofilms. Appl. Environ. Microbiol. 64:41154127.
71. Reference deleted.
72. Lee, N.,, P. H. Nielsen,, K. H. Andreasen,, S. Juretschko,, J. L. Nielsen,, K. H. Schleifer, and, M. Wagner. 1999. Combination of fluorescent in situ hybridization and microautoradiography—a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol. 65:12891297.
73. Lee, N.,, P. H. Nielsen,, H. Aspegren,, M. Henze,, K. H. Schleifer, and, J. la Cour Jansen. 2003. Long-term population dynamics and in situ physiology in activated sludge systems with enhanced biological phosphorus removal operated with and without nitrogen removal. Syst. Appl. Microbiol. 26:211227.
74. Lehtola, M. J.,, E. Torvinen,, I. T. Miettinen, and, C. W. Keevil. 2006. FISH using peptide nucleic acid probes for rapid detection of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis in potable-water biofilms. Appl. Environ. Microbiol. 72:848853.
75. Lindahl, V.,, and L. R. Bakken. 1995. Evaluation of methods for extraction of bacteria from soil. FEMS Microbiol. Ecol. 16:135142.
76. Liu, J.,, F. B. Dazzo,, O. Glagoleva,, B. Yu, and, A. Jain. 2001. CMEIAS: a computer-aided system for the image analysis of bacterial morphotypes in microbial communities. Microb. Ecol. 41:173194. (Erratum, 42:215.)
77. Loy, A.,, M. Horn, and, M. Wagner. 2003. probeBase: an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Res. 31:514516.
78. Ludwig, W.,, S. H. Bauer,, M. Bauer,, I. Held,, G. Kirchhof,, R. Schulze,, I. Huber,, S. Spring,, A. Hartmann, and, K. H. Schleifer. 1997. Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol. Lett. 153:181190.
79. Ludwig, W.,, O. Strunk,, S. Klugbauer,, N. Klugbauer,, M. Weizenegger,, J. Neumaier,, M. Bachleitner, and, K. H. Schleifer. 1998. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554568.
80. Ludwig, W.,, O. Strunk,, R. Westram,, L. Richter,, H. Meier,, Yadhukumar,, A. Buchner,, T. Lai,, S. Steppi,, G. Jobb,, W. Forster,, I. Brettske,, S. Gerber,, A. W. Ginhart,, O. Gross,, S. Grumann,, S. Hermann,, R. Jost,, A. Konig,, T. Liss,, R. Lussmann,, M. May,, B. Nonhoff,, B. Reichel,, R. Strehlow,, A. Stamatakis,, N. Stuckmann,, A. Vilbig,, M. Lenke,, T. Ludwig,, A. Bode, and, K. H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32:13631371.
81. Maidak, B. L.,, N. Larsen,, M. J. McCaughey,, R. Over-beek,, G. J. Olsen,, K. Fogel,, J. Blandy, and, C. R. Woese. 1994. The Ribosomal Database Project. Nucleic Acids Res. 22:34853487.
82. Marras, S. A.,, F. R. Kramer, and, S. Tyagi. 2002. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res. 30:122.
83. McDermott, T. R.,, and F. B. Dazzo. 2002. Use of fluorescent antibodies for studying the ecology of soil- and plant-associated microbes, p. 615–626. In C. J. Hurst,, R. L. Crawford,, G. R. Knudsen,, M. J. McInerney, and, L. D. Stetzenbach (ed.), Manual of Environmental Microbiology, 2nd ed. ASM Press, Washington, D.C.
84. McDermott, T. R.,, and P. H. Graham. 1989. Bradyrhizobium japonicum inoculant mobility, nodule occupancy, and acetylene reduction in the soybean root system. Appl. Environ. Microbiol. 55:24932498.
85. Metz, S.,, W. Beisker,, A. Hartmann, and, M. Schloter. 2003. Detection methods for the expression of the dissimilatory copper nitrite-reductase (dnirK) in environmental samples. J. Microbiol. Methods 55:4150.
86. Metz, S.,, A. Hartmann, and, M. Schloter. 2002. Development and characterization of murine monoclonal antibodies specific for dissimilatory copper nitrite reductase. Hybrid. Hybridomics 21:351357.
87. Moawad, H. A.,, W. R. Ellis, and, E. L. Schmidt. 1984. Rhizosphere response as a factor in competition among three serogroups of indigenous Rhizobium japonicum for nodulation among field-grown soybeans. Appl. Environ. Microbiol. 47:607612.
88. Nielsen, J. L.,, M. Aquino de Muro, and, P. H. Nielsen. 2003. Evaluation of the redox dye 5-cyano-2,3-tolyl-tetrazolium chloride for activity studies by simultaneous use of microautoradiography and FISH. Appl. Environ. Microbiol. 69:641643.
89. Nielsen, J. L.,, and P. H. Nielsen. 2002. Enumeration of acetate-consuming bacteria by microautoradiography under oxygen and nitrate respiring conditions in activated sludge. Water Res. 36:421428.
90. Oerther, D. B.,, J. Pernthaler,, A. Schramm,, R. Amann, and, L. Raskin. 2000. Monitoring precursor 16S rRNAs of Acinetobacter spp. in activated sludge wastewater treatment systems. Appl. Environ. Microbiol. 66:21542165.
91. Olsen, G. J.,, D. J. Lane,, S. J. Giovannoni,, N. R. Pace, and, D. A. Stahl. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40:337365.
92. Ostell, J. M.,, and J. A. Kans. 1998. The NCBI data model. Methods Biochem. Anal. 39:121144.
93. Ouverney, C. C.,, and J. A. Fuhrman. 1999. Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl. Environ. Microbiol. 65:17461752.
94. Pernthaler, A.,, J. Pernthaler, and, R. Amann. 2002. FISH and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68:30943101.
95. Pernthaler, A.,, J. Pernthaler,, M. Schattenhofer, and, R. Amann. 2002. Identification of DNA-synthesizing bacterial cells in coastal North Sea plankton. Appl. Environ. Microbiol. 68:57285736.
96. Pernthaler, A.,, C. M. Preston,, J. Pernthaler,, E. F. DeLong, and, R. Amann. 2002. Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Appl. Environ. Microbiol. 68:661667.
97. Perry-O’Keefe, H.,, S. Rigby,, K. Oliveira,, D. Sorensen,, H. Stender,, J. Coull, and, J. J. Hyldig-Nielsen. 2001. Identification of indicator microorganisms using a standardized PNA FISH method. J. Microbiol. Methods 47:281292.
98. Pink, C.,, C. Coeur,, P. Potier, and, E. Bock. 2001. Polyclonal antibodies recognizing the AmoB protein of ammonia oxidizers of the beta-subclass of the class Proteobacteria. Appl. Environ. Microbiol. 67:118124.
99. Pozhitkov, A. E.,, and D. Tautz. 2002. An algorithm and program for finding sequence specific oligonucleotide probes for species identification. BMC Bioinformatics 3:9.
100. Prayitno, J.,, J. Stefaniak,, J. McIver,, J. J. Weinman,, F. B. Dazzo,, J. K. Ladha,, W. Baraquio,, Y. G. Yanni, and, B. G. Rolfe. 1999. Interactions of rice seedlings with nitrogen-fixing bacteria isolated from rice roots. Austr. J. Plant Physiol. 26:521535.
101. Pritsch, K.,, S. Raidl,, E. Marksteiner,, H. Blaschke,, R. Agerer,, M. Schloter, and, A. Hartmann. 2004. A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J. Microbiol. Methods 58:233241.
102. Reddy, P. M.,, J. K. Ladha,, R. So,, R. Hernandez,, F. B. Dazzo,, O. Angeles,, M. Ramos, and, F. de Bruijn. 1997. Rhizobial communication with rice: induction of phenotypic changes, mode of invasion and extent of colonization. Plant Soil 194:8198.
103. Reddy, C. K.,, and F. B. Dazzo. 2004. Computer-assisted segmentation of bacteria in color micrographs. Microsc. Anal. 18:57.
104. Reddy, C. K.,, F.-I. Liu, and, F. B. Dazzo. 2003. Semiautomated segmentation of microbes in color images, p. 548–559. In R. Eschbach and, G. Marcu (ed.), Proceedings of the International Society for Optical Engineering (SPIE) and the Society for Imaging Science and Technology, vol. 5008. Color Imaging VIII: Processing, Hardcopy, and Applications.
105. Reinhold-Hurek, B.,, and T. Hurek. 2000. Life in grasses: diazotrophic endophytes. Trends Microbiol. 6:139144.
106. Rossello-Mora, R.,, N. Lee,, J. Anton, and, M. Wagner. 2003. Substrate uptake in extremely halophilic microbial communities revealed by microautoradiography and FISH. Extremophiles 7:409413.
107. Sando, S.,, and E. T. Kool. 2002. Imaging of RNA in bacteria with self-ligating quenched probes. J. Am. Chem. Soc. 124:96869687.
108. Schank, S. C.,, R. L. Smith,, G. C. Weiser,, D. A. Zuberer,, J. H. Bouton,, K. H. Quesenberry,, M. E. Tyler,, J. R. Milam, and, R. C. Littell. 1979. Fluorescent antibody technique to identify Azospirillum brasilense associated with roots of grasses. Soil Biol. Biochem. 11:287295.
109. Schloter, M.,, R. Borlinghaus,, W. Bode, and, A. Hart-mann. 1993. Direct identification and localization of Azospirillum in the rhizosphere of wheat using fluorescence-labeled monoclonal antibodies and confocal scanning laser microscopy. J. Microsc. 171:173177.
110. Schmid, M.,, M. Rothballer,, B. Aßmus,, P. Hutzler,, M. Schloter, and, A. Hartmann. 2004. Detection of microbes by confocal laser scanning microscopy, p. 875–910. In G. A. Kowalchuk,, F. de Bruijn,, I. M. Head,, A. D. L. Akkermans, and, J. D. van Elsas (ed.), Molecular Microbial Ecology Manual II. Kluwer Academic Publishers., Dordrecht, The Netherlands.
111. Schmid, M.,, S. Schmitz-Esser,, M. Jetten, and, M. Wagner. 2001. 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environ. Microbiol. 3:450459.
112. Schmidt, E. L. 1974. Quantitative autecological study of microorganisms in soil by immunofluorescence. Soil Sci. 118:141149.
113. Schmidt, E. L.,, and R. O. Bankole. 1962. Detection of Aspergillus flavus in soil by immunofluorescent staining. Science 136:776777.
114. Schmidt, E. L.,, J. A. Biesbrock,, B. B. Bohlool, and, D. H. Marx. 1974. Study of mycorrhizae by means of fluorescent antibody. Can. J. Microbiol. 20:137139.
115. Schönhuber, W.,, B. Fuchs,, S. Juretschko, and, R. Amann. 1997. Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification. Appl. Environ. Microbiol. 63:32683273.
116. Schramm, A.,, B. M. Fuchs,, J. L. Nielsen,, M. Tonolla, and, D. A. Stahl. 2002. FISH of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ. Microbiol. 4:713720.
117. Snaidr, J.,, R. Amann,, I. Huber,, W. Ludwig, and, K. H. Schleifer. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63:28842896.
118. Stahl, D. A.,, B. Flesher,, H. R. Mansfield, and, L. Montgomery. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54:10791084.
119. Teira, E.,, T. Reinthaler,, A. Pernthaler,, J. Pernthaler, and, G. J. Herndl. 2004. Combining catalyzed reporter deposition-FISH and microautoradiography to detect substrate utilization by bacteria and Archaea in the deep ocean. Appl. Environ. Microbiol. 70:44114414.
120. Trebesius, K.-H.,, R. Amann,, W. Ludwig,, K. Mühlegger, and, K.-H. Schleifer. 1994. Identification of whole fixed bacterial cells with nonradioactive 23S-rRNA-targeted polynucleotide probes. Appl. Environ. Microbiol. 60:32283235.
121. Van Berkum, P.,, Z. Terefework,, L. Paulin,, S. Suomalainen,, K. Lindström, and, B. D. Eardly. 2003. Discordant phylogenies within the rrn loci of rhizobia. J. Bacteriol. 185:29882998.
122. Wagner, M. 2004. Deciphering the function of uncultured microorganisms. ASM News 70:6370.
123. Wagner, M.,, R. Amann,, H. Lemmer, and, K. H. Schleifer. 1993. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59:15201525.
124. Wagner, M.,, M. Horn, and, H. Daims. 2003. FISH for the identification and characterization of prokaryotes. Curr. Opin. Microbiol. 6:302309.
125. Wagner, M.,, M. Schmid,, S. Juretschko,, K. H. Trebesius,, A. Bubert,, W. Goebel, and, K. H. Schleifer. 1998. In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes. FEMS Microbiol. Lett. 160:159168.
126. Wilson, J. M.,, M. J. Trinick, and, C. A. Parker. 1983. The identification of vesicular-arbuscular mycorrhizal fungi using immunofluorescence. Soil Biol. Biochem. 15:439445.
127. Wollum, A. G., II,, and R. H. Miller. 1980. Density centrifugation method for recovering Rhizobium spp. from soil for fluorescent-antibody studies. Appl. Environ. Microbiol. 39:466469.
128. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221271.
129. Worden, A. Z.,, S. W. Chisholm, and, B. J. Binder. 2000. In situ hybridization of Prochlorococcus and Synechococcus (marine cyanobacteria) spp. with rRNA-targeted peptide nucleic acid probes. Appl. Environ. Microbiol. 66:284289.
130. Wright, S. F. 1992. Immunological techniques for detection, identification, and enumeration of microorganisms in the environment, p. 45–63. In M. A. Levin,, R. R. Seidler, and, M. Rogul (ed.), Microbial Ecology—Principles, Methods, and Applications. McGraw-Hill, New York, N.Y.
131. Yanni, Y. G.,, R. Y. Rizk,, V. Corich,, A. Squartini,, K. Ninke,, S. Philip-Hollingsworth,, G. Orgambide,, F. DeBruijn,, J. Stoltzfus,, D. Buckley,, T. M. Schmidt,, P. F. Mateos,, J. K. Ladha, and, F. B. Dazzo. 1997. Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99114.
132. Yilmaz, L. S.,, and D. R. Noguera. 2004. Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization. Appl. Environ. Microbiol. 70:71267139.
133. Yilmaz, L. S.,, H. E. Okten, and, D. R. Noguera. 2006. Making all parts of the 16S rRNA of Escherichia coli accessible in situ to single DNA oligonucleotides. Appl. Environ. Microbiol. 72:733744.
134. Zimmermann, J.,, W. Ludwig, and, K.-H. Schleifer. 2001. DNA polynucleotide probes generated from representatives of the genus Acinetobacter and their application in FISH of environmental samples. Syst. Appl. Microbiol. 24:238244.
135. Zuckerkandl, E.,, and L. Pauling. 1965. Molecules as documents of evolutionary history. J. Theor. Biol. 8:357366.
136. Zwirglmaier, K.,, W. Ludwig, and, K.-H. Schleifer. 2004. Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization (RING-FISH). Mol. Microbiol. 51:8996.
137. Zwirglmaier, K.,, W. Ludwig, and, K.-H. Schleifer. 2004. Improved method for polynucleotide probe-based cell sorting, using DNA-coated microplates. Appl. Environ. Microbiol. 70:494497.

Tables

Generic image for table
Untitled

Citation: Dazzo F, Schmid M, Hartmann A. 2007. Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , p 712-733. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch59
Generic image for table
TABLE 1

CMEIAS image analysis of the in situ abundance and spatial distribution of the immunofluorescent bacteria shown in Fig. 5

Citation: Dazzo F, Schmid M, Hartmann A. 2007. Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , p 712-733. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch59
Generic image for table
TABLE 2

CMEIAS image analysis of the spatial abundance and distribution of individual ribotype populations distinguished by multiprobe FISH in the community image shown in Fig. 8 , left panel

Citation: Dazzo F, Schmid M, Hartmann A. 2007. Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , p 712-733. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch59
Generic image for table
TABLE 3

CMEIAS image analysis of the ribotype diversity distinguished by multiprobe FISH and weighted by biovolume abundance in the community image shown in Fig. 8 , left panel

Citation: Dazzo F, Schmid M, Hartmann A. 2007. Immunofluorescence Microscopy and Fluorescence In Situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-Associated Microbial Autecology , p 712-733. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch59

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error