1887

Chapter 60 : Reporter Gene Systems Useful in Evaluating In Situ Gene Expression by Soil-and Plant-Associated Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Reporter Gene Systems Useful in Evaluating In Situ Gene Expression by Soil-and Plant-Associated Bacteria , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap60-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap60-2.gif

Abstract:

This chapter focuses on those reporter gene systems that are useful in assessing the in situ transcriptional activities of promoters in bacterial cells in soil or associated with plant tissues or surfaces. More recently, reporter gene systems that are useful in assessing in situ gene expression by bacteria in natural habitats have been described. Due to the ease and sensitivity of its detection and the large number of plasmid vectors and transposons available for making transcriptional and translational fusions, is probably the most common reporter gene used in studies of gene regulation by bacteria in culture. has also been useful in assessing gene expression by bacterial pathogens and symbionts of plants, especially in resolving spatial patterns of in situ transcriptional activity of bacterial cells. The reporter was used successfully to study in situ gene expression by inhabiting the rhizosphere. Reporter gene systems provide an excellent opportunity for microbiologists to gain new perspectives on the activities of bacteria inhabiting natural substrates, including their expression of specific genes, their recognition of environmental signals, their metabolic activities, and the chemical nature of the habitats that they occupy. A number of innovative and complementary reporter gene systems that are useful in environmental microbiology are now available. The discussion in this chapter focuses on the ice nucleation and green fluorescent protein (GFP) reporter genes, which have several unique attributes that make them extremely useful in studies evaluating in situ gene expression by bacteria inhabiting natural environments.

Citation: Leveau J, Loper J, Lindow S. 2007. Reporter Gene Systems Useful in Evaluating In Situ Gene Expression by Soil-and Plant-Associated Bacteria , p 734-747. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch60

Key Concept Ranking

Confocal Laser Scanning Microscopy
0.41136256
0.41136256
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Accumulation of fluorescent GFP in bioreporter cells can be compared to the traffic situation depicted here. See the text for an explanation.

Citation: Leveau J, Loper J, Lindow S. 2007. Reporter Gene Systems Useful in Evaluating In Situ Gene Expression by Soil-and Plant-Associated Bacteria , p 734-747. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch60
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch60
1. Andersen, J. B.,, C. Steinberg,, L. K. Poulsen,, S. P. Bjorn,, M. Givskov, and, S. Molin. 1998. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64:22402246.
2. Arsène, F.,, S. Katupitiya,, I. R. Kennedy, and, C. Elmerich. 1994. Use of lacZ fusions to study the expression of nif genes of Azospirillum brasiliense in association with plants. Mol. Plant-Microbe Interact. 7:748757.
3. Arvanitis, N.,, C. Vargas,, G. Tegos,, A. Perysinakis,, J. J. Nieto,, A. Ventosa, and, C. Drainas. 1995. Development of a gene reporter system in moderately halophilic bacteria by employing the ice nucleation gene of Pseudomonas syringae. Appl. Environ. Microbiol. 61:38213825.
4. Atlas, R. M.,, G. Sayler,, R. S. Burlage, and, A. K. Bej. 1992. Molecular approaches for environmental monitoring of microorganisms. BioTechniques 12:706717.
5. Axtell, C. A.,, and G. A. Beattie. 2002. Construction and characterization of a proU-gfp transcriptional fusion that measures water availability in a microbial habitat. Appl. Environ. Microbiol. 68:46044612.
6. Brandl, M. T.,, B. Quiñones, and, S. E. Lindow. 2001. Heterogeneous transcription of an indoleacetic acid bio-synthetic gene in Erwinia herbicola on plant surfaces. Proc. Natl. Acad. Sci. USA 98:34543459.
7. Bringhurst, R. M.,, Z. G. Cardon, and, D. J. Gage. 2001. Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc. Natl. Acad. Sci.USA 98:45404545.
8. Bronstein, I.,, J. J. Fortin,, P. E. Stanley,, G. S. A. B. Stewart, and, L. J. Kricka. 1994. Chemiluminescent and bioluminescent reporter gene assays. Anal. Biochem. 219:169181.
9. Bronstein, I.,, J. J. Fortin,, J. C. Voyta,, R.-R. Juo,, B. Edwards,, C. E. M. Olesen,, N. Lijam, and, L. J. Kricka. 1994. Chemiluminescent reporter gene assays: sensitive detection of the GUS and SEAP gene products. Bio-Techniques 17:172177.
10. Buell, C. R.,, and A. J. Anderson. 1993. Expression of the aggA locus of Pseudomonas putida in vitro and in planta as detected by the reporter gene, xylE. Mol. Plant-Microbe Interact. 6:331340.
11. Bull, C. T.,, S. R. Carnegie, and, J. E. Loper. 1996. Pathogenicity of mutants of Erwinia carotovora subsp. carotovora deficient in aerobactin and catecholate siderophore production. Phytopathology 86:260266.
12. Burke, M. J.,, and S. E. Lindow. 1990. Surface properties and size of the ice nucleation site in ice nucleation active bacteria: theoretical considerations. Cryobiology 27:8084.
13. Burlage, R. S.,, and C.-T. Kuo. 1994. Living biosensors for the management and manipulation of microbial consortia. Annu. Rev. Microbiol. 48:291309.
14. Chalfie, M.,, Y. Tu,, G. Euskirchen,, W. W. Ward, and, D. C. Prasher. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802805.
15. Chang, J. H.,, J. M. Urbach,, T. F. Law,, L. W. Arnold,, A. Hu,, S. Gombar,, S. R. Gran,, F. M. Ausubel, and, J. L. Dangl. 2005. A high-throughput, near saturating screen for type III effector genes from Pseudomonas syringae. Proc. Natl. Acad. Sci. USA 102:25492554.
16. Chen, C.,, and G. A. Beattie. 2004. Critical evaluation of green fluorescent protein-based bioreporters deployed in stressful environments. Phytopathology 94:S17.
17. Cirvilleri, G.,, and S. E. Lindow. 1994. Differential expression of genes of Pseudomonas syringae on leaves and in culture evaluated with random genomic lux fusions. Mol. Ecol. 3:249257.
18. Cormack, B. P.,, R. H. Valdivia, and, S. Falkow. 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:3338.
19. Cubitt, A. B.,, R. Heim,, S. R. Adams,, A. E. Boyd,, L. A. Gross, and, R. Y. Tsein. 1995. Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20:448455.
20. Deininger, C. A.,, G. M. Mueller, and, P. K. Wolber. 1988. Immunological characterization of ice nucleation proteins from Pseudomonas syringae, Pseudomonas fluorescens, and Erwinia herbicola. J. Bacteriol. 170:669675.
21. Delagrave, S.,, R. E. Hawtin,, C. M. Silva,, M. M. Yang, and, D. C. Youvan. 1995. Red-shifted excitation mutants of the green fluorescent protein. Bio/Technology 13:151154.
22. de Lorenzo, V.,, and K. N. Timmis. 1994. Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5 and Tn10-derived minitransposons. Methods Enzymol. 235:386405.
23. Duijff, B. J.,, G. Recorbet,, P. A. H. M. Bakker,, J. E. Loper, and, P. Leamanceau. 1999. Microbial antagonism at the root level is involved in the suppression of Fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathology 89:10731079.
24. Eberl, L.,, R. Schulze,, A. Ammendola,, O. Geisenberger,, R. Earhart,, C. Steinberg,, S. Molin, and, R. Amann. 1997. Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiol. Lett. 149:7783.
25. Errampalli, D.,, K. Leung,, M. B. Cassidy,, M. Kostrzynska,, M. Blears,, H. Lee, and, J. T. Trevors. 1999. Applications of the green fluorescent protein as a molecular marker in environmental microorganisms. J. Microbiol. Methods 35:187199.
26. Fall, R.,, and P. K. Wolber. 1995. Biochemistry of bacterial ice nuclei, p. 63–83. In R. E. Lee,, Jr., G. J. Warren, and, L. V. Gusta (ed.), Biological Ice Nucleation and Its Applications. APS Press, St. Paul, Minn.
27. Gallagher, S. R. 1992. GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic Press, New York, N.Y.
28. Georgakopoulos, D. G.,, M. Hendson,, N. J. Panopoulos, and, M. N. Schroth. 1994. Analysis of expression of a phenazine biosynthesis locus of Pseudomonas aureofaciens PGS12 on seeds with a mutant carrying a phenazine biosynthesis locus-ice nucleation reporter gene fusion. Appl. Environ. Microbiol. 60:45734579.
29. Gerhardt, P.,, R. G. E. Murray,, W. A. Wood, and, N. R. Krieg. 1994. Methods for General and Molecular Bacteriology, p. 255–257. American Society for Microbiology, Washington, D.C.
30. Govindarajan, A. G.,, and S. E. Lindow. 1988. Phospholipid requirement for expression of ice nuclei in Pseudomonas syringae and in vitro. J. Biol. Chem. 263:93339338.
31. Govindarajan, A. G.,, and S. E. Lindow. 1988. Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis. Proc. Natl. Acad. Sci. USA 85:13341338.
32. Green, R. L.,, and G. J. Warren. 1985. Physical and functional repetition in a bacterial ice nucleation gene. Nature 317:645648.
33. Gurian-Sherman, D.,, and S. E. Lindow. 1995. Differential effects of growth temperature on ice nuclei active at different temperatures that are produced by cells of Pseudomonas syringae. Cryobiology 32:129138.
34. Hakkila, K.,, M. Maksimow,, A. Rosengren,, M. Karp, and, M. Virta. 2003. Monitoring promoter activity in a single bacterial cell by using green and red fluorescent proteins. J. Microbiol. Methods 54:7579.
35. Heim, R.,, A. B. Cubitt, and, R. Y. Tsien. 1995. Improved green fluorescence. Nature 373:663664.
36. Heim, R.,, D. C. Prasher, and, R. Y. Tsien. 1994. Wavelength mutations and posttranslational autooxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91:1250112504.
37. Heim, R.,, and R. Y. Tsein. 1996. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6:178182.
38. Hill, P. J.,, C. E. D. Rees,, M. K. Winson, and, G. S. A. B. Stewart. 1993. The application of lux genes. Biotechnol. Appl. Biochem. 17:314.
39. Hirano, S. S.,, and C. D. Upper. 1995. Ecology of ice nucleation-active bacteria, p. 41–61. In R. E. Lee,, Jr., G. J. Warren, and, L. V. Gusta (ed.), Biological Ice Nucleation and Its Applications. APS Press, St. Paul, Minn.
40. Hirano, S. S.,, L. S. Baker, and, C. D. Upper. 1985. Ice nucleation temperature of individual leaves in relation to population sizes of ice nucleation active bacteria and frost injury. Plant Physiol. 77:259265.
41. Holden, P. A.,, M. G. LaMontagne,, A. K. Bruce,, W. G. Miller, and, S. E. Lindow. 2002. Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand. Appl. Environ. Microbiol. 68:25092518.
42. Howie, W. J.,, and T. V. Suslow. 1991. Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol. Plant-Microbe Interact. 4:393399.
43. Jansson, J. K. 2003. Marker and reporter genes: illuminating tools for environmental microbiologists. Curr. Opin. Microbiol. 6:310316.
44. Jefferson, R. A.,, S. M. Burgess, and, D. Hirsh. 1986. β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. USA 83:84478451.
45. Jefferson, R. A. 1989. The gus reporter gene system. Nature 342:837838.
46. Joyner, D.,, and S. E. Lindow. 2000. Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology 146:24352445.
47. Kajava, A. V.,, and S. E. Lindow. 1993. A molecular model of the three-dimensional structure of bacterial ice nucleation proteins. J. Mol. Biol. 232:709717.
48. Kang, Y.,, E. Saile,, M. A. Schell, and, T. P. Denny. 1999. Quantitative immunofluorescence of regulated eps gene expression in single cells of Ralstonia solanacearum. Appl. Environ. Microbiol. 65:23562362.
49. Knop, M.,, F. Barr,, C. G. Riedel,, T. Heckel, and, C. Reichel. 2002. Improved version of the red fluorescent protein (drFP583/DsRed/RFP). BioTechniques 33:596598.
50. Koncz, C.,, W. H. R. Langridge,, O. Olsson,, J. Schell, and, A. A. Szalay. 1990. Bacterial and firefly luciferase genes in transgenic plants: advantages and disadvantages of a reporter gene. Dev. Genet. 11:224232.
51. Kraus, J.,, and J. E. Loper. 1995. Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf–5. Appl. Environ. Microbiol. 61:849854.
52. Levchenko, I.,, M. Seidel,, R. Sauer, and, T. Baker. 2000. A specificity-enhancing factor for the ClpXP degradation machine. Science 289:23542356.
53. Leveau, J.,, and S. E. Lindow. 2001. Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc. Natl. Acad. Sci. USA 98:34463453.
54. Leveau, J. H. J.,, and S. E. Lindow. 2001. Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria. J. Bacteriol. 183:67526762.
55. Leveau, J. H. J.,, and S. E. Lindow. 2002. Bioreporters in microbial ecology. Curr. Opin. Microbiol. 5:259265.
56. Liang, S. T.,, M. Bipatnath,, Y. C. Xu,, S. L. Chen,, P. Dennis,, M. Ehrenberg, and, H. Bremer. 1999. Activities of constitutive promoters in Escherichia coli. J. Mol. Biol. 292:1937.
57. Lindgren, P. B.,, R. Frederick,, A. G. Govindarajan,, N. J. Panopoulos,, B. J. Staskawicz, and, S. E. Lindow. 1989. An ice nucleation reporter system: identification of inducible pathogenicity genes in Pseudomonas syringae pv. phaseolicola. EMBO J. 8:12911301.
58. Lindow, S. E. 1983. The role of bacterial ice nucleation in frost injury to plants. Annu. Rev. Phytopathol. 21:363384.
59. Lindow, S. E. 1985. Ecology of Pseudomonas syringae relevant to the field use of Ice deletion constructed in vitro for plant frost control, p. 23–35. In H. O. Halvorson,, D. Pramer, and, M. Rogul (ed.), Engineered Organisms in the Environment: Scientific Issues. American Society for Microbiology, Washington, D.C.
60. Lindow, S. E. 1995. Membrane fluidity as a factor in production and stability of bacterial ice nuclei active at high subfreezing temperatures. Cryobiology 32:247258.
61. Lindow, S. E. 1995. The use of reporter genes in the study of microbial ecology. Mol. Ecol. 4:555566.
62. Loper, J. E.,, and M. D. Henkels. 1999. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl. Environ. Microbiol. 65:53575363.
63. Loper, J. E.,, and M. D. Henkels. 1997. Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl. Environ. Microbiol. 63:99105.
64. Loper, J. E.,, and S. E. Lindow. 1994. A biological sensor for iron available to bacteria in their habitats on plant surfaces. Appl. Environ. Microbiol. 60:19341941.
65. Loper, J. E.,, T. V. Suslow, and, M. N. Schroth. 1984. Lognormal distribution of bacterial populations in the rhizosphere. Phytopathology 74:14541460.
66. Manafi, M.,, W. Kneifel, and, S. Bascomb. 1991. Fluorogenic and chromogenic substrates used in bacterial diagnostics. Microbiol. Rev. 55:335348.
67. Marco, M. L.,, J. Legac, and, S. E. Lindow. 2003. Conditional survival as a selection strategy to identify plant-inducible genes of Pseudomonas syringae. Appl. Environ. Microbiol. 69:57935801.
68. Marco, M. L.,, J. Legac, and, S. E. Lindow. 2005. Pseudomonas syringae genes induced during colonization of leaf surfaces. Environ. Microbiol. 7:13791391.
69. Marsoli, M.,, J. Feliciano,, E. Michelini,, S. Daunert, and, A. Roda. 2002. Internal response correction for fluorescent whole-cell biosensors. Anal. Chem. 74:59485953.
70. Matthysse, A. G.,, S. Stretton,, C. Dandie,, N. C. McClure, and, A. E. Goodman. 1996. Construction of GFP vectors for use in gram-negative bacteria other than Escherichia coli. FEMS Microbiol. Lett. 145:8794.
71. Matz, M. V.,, A. F. Fradkov,, Y. A. Labas,, A. P. Savitsky,, A. G. Zaraisky,, M. L. Markelov, and, S. A. Lukyanov. 1999. Fluorescent proteins from nonbioluminescent anthozoa species. Nat. Biotechnol. 17:969973.
72. Meighen, E. A. 1993. Bacterial bioluminescence: organization, regulation, and application of the lux genes. FASEB J. 7:10161022.
73. Miller, W. G.,, M. Y. Brandl,, B. Quiñones, and, S. E. Lindow. 2001. Biological sensor for sucrose availability: relative sensitivities of various reporter genes. Appl. Environ. Microbiol. 67:13081317.
74. Miller, W. G.,, J. H. J. Leveau, and, S. E. Lindow. 2000. Improved GFP and inaZ broad host range promoter-probe vectors. Mol. Plant-Microbe Interact. 13:12431250.
75. Miller, W. G.,, and S. E. Lindow. 1997. An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene 191:149153.
76. Møller, S.,, C. Steinberg,, J. B. Andersen,, B. B. Christensen,, J. L. Ramos,, M. Givskov, and, S. Molin. 1998. In situ gene expression in mixed-culture biofilms: evidence of metabolic interaction between community members. Appl. Environ. Microbiol. 64:721732.
77. Monier, J.-M.,, and S. E. Lindow. 2003. Exploring Pseudomonas syringae ecology via direct microscopic observations of the leaf surface, p. 29–40. In N. S. Iacobellis,, A. Volmer,, S. W. Hutcheson,, J. W. Mansfield,, C. E. Morris,, J. Murrilo,, N. W. Schaad,, D. E. Stead,, G. Surico, and, M. S. Ullrich (ed.), Pseudomonas syringae and Related Pathogens: Biology and Genetic. Kluwer Academic Publishers, Boston, Mass.
78. Monier, J.-M.,, and S. E. Lindow. 2005. Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microb. Ecol. 49:343352.
79. Morgan, J. A. W.,, C. Winstanley,, R. W. Pickup,, J. G. Jones, and, J. R. Saunders. 1989. Direct phenotypic and genotypic detection of a recombinant pseudomonad population released into lake water. Appl. Environ. Microbiol. 55:25372544.
80. Nemecek-Marshall, M.,, R. LaDuca, and, R. Fall. 1993. High-level expression of ice nuclei in a Pseudomonas syringae strain is induced by nutrient limitation and low temperature. J. Bacteriol. 175:40624070.
81. O’Brien, R. D.,, and S. E. Lindow. 1989. Effect of plant species and environmental conditions on epiphytic population sizes of Pseudomonas syringae and other bacteria. Phytopathology 79:619627.
82. Ormo, M.,, A. B. Cubitt,, K. Kallio,, L. A. Gross,, R. Y. Tsien, and, S. J. Remington. 1996. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:13921395.
83. Panopoulos, N. J. 1995. Ice nucleation genes as reporters, p. 271–281. In R. E. Lee,, Jr., G. J. Warren, and, L. V. Gusta (ed.), Biological Ice Nucleation and Its Applications. APS Press, St. Paul, Minn.
84. Pierson, E. A.,, D. W. Wood,, J. A. Cannon,, F. M. Blachere, and, L. S. Pierson III. 1998. Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol. Plant-Microbe Interact. 11:10781084.
85. Pooley, L.,, and T. A. Brown. 1991. Effects of culture conditions on expression of the ice nucleation phenotype of Pseudomonas syringae. FEMS Microbiol. Lett. 77:229232.
86. Pouleur, S.,, C. Richard., J.-G. Martin, and, H. Antoun. 1992. Ice nucleation activity in Fusarium acuminatum and Fusarium avenaceum. Appl. Environ. Microbiol. 58:29602964.
87. Prosser, J. I.,, K. Killham,, L. A. Glever, and, E. A. S. Rattray. 1996. Luminescence-based systems for detection of bacteria in the environment. Crit. Rev. Biotechnol. 16:157183.
88. Rahme, L. G.,, M. N. Mindrinos, and, N. J. Panopoulos. 1992. Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringae pv. phase-olicola. J. Bacteriol. 174:34993507.
89. Shaner, N. C.,, R. E. Campbell,, P. A. Steinbach,, B. N. G. Giepmans,, A. E. Palmer, and, R. Y. Tsien. 2004. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22:15671572.
90. Shimada, T.,, H. Makinoshima,, Y. Ogawa,, T. Miki,, M. Maeda, and, A. Ishihama. 2004. Classification and strength measurements of stationary-phase promoters by use of a newly developed promoter cloning vector. J. Bacteriol. 186:71127122.
91. Silcock, D. J.,, R. N. Waterhouse,, L. A. Glover,, J. I. Prosser, and, K. Killham. 1992. Detection of a single genetically modified bacterial cell in soil by using charge-coupled device-enhanced microscopy. Appl. Environ. Microbiol. 58:24442448.
92. Slauch, J. M.,, and T. J. Silhavy. 1991. Genetic fusions as experimental tools. Methods Enzymol. 204:213248.
93. Sorensen, M.,, C. Lippuner,, T. Kaiser,, A. Misslitz,, T. Aebischer, and, D. Bumann. 2003. Rapidly maturing red fluorescent protein variants with strongly enhanced brightness in bacteria. FEBS Lett. 552:110114.
94. Stewart, G. S. A. B.,, and P. Williams. 1992. lux genes and the applications of bacterial bioluminescence. J. Gen. Microbiol. 138:12891300.
95. Stretton, S.,, S. Techkarnjanaurk,, A. M. McLennan, and, A. E. Goodman. 1998. Use of green fluorescent protein to tag and investigate gene expression in marine bacteria. Appl. Environ. Microbiol. 64:25542559.
96. Tombolini, R.,, A. Unge,, M. E. Davy,, F. J. deBruijn, and, J. Jansson. 1997. Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiol. Ecol. 22:1728.
97. Tomlin, K. L.,, R. D. Clark, and, H. Ceri. 2004. Green and red fluorescent protein vectors for use in biofilm studies of the intrinsically resistant Burkholderia cepacia complex. J. Microbiol. Methods 57:95106.
98. Unge, A.,, and J. Jansson. 2001. Monitoring population size, activity, and distribution of gfp-luxAB-tagged Pseudomonas fluorescens SBW25 during colonization of wheat. Microb. Ecol. 41:290300.
99. Unge, A.,, R. Tombolini,, L. Molbak, and, J. K. Jansson. 1999. Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl. Environ. Microbiol. 65:813821.
100. Valdivia, R. H.,, and S. Falkow. 1997. Fluorescence-based isolation of bacterial genes expressed within host cells. Science 277:20072011.
101. Valdivia, R. H.,, and S. Falkow. 1996. Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol. 22:367378.
102. Vali, G. 1995. Principles of ice nucleation, p. 1–39. In R. E. Lee,, Jr., G. J. Warren, and, L. V. Gusta (ed.), Biological Ice Nucleation and Its Applications. APS Press, St. Paul, Minn.
103. Vali, G. 1971. Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of super-cooled liquids. J. Atmos. Sci. 28:402409.
104. Ward, W. W.,, C. W. Cody,, R. C. Hart, and, M. J. Cormier. 1980. Spectophotometric identity of the energy transfer chromophores in Renilla and Aequorea green-fluorescent proteins. Photochem. Photobiol. Rev. 31:611615.
105. Warren, G. J. 1995. Identification and analysis of ina genes and proteins, p. 85–99. In R. E. Lee,, Jr., G. J. Warren, and, L. V. Gusta (ed.), Biological Ice Nucleation and Its Applications. APS Press, St. Paul, Minn.
106. Watanabe, N. M.,, M. W. Southworth,, G. J. Warren, and, P. K. Wolber. 1990. Rates of assembly and degradation of bacterial ice nuclei. Mol. Microbiol. 4:18711879.
107. Wilson, M.,, and S. E. Lindow. 1992. Relationship of total and culturable cells in epiphytic populations of Pseudomonas syringae. Appl. Environ. Microbiol. 58:39083913.
108. Wilson, T.,, and J. W. Hastings. 1998. Bioluminescence. Annu. Rev. Cell. Dev. Biol. 14:197230.
109. Wolber, P. K. 1993. Bacterial ice nucleation. Adv. Microb. Physiol. 34:203237.
110. Wright, C. A.,, and G. A. Beattie. 2004. Pseudomonas syringae pv. tomato cells encounter inhibitory levels of water stress during the hypersensitive response of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 101:32693274.
111. Yang, S.,, N. T. Perna,, D. A. Cooksey,, Y. Okinaka,, S. E. Lindow,, A. M. Ibekwe,, N. T. Keen, and, C.-H. Yang. 2004. Genome-wide identification of plant-upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf array. Mol. Plant-Microbe Interact. 17:9991008.
112. Young, D. C.,, S. D. Kingsley,, K. A. Ryan, and, F. J. Dutko. 1993. Selective inactivation of eukaryotic β-galactosidase in assays for inhibitors of HIV-1 TAT using bacterial β-galactosidase as a reporter enzyme. Anal. Biochem. 215:2430.
113. Zhang, Y.-Z.,, J. J. Naleway,, K. D. Larison,, Z. Huang, and, R. P. Haugland. 1991. Detecting lacZ gene expression in living cells with new lipophilic, fluorogenic β-galactosidase substrates. FASEB J. 5:31083113.
114. Zukowski, M. M.,, D. F. Gaffney,, D. Speck,, M. Kauff-mann,, A. Findeli,, A. Wisecup, and, J.-P. Lecocq. 1983. Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc. Natl. Acad. Sci. USA 80:11011105.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error