Chapter 63 : Microorganisms Associated with Soil Arthropods

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Microorganisms Associated with Soil Arthropods, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap63-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap63-2.gif


The majority of methods that have been developed for studying microorganisms associated with arthropods in soil focus on arthropod pathogens, and these methods are emphasized in this chapter. Soil-dwelling microorganisms for which research methods are discussed in the chapter include viruses, bacteria, fungi, protists, and nematodes. All groups of arthropods are included in this chapter, but pestiferous species are the focus of the development of many methods for studying interactions with microorganisms. The chapter describes in more detail some of the major methods used for detecting, isolating, quantifying, and studying microorganisms, arthropods, and the interactions between these groups in the soil environment. Protocols for different types of microorganisms are varied based on characteristics of the specific groups of microorganisms. An effective technique often used for isolating some types of microorganisms is use of selective media. Microscopy has also been used to count arthropod-associated viruses, bacteria, and protists in soil. Soil-dwelling arthropods also exhibit behaviors to prevent infection, such as actively dislodging microorganisms from the body surface or applying glandular secretions inhibitory to entomopathogens. For ecological studies of communities of microorganisms, such techniques have principally been used to date for bacteria, but community profiling of other types of microorganisms is now also possible by using universal primers. Molecular techniques for profiling microbial communities have been used for studies of both bacterial and fungal communities.

Citation: Hajek A, Fuxa J, Kunimi Y. 2007. Microorganisms Associated with Soil Arthropods, p 769-780. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch63

Key Concept Ranking

Restriction Fragment Length Polymorphism
Denaturing Gradient Gel Electrophoresis
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

General categories of soil arthropods based on their relative locations in the soil and the lengths of time that different stages spend in the soil. Reprinted from reference .

Citation: Hajek A, Fuxa J, Kunimi Y. 2007. Microorganisms Associated with Soil Arthropods, p 769-780. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch63
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Allee, L. L. 2001. Corn rootworm ecology, economics, and behavior. Ph.D. dissertation. Cornell University, Ithaca, N.Y.
2. Anderson, I. C.,, and J. W. G. Cairney. 2004. Diversity and ecology of soil fungal communities: increased understanding through application of molecular techniques. Environ. Microbiol. 6:769779.
3. Bidochka, M. J. 2001. Monitoring the fate of biocontrol fungi, p. 193–218. In T. M. Butt,, C. Jackson, and, N. Magan (ed.), Fungi as Biocontrol Agents: Progress, Problems and Potential. CABI Publishing, Wallingford, United Kingdom.
4. Bidochka, M. J.,, J. E. Kasperski, and, G. A. M. Wild. 1998. Occurrence of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana in soils from temperate and near-northern habitats. Can. J. Bot. 76:11981204.
5. Boulton, A. M.,, B. A. Jaffee, and, K. M. Scow. 2003. Effects of a common harvester ant (Messor andrei) on richness and abundance of soil biota. Appl. Soil Ecol. 23:257265.
6. Bourque, S. N.,, J. R. Valero,, J. Mercier,, M. C. Lavoie, and, R. C. Levesque. 1993. Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis. Appl. Environ. Microbiol. 59:523527.
7. Braun, S. 2000. Production of Bacillus thuringiensis insecticides for experimental uses, p. 49–71. In A. Navon and, K. R. S. Ascher (ed.), Bioassays of Entomopathogenic Microbes and Nematodes. CABI Publishing, Wallingford, United Kingdom.
8. Bravo, A.,, S. Sarabia,, L. Lopez,, H. Ontiveros,, C. Abarca,, A. Ortiz,, M. Ortiz,, L. Lina,, F. J. Villalobos,, G. Pena,, M. Nunez-Valdez,, M. Soberon, and, R. Quintero. 1998. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl. Environ. Microbiol. 64:49654972.
9. Brookes, P. C.,, A. Landman,, G. Pruden, and, D. S. Jenkinson. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid and direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17:837842.
10. Cadet, P.,, L. Guichaoua, and, V. W. Spaull. 2004. Nematodes, bacterial activity, soil characteristics and plant growth associated with termitaria in a sugarcane field in South Africa. Appl. Soil Ecol. 25:193206.
11. Campbell, C. D.,, S. J. Grayston, and, D. J. Hirst. 1997. Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. J. Microbiol. Methods 30:3341.
12. Carozzi, N. B.,, V. C. Kramer,, G. W. Warren,, S. Evola, and, M. G. Koziel. 1991. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl. Environ. Microbiol. 57:30573061.
13. Castrillo, L. A.,, J. D. Vandenberg, and, S. P. Wraight. 2003. Strain-specific detection of introduced Beauveria bassiana in agricultural fields by use of sequence-characterized amplified region markers. J. Invertebr. Pathol. 82:7583.
14. Coleman, D. C.,, D. A. Crossley, Jr., and, P. F. Hendrix. 2004. Fundamentals of Soil Ecology, 2nd ed. Elsevier, Amsterdam, The Netherlands.
15. Dindal, D. L. (ed.). 1990. Soil Biology Guide. Wiley, New York, N.Y.
16. Dromph, K. M.,, and S. Vestergaard. 2002. Pathogenicity and attractiveness of entomopathogenic hyphomycete fungi to collembolans. Appl. Soil Ecol. 21:197210.
17. Eisenbeis, G.,, and W. Wichard. 1987. Atlas on the Biology of Soil Arthropods. Springer-Verlag, Berlin, Germany.
18. Enkerli, J.,, F. Widmer,, C. Gessler, and, S. Keller. 2001. Strain-specific microsatellite markers in the entomopathogenic fungus Beauveria brongniartii. Mycol. Res. 105:10791087.
19. Enkerli, J.,, F. Widmer, and, S. Keller. 2004. Long-term field persistence of Beauveria brongniartii strains applied as biocontrol agents against European cockchafer larvae in Switzerland. Biol. Control 29:115123.
20. Evans, H. F.,, J. M. Bishop, and, E. A. Page. 1980. Methods for the quantitative assessment of nuclear-polyhedrosis virus in soil. J. Invertebr. Pathol. 35:18.
21. Federle, T. W. 1986. Microbial distribution in the soil—new techniques, p. 403–498. In F. Megusar and, M. Gantar (ed.), Perspectives in Microbial Ecology. Slovene Society for Microbiology, Ljubljana, Yugoslavia.
22. Frostegård, Å.,, and E. Bååth. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22:5965.
23. Fuxa, J. R. 1987. Ecological methods, p. 23–41. In J. R. Fuxa and, Y. Tanada (ed.), Epizootiology of Insect Diseases. Wiley & Sons, New York, N.Y.
24. Fuxa, J. R.,, and Y. Kunimi. 1997. Microorganisms interacting with insects, p. 509–519. In C. J. Hurst,, G. R. Knudsen,, M. J. McInerney,, L. D. Stetzenbach, and, M. V. Walter (ed.), Manual of Environmental Microbiology. ASM Press, Washington, D.C.
25. Fuxa, J. R.,, and A. R. Richter. 1996. Effect of agricultural operations and precipitation on vertical distribution of a nuclear polyhedrosis virus in soil. Biol. Control 6:324329.
26. Fuxa, J. R.,, and A. R. Richter. 2004. Effects of soil moisture and composition and fungal isolate on prevalence of Beauveria bassiana in laboratory colonies of the red imported fire ant (Hymenoptera: Formicidae). Environ. Entomol. 33:975981.
27. Fuxa, J. R.,, Y. Kunimi, and, M. Nakai. 2002. Research methods for microorganisms interacting with arthropods in soil, p. 660–671. In C. J. Hurst,, R. L Crawford,, G. R. Knudsen,, M. J. McInerney, and, L. D. Stetzenbach (ed.), Manual of Environmental Microbiology, 2nd ed. ASM Press, Washington, D.C.
28. Fuxa, J. R.,, M. M. Matter,, A. Abdel-Rahman,, S. Micinski,, A. R. Richter, and, J. L. Flexner. 2001. Persistence and distribution of wild-type and recombinant nucleopolyhedroviruses in soil. Microb. Ecol. 41:222232.
29. Fuxa, J. R.,, G. W. Warren, and, C. Kawanishi. 1985. Comparison of bioassay and enzyme-linked immunosor-bent assay for quantification of Spodoptera frugiperda nuclear polyhedrosis virus in soil. J. Invertebr. Pathol. 46:133138.
30. Germida, J. J. 1984. Persistence of Nosema locustae spores in soil as determined by fluorescence microscopy. Appl. Environ. Microbiol. 47:313318.
31. Germida, J. J.,, A. B. Ewen, and, E. E. Onofriechuk. 1987. Nosema locustae Canning (Microsporida) spore population in treated field soils and resident grasshopper populations. Can. Entomol. 119:355360.
32. Glare, T. R.,, G. E. Corbett, and, A. J. Sadler. 1993. Association of a large plasmid with amber disease of the New Zealand grass grub, Costelytra zealandica, caused by Serratia entomophila and Serratia proteamaculans. J. Invertebr. Pathol. 62:165170.
33. Goettel, M. S.,, and G. D. Inglis. 1997. Fungi: Hyphomycetes, p. 213–249. In L. Lacey (ed.), Manual of Techniques in Insect Pathology. Academic Press, San Diego, Calif.
34. Gormsen, D.,, P. A. Olsson, and, K. Hedlund. 2004. The influence of collembolans and earthworms on AM fungal mycelium. Appl. Soil Ecol. 27:211220.
35. Grayston, S. J.,, G. S. Griffith,, J. L. Mawdsley,, C. D. Campbell, and, R. D. Bardgett. 2001. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol. Biochem. 30:533551.
36. Groden, E.,, and J. L. Lockwood. 1991. Effects of soil fungistasis on Beauveria bassiana and its relationship to disease incidence in the Colorado potato beetle, Leptinotarsa decemlineata, in Michigan and Rhode Island soils. J. Invertebr. Pathol. 57:716.
37. Hajek, A. E. 2001. Larval behavior in Lymantria dispar increases risk of fungal infection. Oecologia 126:285291.
38. Hajek, A. E.,, and R. A. Humber. 1997. Formation and germination of Entomophaga maimaiga azygospores. Can. J. Bot. 75:17391747.
39. Hajek, A. E.,, and M. M. Wheeler. 1994. Application of techniques for quantification of soil-borne entomophthoralean resting spores. J. Invertebr. Pathol. 64:7173.
40. Hajek, A. E.,, L. Bauer,, M. L. McManus, and, M. M. Wheeler. 1998. Distribution of resting spores of the Lymantria dispar pathogen Entomophaga maimaiga in soil and on bark. BioControl 43:189200.
41. Hajek, A. E.,, J. S. Elkinton, and, J. J. Witcosky. 1996. Introduction and spread of the fungal pathogen Entomophaga maimaiga along the leading edge of gypsy moth spread. Environ. Entomol. 25:12351247.
42. Hajek, A. E.,, C. Olsen, and, J. S. Elkinton. 1999. Dynamics of airborne conidia of the gypsy moth (Lepidoptera: Lymantriidae) fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales). Biol. Control 16:111117.
43. Hajek, A. E.,, N. W. Siegert,, M. M. Wheeler, and, D. G. McCullough. 2004. Using bioassays to predict abundance of Entomophaga maimaiga resting spores in soil. J. Invertebr. Pathol. 86:6164.
44. Hajek, A. E.,, M. Shimazu, and, B. Knoblauch. 2000. Isolating Entomophaga maimaiga using resting spore-bearing soil. J. Invertebr. Pathol. 75:298300.
45. Hominick, W. M. 2002. Biogeography, p. 115–143. In R. Gaugler (ed.), Entomopathogenic Nematology. CABI Publishing, Wallingford, United Kingdom.
46. Hu, G.,, and R. J. St. Leger. 2002. Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl. Environ. Microbiol. 68:63836387.
47. Hughes, W. O. H.,, L. Thomsen,, J. Eilenberg, and, J. J. Boomsma. 2004. Diversity of entomopathogenic fungi near leaf-cutting ant nests in a neotropical forest, with particular reference to Metarhizium anisopliae var. anisopliae. J. Invertebr. Pathol. 85:4653.
48. Hukuhara, T. 1972. Demonstration of polyhedra and capsules in soil with scanning electron microscope. J. Invertebr. Pathol. 20:375376.
49. Hukuhara, T. 1977. Purification of polyhedra of a cytoplasmic polyhedrosis virus from soil using metrizamide. J. Invertebr. Pathol. 30:270272.
50. Hukuhara, T.,, and K. Akami. 1987. Demonstration of polyhedral inclusion bodies of a nuclear polyhedrosis virus in field soil by immunofluorescence microscopy. J. Invertebr. Pathol. 49:130132.
51. Hukuhara, T.,, and H. Namura. 1971. Microscopic demonstration of polyhedra in soil. J. Invertebr. Pathol. 18:162164.
52. Jones, C. M.,, and J. E. Thies. 2004. Soil bacterial and fungal community response to application of entomopathogenic fungi in the field, abstr. 5215. Abstr. 68th Am. Soc. Agron. Meet.
53. Kalmakoff, J.,, and A. M. Crawford. 1982. Enzootic virus control of Wiseana spp. in the pasture environment, p. 435–448. In E. Kurstak (ed.), Microbial and Viral Pesticides. Marcel Dekker, New York, N.Y.
54. Kaya, H. K.,, and P. S. Stock. 1997. Techniques in insect nematology, p. 281–324. In L. Lacey (ed.), Manual of Techniques in Insect Pathology. Academic Press, San Diego, Calif.
55. Klein, M. G. 1997. Bacteria of soil-inhabiting insects, p. 101–116. In L. Lacey (ed.), Manual of Techniques in Insect Pathology. Academic Press, San Diego, Calif.
56. Lacey, L. (ed.). 1997. Manual of Techniques in Insect Pathology. Academic Press, San Diego, Calif.
57. Lacey, L. A.,, and H. K. Kaya (ed.). 2000. Manual of Field Techniques in Invertebrate Pathology. Kluwer Academic Publishers, Dordrecht, The Netherlands.
58. Lavelle, P.,, and A. V. Spain. 2001. Soil Ecology. Kluwer Academic Publishers, Dordrecht, The Netherlands.
59. Lewis, E. E. 2002. Behavioural ecology, p. 205–223. In R. Gaugler (ed.), Entomopathogenic Nematology. CABI Publishing, Wallingford, United Kingdom.
60. Li, Z.,, R. S. Soper, and, A. E. Hajek. 1988. A method for recovering resting spores of Entomophthorales (Zygomycetes) from soil. J. Invertebr. Pathol. 62:248251.
61. Lotrario, J. B.,, B. J. Stuart,, T. Lam,, R. R. Arands,, O. A. O’Connor, and, D. S. Kosson. 1995. Effects of sterilization methods on the physical characteristics of soil: implications for sorption isotherm analyses. Bull. Environ. Contam. Toxicol. 54:668675.
62. Mamilov, A. S.,, B. A. Byzov,, D. G. Zvyagintsev, and, O. M. Dilly. 2001. Predation on fungal and bacterial bio-mass in a soddy-podzolic soil amended with starch, wheat straw and alfalfa meal. Appl. Soil Ecol. 16:131139.
63. McNamara, N. P.,, H. I. J. Black,, N. A. Beresford, and, N. R. Parekh. 2003. Effects of acute gamma irradiation on chemical, physical and biological properties of soil. Appl. Soil Ecol. 24:117132.
64. Milner, R. J. 1977. A method for isolating milky disease, Bacillus popilliae var. rhopaea, spores from the soil. J. Invertebr. Pathol. 30:283287.
65. Milner, R. J.,, J. A. Staples,, T. R. Hartley,, G. G. Lutton,, F. Driver, and, J. A. L. Watson. 1998. Occurrence of Metarhizium anisopliae in nests and feeding sites of Australian termites. Mycol. Res. 102:216220.
66. Miteva, W.,, A. Abadjieva, and, R. Grigorova. 1991. Differentiation among strains and serotypes of Bacillus thuringiensis by M13 DNA fingerprinting. J. Gen. Microbiol. 137:593600.
67. Moraes, R. R.,, J. E. Maruniak, and, J. E. Funderburk. 1999. Methods for detection of Anticarsia gemmatalis nucleopolyhedrovirus DNA in soil. Appl. Environ. Microbiol. 65:23072311.
68. Navon, A.,, and K. R. S. Ascher (ed.). 2000. Bioassays of Entomopathogenic Microbes and Nematodes. CABI Publishing, Wallingford, United Kingdom.
69. Nielsen, C.,, M. G. Milgroom, and, A. E. Hajek. 2005. Genetic diversity in the gypsy moth fungal pathogen Entomophaga maimaiga from founder populations in North America and source populations in Asia. Mycol. Res. 109:941950.
70. Nielsen, C.,, S. Vestergaard,, S. Harding,, C. Wolsted, and, J. Eilenberg. 2006. Biological control of Strophosoma spp. (Coleoptera: Curculionidae) in greenery (Abies procera) plantations using Hyphomycetes. BioControl Sci. Technol. 16:583598.
71. Pedigo, L. P.,, and M. E. Rice. 2006. Entomology and Pest Management, 5th ed. Prentice-Hall, Upper Saddle River, N.J.
72. Reyes, A.,, P. Christian,, J. Valle, and, T. Williams. 2004. Persistence of Invertebrate iridescent virus 6 in soil. Bio-Control 49:433440.
73. Rupar, M. J.,, W. P. Donovan,, R. G. Groat,, A. C. Slaney,, J. W. Mattison,, T. B. Johnson,, J. Charles,, V. C. Dumanoir, and, H. de Bajac. 1991. Two novel strains of Bacillus thuringiensis toxic to coleopterans. Appl. Environ. Microbiol. 57:33373344.
74. Sneh, B. 1991. Isolation of Metarhizium anisopliae from insects on an improved selective medium based on wheat germ. J. Invertebr. Pathol. 58:269273.
75. Stahly, D. P.,, D. M. Takefman,, C. A. Livasy, and, D. W. Dingman. 1992. Selective medium for quantitation of Bacillus popilliae in soil and in commercial spore powders. Appl. Environ. Microbiol. 58:740743.
76. Strasser, H.,, A. Forer, and, F. Schinner. 1996. Development of media for the selective isolation and maintenance of virulence of Beauveria brongniartii, p. 125–130. In T. A. Jackson and, T. R. Glare (ed.), Microbial Control of Soil Dwelling Pests. AgResearch, Lincoln, New Zealand.
77. Studdert, J. P.,, H. K. Kaya, and, J. M. Duniway. 1990. The effect of water potential, temperature and clay-coating on survival of Beauveria bassiana conidia in a loam and peat soil. J. Invertebr. Pathol. 55:417427.
78. Sun, J. Z.,, J. R. Fuxa, and, G. Henderson. 2003. Virulence and in vitro characteristics of pathogenic fungi isolated from soil by baiting with Coptotermes formosanus (Isoptera: Rhinotermitidae). J. Entomol. Sci. 38:342358.
79. Taverner, M. P.,, and E. F. Connor. 1992. Optical enumeration technique for detection of baculoviruses in the environment. Environ. Entomol. 21:307313.
80. Thiery, I.,, and E. Frachon. 1997. Identification, isolation, culture and preservation of entomopathogenic bacteria, p. 55–77. In L. Lacey (ed.), Manual of Techniques in Insect Pathology. Academic Press, San Diego, Calif.
81. Thies, J. E. 2006. Measuring and assessing soil biological properties, p. 655–670. In N. Uphoff,, A. S. Ball,, E. Fernandes,, H. Herren,, O. Husson,, M. Laing,, C. Palm,, J. Pretty, and, P. Sanchez (ed.), Biological Approaches to Sustainable Soil Systems. CRC Press, Boca Raton, Fla.
82. Treonis, A. M.,, S. J. Grayston,, P. J. Murray, and, L. A. Dawson. 2004. Effects of root feeding, cranefly larve on soil microorganisms and the composition of rhizosphere solutions collected from grassland plants. Appl. Soil Ecol. 28:203215.
83. Villani, M. G.,, L. L. Allee,, A. Díaz, and, P. S. Robbins. 1999. Adaptive strategies of edaphic arthropods. Annu. Rev. Entomol. 44:233256.
84. Villani, M. G.,, L. L. Allee,, L. Preston-Wilsey,, N. Consolie,, Y. Xia, and, R. L. Brandenburg. 2002. Use of radiography and tunnel castings for observing mole cricket (Orthoptera: Gryllotalpidae) behavior in soil. Am. Entomol. 48:4250.
85. Villani, M. G.,, S. R. Krueger,, P. C. Schroeder,, F. Consolie,, N. H. Consolie,, L. M. Preston-Wilsey, and, D. W. Roberts. 1994. Soil application effects of Metarhizium anisopliae on Japanese beetle (Coleoptera: Scarabaeidae) behavior and survival in turfgrass microcosms. Environ. Entomol. 23:502513.
86. Wallwork, J. A. 1970. Ecology of Soil Animals. McGraw-Hill, London, United Kingdom.
87. Weseloh, R. M.,, and T. G. Andreadis. 1986. Laboratory assessment of forest microhabitat substrates as sources of the gypsy moth nuclear polyhedrosis virus. J. Invertebr. Pathol. 48:2733.
88. Weseloh, R. M.,, and T. G. Andreadis. 2002. Detecting the titer in forest soils of the gypsy moth (Lepidoptera: Lymantriidae) fungal pathogen, Entomophaga maimaiga (Zygomycetes: Entomophthorales). Can. Entomol. 134:269279.
89. West, A. W.,, N. E. Crook, and, H. D. Burges. 1984. Detection of Bacillus thuringiensis in soil by immunofluorescence. J. Invertebr. Pathol. 43:150155.
90. Yousten, A. A.,, S. B. Fretz, and, S. A. Jelley. 1985. Selective medium for mosquito-pathogenic strains of Bacillus sphaericus. Appl. Environ. Microbiol. 49:15321533.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error