1887

Chapter 67 : Anaerobic Decomposition of Refuse in Landfills and Methane Oxidation in Landfill Covers

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Anaerobic Decomposition of Refuse in Landfills and Methane Oxidation in Landfill Covers, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap67-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap67-2.gif

Abstract:

This chapter discusses techniques for the study of anaerobic biological reactions and microorganisms involved in refuse decomposition as it occurs in a landfill as well as the aerobic biological reactions that occur in the landfill cover. The chapter begins with a brief description of the major components of a sanitary landfill followed by a discussion of municipal solid waste (MSW) composition. Next, the manner in which cellulosic substrates are converted to CH and CO is described, followed by a discussion of CH oxidation in landfill cover soils. Factors that influence both anaerobic decomposition rates in landfills and aerobic CH oxidation in landfill covers are discussed. This is followed by a section on systems that can be used to simulate refuse decomposition and techniques that can be used to measure refuse biodegradation and microbial activity in landfills. Cellulose and hemicellulose are the principal biodegradable components of MSW. Carboxylic acids and H will accumulate and the pH of the system will fall, thus inhibiting methanogenesis. After placement of refuse in a landfill, several months or longer is necessary for the proper growth conditions and the required microbiological system to become established for biological decomposition. The presence of anaerobic protozoa in refuse excavated from landfills has been documented, and many of the protozoa contained symbiotic methanogenic bacteria that utilize H released by the host’s hydrogenosomes. Common contaminants in older landfills and leachate plumes include alkylbenzenes, ketones, and chlorinated aliphatic hydrocarbons.

Citation: Hilger H, Barlaz M. 2007. Anaerobic Decomposition of Refuse in Landfills and Methane Oxidation in Landfill Covers, p 818-842. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch67

Key Concept Ranking

Microbial Ecology
0.5217923
Denaturing Gradient Gel Electrophoresis
0.40867984
TaqMan Real-Time PCR Assay
0.40690458
0.5217923
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Overall process of anaerobic decomposition showing the manner in which various groups of fermentative anaerobes act together in the conversion of complex organic materials ultimately to methane and carbon dioxide. (Reprinted from reference with permission.)

Citation: Hilger H, Barlaz M. 2007. Anaerobic Decomposition of Refuse in Landfills and Methane Oxidation in Landfill Covers, p 818-842. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch67
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Summary of observed trends in refuse decomposition with leachate recycle. Gas volume data were corrected to dry gas at standard temperature and pressure. The acids are expressed as acetic acid equivalents. Solids remaining are the ratio of the weight of cellulose plus hemicellulose removed from a container divided by the weight of cellulose plus hemicellulose added to the container initially. Methanogen MPN data are the log of the average of the acetate- and H/CO-utilizing populations. (Reprinted from reference .)

Citation: Hilger H, Barlaz M. 2007. Anaerobic Decomposition of Refuse in Landfills and Methane Oxidation in Landfill Covers, p 818-842. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch67
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Hilger H, Barlaz M. 2007. Anaerobic Decomposition of Refuse in Landfills and Methane Oxidation in Landfill Covers, p 818-842. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch67
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Soil column for methane oxidation studies. A reactor made of 15-cm-diameter PVC and used for landfill cover soil simulation with modifications to accommodate vegetation is shown. A, Ball valve to vent moisture; B, clear acrylic tubing; C, threaded cap; D, air inlet; E, sampling ports; F, drain for gravel support; G, synthetic landfill gas inlet; and H, gas exhaust outlet. (Reprinted from reference with permission.)

Citation: Hilger H, Barlaz M. 2007. Anaerobic Decomposition of Refuse in Landfills and Methane Oxidation in Landfill Covers, p 818-842. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch67
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch67
1. Alef, K.,, and D. Kleiner. 1986. Arginine ammonification, a simple method to estimate microbial activity potential in soils. Soil Biol. Biochem. 18:233235.
2. Alef, K.,, and D. Kleiner. 1987. Estimation of anaerobic microbial activities in soils by arginine ammonification and glucose-dependent carbon dioxide production. Soil Biol. Biochem. 19:683686.
3. Alperin, M. J.,, and W. S. Reeburgh. 1985. Inhibition experiments on anaerobic methane oxidation. Appl. Environ. Microbiol. 50:940945.
4. Amaral, J. A.,, and R. Knowles. 1995. Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett. 126:215220.
5. American Public Health Association. 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, D.C.
6. Anthony, C. 1982. The Biochemistry of Methylotrophs. Academic Press, Inc., New York, N.Y.
7. Anthony, C. 1991. Assimilation of carbon by methylotrophs, p. 79–109. In I. Goldberg and, J. S. Roken (ed.), Biology of Methylotrophs. Butterworth-Heinemann, Boston, Mass.
8. Asenjo, J. A.,, and J. S. Suk. 1986. Microbial conversion of methane into poly-beta-hydroxybutyrate (PHB): growth and intracellular product accumulation in a type II methanotroph. J. Ferment. Technol. 64:271278.
9. Baldwin, T. D.,, J. Stinson, and, R. K. Ham. 1998. Decomposition of specific materials buried within sanitary landfills. J. Environ. Eng. 124:11931202.
10. Barlaz, M. A.,, W. E. Eleazer,, W. S. Odle III,, X. Qian, and, Y.-S. Wang. 1997. Biodegradative analysis of municipal solid waste in laboratory-scale landfills. EPA 600/R-97-071. United States Environmental Protection Agency, Research Triangle Park, N.C.
11. Barlaz, M. A.,, R. K. Ham, and, M. W. Milke. 1987. Gas production parameters in sanitary landfill simulators. Waste Manag. Res. 5:2739.
12. Barlaz, M. A.,, R. K. Ham, and, D. M. Schaefer. 1989. Mass balance analysis of decomposed refuse in laboratory scale lysimeters. J. Environ. Eng. ASCE 115:10881102.
13. Barlaz, M. A.,, R. K. Ham, and, D. M. Schaefer. 1990. Methane production from municipal refuse: a review of enhancement techniques and microbial dynamics. Crit. Rev. Environ. Control 19:557584.
14. Barlaz, M. A.,, D. M. Schaefer, and, R. K. Ham. 1989. Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Appl. Environ. Microbiol. 55:5565.
15. Barlaz, M. A.,, D. M. Schaefer, and, R. K. Ham. 1989. Effects of pre-chilling and sequential washing on the enumeration of microorganisms from refuse. Appl. Environ. Microbiol. 55:5054.
16. Barlaz, M. A.,, R. Green,, J. P. Chanton,, C. D. Goldsmith, and, G. R. Hater. 2004. Evaluation of a biologically active cover for mitigation of landfill gas emissions. Environ. Sci. Technol. 38:48914899.
17. Bedard, C.,, and R. Knowles. 1989. Physiology, biochemistry and specific inhibitors of CH4, NH4+ and CO oxidation by methylotrophs and nitrifiers. Microbiol. Rev. 53:5884.
18. Bender, M.,, and R. Conrad. 1992. Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios. FEMS Microbiol. Ecol. 101:261270.
19. Bender, M.,, and R. Conrad. 1994. Methane oxidation activity in various soils and freshwater sediments: occurrence, characteristics, vertical profiles, and distribution on grain size fractions. J. Geophys. Res. 99:1653116540.
20. Bender, M.,, and R. Conrad. 1995. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol. Biochem. 27:15171527.
21. Benson, C. H.,, M. A. Barlaz,, D. T. Lane, and, J. M. Rawe. 2007. Practice review of five bioreactor/recirculation landfills. Waste Manag. 27:1329.
22. Bergamaschi, P.,, and G. Harris. 1995. Measurements of stable isotope ratios (13CH4/12CH4; 12CH3D/12CH4) in landfill methane using a tunable diode laser. Glob. Biogeochem. Cycles 9:439447.
23. Bodelier, P. L. E.,, and H. J. Laanbroek. 2004. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 47:265277.
24. Bodrossy, L.,, N. Stralis-Parvese,, J. C. Murrell,, S. Radajewski,, A. Wellharter, and, A. Sessitsch. 2003. Development and validation of a diagnostic microbial microarray for methanotrophs. Environ. Microbiol. 5:566582.
25. Boeckx, P.,, and O. V. Van Cleemput. 1996. Methane oxidation in a neutral landfill cover soil: influence of moisture content, temperature, and nitrogen-turnover. J. Environ. Qual. 25:178183.
26. Bogner, J. E. 1990. Controlled study of landfill biodegradation rates using modified BMP assays. Waste Manag. Res. 8:329352.
27. Bogner, J. E. 1992. Anaerobic burial of refuse in landfills: increased atmospheric methane and implications for increased carbon storage. Ecol. Bull. 42:98108.
28. Bogner, J. E.,, R. M. Miller, and, K. Spokas. 1995. Measurement of microbial biomass and activity in landfill soils. Waste Manag. Res. 13:137147.
29. Bogner, J. E.,, K. A. Spokas, and, E. A. Burton. 1997. Kinetics of methane oxidation in a landfill cover soil: temporal variations, a whole-landfill oxidation experiment, and modeling of net CH4 emissions. Environ. Sci. Technol. 31:25042514.
30. Bogner, J.,, K. Spokas, and, J. Jolas. 1993. Comparison of measured and calculated CH4 emissions. In Proceedings of the Fourth International Landfill Symposium, Sardinia 93. Environmental Sanitary Engineering Centre, Cagliari, Italy.
31. Bogner, J.,, K. Spokas,, E. Burton,, R. Sweeney, and, V. Corona. 1995. Landfills as atmospheric methane sources and sinks. Chemosphere 31:41194130.
32. Bogner, J. E.,, R. E. Sweeney,, D. Coleman,, R. Huitric, and, G. T. Ririe. 1996. Using isotopic and molecular data to model landfill gas processes. Waste Manag. Res. 14:367376.
33. Bogner, J. E.,, M. Vogt, and, R. Piorkowski. 1989. Landfill gas generation and migration: review of current research. II. Proceedings, Anaerobic Digestion Review Meeting, Jan. 25–26, 1989, Golden Colorado, Solar Energy Research Institute.
34. Bookter, T. J.,, and R. K. Ham. 1982. Stabilization of solid waste in landfills. J. Environ. Eng. ASCE 108:10891100.
35. Borjesson, G. 2001. Inhibition of CH4 oxidation by volatile sulfur compounds (CH3SH and CS2) in landfill cover soils. Waste Manag. Res. 19:314319.
36. Borjesson, G.,, J. Chanton, and, B. H. Svensson. 2001. Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios. J. Environ. Qual. 30:369376.
37. Borjesson, G.,, I. Sundh,, A. Tunlid, and, B. H. Svensson. 1998. Methane oxidation in landfill cover soils as revealed by potential oxidation measurements and phospholipid fatty acid analyses. Soil Biol. Biochem. 30:14231433.
38. Borjesson, G.,, and B. H. Svensson. 1997. Seasonal and diurnal methane emissions from a landfill and their regulation by methane oxidation. Waste Manag. Res. 15:3354.
39. Brock, T. D.,, M. T. Madigan,, J. M. Martinko, and, J. Parker. 1994. Biology of Microorganisms, 7th ed. Prentice-Hall, Englewood Cliffs, N.J.
40. Brusseau, G. A.,, E. S. Bulygina, and, R. S. Hanson. 1994. Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria. Appl. Environ. Microbiol. 60:626636.
41. Burrell, P. C.,, C. O’Sullivan,, H. Song,, W. P. Clarke, and, L. L. Blackall. 2004. Identification, detection, and spatial resolution of Clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate bio-reactor. Appl. Environ. Microbiol. 70:24142419.
42. Chan, A. S. K.,, and T. B. Parkin. 2000. Evaluation of potential inhibitors of methanogenesis and methane oxidation in a landfill cover soil. Soil Biol. Biochem. 32:15811590.
43. Chanton, J. P.,, C. M. Rutkowski, and, B. Mosher. 1999. Quantifying methane oxidation from landfills using stable isotope analysis of downwind plumes. Environ. Sci. Technol. 33:37553760.
44. Chen, A. C.,, H. Imachi,, Y. Sekiguchi,, A. Ohashi, and, H. Harada. 2003. Archaeal community compositions at different depths (up to 30 m) of a municipal solid waste landfill in Taiwan as revealed by 16S rDNA cloning analysis. Biotechnol. Lett. 25:719724.
45. Chen, A. C.,, K. Ueda,, Y. Sekiguchi,, A. Ohashi, and, H. Harada. 2003. Molecular detection and direct enumeration of methanogenic Archaea and methanotrophic Bacteria in domestic solid waste landfill soils. Biotechnol. Lett. 25:15631569.
46. Chen, L.,, M. A. Nanny,, D. R. U. Knappe,, T. B. Wagner, and, N. Ratasuk. 2004. Chemical characterization and sorption capacity measurements of degraded newsprint from a landfill. Environ. Sci. Technol. 38:35423550.
47. Chen, Y.,, D. R. U. Knappe, and, M. A. Barlaz. 2004. The effect of cellulose/hemicellulose and lignin on the bio-availability of toluene sorbed to waste paper. Environ. Sci. Technol. 38:37313736.
48. Christensen, T. H.,, P. Kjeldsen,, H. J. Albrechsten,, G. Heron,, P. H. Nielsen,, P. L. Bjerg, and, P. E. Holm. 1994. Attenuation of landfill leachate pollutants in aquifers. Crit. Rev. Environ. Sci. Technol. 24:119202.
49. Christensen, T. H.,, P. Kjeldsen,, P. L. Borg,, D. L. Jensen,, J. B. Christensen,, A. Baun,, H. J. Albrechsten, and, G. Heron. 2001. Biogeochemistry of landfill leachate plumes. Appl. Geochem. 16:659718.
50. Christophersen, M.,, L. Linderod,, P. E. Jensen, and, P. Kjeldsen. 2000. Methane oxidation at low temperatures in soil exposed to landfill gas. J. Environ. Qual. 29:19891997.
51. Code of Federal Regulations. 1991. 40 Parts 257 and 258. Solid waste disposal facility criteria.
52. Colberg, P. J. 1988. Anaerobic microbial degradation of cellulose, lignin, oligolignols, and monoaromatic lignin derivatives, p. 333–372. In A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms. Wiley-Liss, New York, N.Y.
53. Conrad, R.,, and F. Rothfuss. 1991. Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biol. Fertil. Soils 12:2832.
54. Coutts, D. A. P.,, E. Senior, and, M. T. M. Balba. 1987. Multi-stage chemostat investigations of interspecies interactions in a hexanoate-catabolising microbial association isolated from anoxic landfill. J. Appl. Bacteriol. 62:251260.
55. Croft, B.,, R. Smith,, M. Caine,, K. Knox,, J. White,, I. Watson-Craik,, C. Young, and, J. Ellis. 2001. The Brog-borough test cells: conclusions from a 14 year field-scale landfill gas experiment, p. 3–12. In Sardinia 2001: 8th International Waste Management and Landfill Symposium, vol. I. Environmental Sanitary Engineering Centre, Cagliari, Italy.
56. Crossman, Z. M.,, F. Abraham, and, R. P. Eershed. 2004. Stable isotope pulse-chasing and compound specific stable carbon isotope analysis of phospholipid fatty acids to assess methane oxidizing bacterial populations in landfill cover soils. Environ. Sci. Technol. 38:13591367.
57. Czepiel, P. M.,, B. Mosher,, P. M. Crill, and, R. C. Harriss. 1996. Quantifying the effect of oxidation on landfill methane emissions. J. Geophys. Res. 101:1672116729.
58. Czepiel, P. M.,, J. H. Shorter,, B. Mosher,, E. Allwine,, J. B. McManus,, R. C. Harriss,, C. E. Kolb, and, B. K. Lamb. 2003. The influence of atmospheric pressure on landfill CH4 emissions. Waste Manag. 23:593598.
59. Dalton, H.,, and D. I. Stirling. 1982. Co-metabolism. Philos. Trans. R. Soc. London Ser. B 297:481491.
60. Daniel, D. E.,, and C. D. Shackelford. 1989. Containment of landfill leachate with clay liners, p. 323–341. In T. H. Christensen,, R. Cossu, and, R. Stegmann (ed.), Sanitary Landfilling: Process, Technology and Environmental Impact. Academic Press, Inc., New York, N.Y.
61. Davis, M. W. 1988. A rapid modified method for compositional carbohydrate analysis of lignocellulosics by high pH anion-exchange chromatography with pulsed ampero-metric detection (HPAEC/PAD). J. Wood Chem. Technol. 18:235252.
62. Dedysh, S. N.,, W. Liesack,, V. N. Khmeienina,, N. E. Suzina,, Y. A. Trotsenko, and, J. D. Semrau. 2000. Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int. J. Syst. Evol. Microbiol. 50(Part 3):955969.
63. Deipser, A.,, and R. Stegmann. 1994. The origin and fate of volatile trace components in municipal solid waste landfills. Waste Manag. Res. 12:129139.
64. Deng, S. P.,, and M. A. Tabatabai. 1994. Colorimetric determination of reducing sugars in soils. Soil Biol. Biochem. 26:473477.
65. Deobald, L. A.,, and D. L. Crawford. 2002. Ligno-cellulose biodegradation, p. 925–933. In C. J. Hurst,, R. L. Crawford,, G. R. Knudsen,, M. J. McInerney, and, L. D. Stetzenbach (ed.), Manual of Environmental Microbiology, 2nd ed. ASM Press, Washington, D.C.
66. De Visscher, A.,, D. Thomas,, P. Boeckx, and, O. Van Cleemput. 1999. Methane oxidation in simulated landfill cover soil environments. Environ. Sci. Technol. 33:18541859.
67. De Visscher, A.,, and O. Van Cleemput. 2003. Induction of enhanced CH4 oxidation in soils: NH4+ inhibition patterns. Soil Biol. Biochem. 35:907913.
68. De Visscher, A.,, I. De Pourcq, and, J. Chanton. 2004. Isotope fractionation effects by diffusion and methane oxidation in landfill cover soils. J. Geophys. Res. 109:D18111.
69. Doorn, M. R. J.,, and M. A. Barlaz. 1995. Estimate of global methane emissions from landfills and open dumps. EPA report 600/R-95-019. U.S. EPA Office of Research and Development, Washington, D.C.
70. Dubois, M.,, K. A. Gilles,, J. K. Hamilton,, P. A. Rebers, and, F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350356.
71. Effland, M. J. 1977. Modified procedure to determine acid soluble lignin in wood and pulp. TAPPI 60:143144.
72. Ejlertsson, J.,, E. Johansson,, A. Karlson,, U. Meyerson, and, B. H. Svensson. 1996. Anaerobic degradation of xenobiotics by organisms from municipal solid waste landfilling conditions. Antonie Leeuwenhoek 69:6774.
73. Ejlertsson, J.,, U. Meyerson, and, B. H. Svensson. 1996. Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions. Biodegradation 7:345352.
74. Eleazer, W. E.,, W. S. Odle,, Y.-S. Wang, and, M. A. Barlaz. 1997. Biodegradability of municipal solid waste components in laboratory-scale landfills. Environ. Sci. Technol. 31:911917.
75. Elias, D.,, L. R. Krumholz,, R. S. Tanner, and, J. M. Suflita. 1999. Estimation of methanogen biomass by quantification of coenzyme M. Appl. Environ. Microbiol. 65:55415545.
76. Eller, G.,, S. Stubner, and, P. Frenzel. 2001. Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridization. FEMS Microbiol. Lett. 198:9197.
77. Fairweather, R. J.,, and M. A. Barlaz. 1998. Hydrogen sulfide production during decomposition of landfill inputs. J. Environ. Eng. ASCE 124:353361.
78. Fassel, T.A.,, J. E. Vanover,, C. C. Hauser,, L. E. Buchholz,, J. R. Edmiston,, C. E. Sanger, and, C. C. Remsen. 1992. Evaluation of bacterial glycocalyx preservation and staining by ruthenium red, ruthenium red–lysine and alcian blue for several methanotroph and staphylococcal species. Cells Mater. 2:3748.
79. Finlay, B. J.,, K. J. Clarke,, P. A. Cranwell,, T. M. Embley,, R. M. Hindle, and, B. M. Simon. 1993. Further studies on the role of protozoa in landfill. ETSU B 1325. Energy Technology Support Unit, Department of Trade and Industry, Oxfordshire, United Kingdom.
80. Finlay, B. J.,, and T. Fenchel. 1991. An anaerobic protozoon, with symbiotic methanogens, living in municipal landfill material. FEMS Microbiol. Ecol. 85:169180.
81. Galle, B.,, J. Samuelsson,, G. Borjesson, and, B. H. Svensson. 1999. Measurement of methane emissions from landfills using FTIR spectroscopy, p. 47–54. In T. H. Christensen,, R. Cossu, and, R. Stegmann (ed.), Proceedings of the Seventh International Waste Management and Landfill Symposium, vol. 4. Environmental Sanitary Engineering Centre, Cagliari, Italy.
82. Girguis, P. R.,, V. J. Orphan,, S. J. Hallam, and, E. F. DeLong. 2003. Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl. Environ. Microbiol. 69:54725482.
83. Graham, D. W.,, J. A. Chaudhary,, R. S. Hanson, and, R. G. Arnold. 1993. Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. Microb. Ecol. 25:117.
84. Gulledge, J.,, A. Ahmad,, P. A. Steudler,, W. J. Pomerantz, and, C. M. Cavanaugh. 2001. Family- and genus-level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria. Appl. Environ. Microbiol. 67:47264733.
85. Gurijala, K. R.,, and J. M. Suflita. 1993. Environmental factors influencing methanogenesis from refuse in landfills. Environ. Sci. Technol. 27:11761181.
86. Halvadakis, C. P.,, A. N. Findikakis,, C. Papelis, and, J. O. Leckie. 1988. The mountain view controlled landfill project field experiment. Waste Manag. Res. 6:103114.
87. Ham, R. K.,, M. R. Norman, and, P. R. Fritschel. 1993. Chemical characterization of fresh kills landfill refuse and extracts. J. Environ. Eng. ASCE 119:11761195.
88. Hanson, R. S.,, and E. V. Wattenberg. 1991. Ecology of methylotrophic bacteria, p. 325–349. In I. Goldberg and, J. S. Rokem (ed.), Biology of Methylotrophs. ButterworthHeinemann, Boston, Mass.
89. Hanson, R. S.,, and T. E. Hanson. 1996. Methanotrophic bacteria. Microbiol. Rev. 60:439471.
90. Harriss, R. C.,, and D. I. Sebacher. 1982. Methane flux in the great dismal swamp. Nature 29:673674.
91. Hartz, K. E.,, R. E. Klink, and, R. K. Ham. 1982. Temperature effects: methane generation from landfill samples. J. Environ. Eng. ASCE 108:629638.
92. Haruta, S.,, M. Kondo,, K. Nakamura,, H. Aiba,, S. Ueno,, M. Ishii, and, Y. Igarshi. 2002. Microbial community changes during organic solid waste treatment analyzed by double gradient-denaturing gradient gel electrophoresis and fluorescence in situ hybridization. Appl. Microbiol. Biotechnol. 60:224231.
93. Hatzinger, P. B.,, and M. Alexander. 1995. Effect of aging of chemicals in soil on their biodegradability and extractability. Environ. Sci. Technol. 29:537545.
94. Heyer, J. 1977. Results of enrichment experiments of methane-assimilating organisms from an ecological point of view, p. 19–21. In G. A. Skryabin,, M. B. Ivanov,, E. N. Kondratjeva,, G. A. Zaarzin,, Y. A. Trotsenko, and, A. I. Netrosev (ed.), Microbial Growth on C-1 Compounds. USSR Academy of Sciences, Pushchino, USSR.
95. Hilger, H. A.,, D. F. Cranford, and, M. A. Barlaz. 2000. Methane oxidation and microbial exopolymer production in landfill cover soil. Soil Biol. Biochem. 32:457467.
96. Hilger, H. A.,, A. G. Wollum, and, M. A. Barlaz. 2000. Landfill methane oxidation response to vegetation, fertilization and liming. J. Environ. Qual. 29:324334.
97. Huang, L. N.,, Y. Q. Chen,, H. Zhou,, S. Luo,, C. Y. Lan, and, L. H. Qu. 2003. Charterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol. Ecol. 46:171177.
98. Humer, M.,, and P. Lechner. 1999. Methane oxidation in compost cover layers on landfills, p. 403–410. In T. H. Christensen,, R. Cossu, and, R. Stegmann (ed.), Proceedings of the Seventh International Waste Management and Landfill Symposium, vol. 3. Environmental Sanitary Engineering Centre, Cagliari, Italy.
99. Humer, M.,, and P. Lechner. 2001. Microbial methane oxidation for the reduction of landfill gas emissions. J. Solid Waste Technol. Manag. 27:146151.
100. Iiyama, K.,, B. A. Stone, and, B. J. Macauley. 1994. Compositional changes in compost during composting and growth of Agaricus bisporus. Appl. Environ. Microbiol. 60:15381546.
101. James, A. G.,, and I. A. Watson-Craik. 1993. Elucidation of refuse interspecies interaction by use of laboratory models. ETSU B/B2/00148/REP. Energy Technology Support Unit, Department of Trade and Industry, Oxfordshire, United Kingdom.
102. Jensen, T. E.,, and W. A. Corpe. 1991. Ultrastructure of methylotrophic microorganisms, p. 39–75. In I. Goldberg and, J. S. Roken (ed.), Biology of Methylotrophs. Butterworth-Heinemann, Boston, Mass.
103. Jones, H. A.,, and D. B. Nedwell. 1990. Soil atmosphere concentration profiles and methane emission rates in the restoration covers above landfill sites: equipment and preliminary results. Waste Manag. Res. 8:2131.
104. Jones, H. A.,, and D. B. Nedwell. 1993. Methane emission and methane oxidation in landfill cover soil. FEMS Microbiol. Ecol. 102:185195.
105. Jones, K. L.,, and J. M. Grainger. 1983. The application of enzyme activity measurements to a study of factors affecting protein, starch and cellulose fermentation in a domestic landfill. Eur. J. Appl. Microbiol. Biotechnol. 18:181185.
106. Jonsson, S.,, J. Ejlertsson, and, B. H. Svensson. 2003. Transformation of phthalates in young landfill cells. Waste Manag. 23:641651.
107. Kenealy, W.,, and J. G. Zeikus. 1981. Influence of corrinoid antagonists on methanogen metabolism. J. Bacteriol. 146:133140.
108. Kightley, D.,, D. B. Nedwell, and, M. Cooper. 1995. Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Appl. Environ. Microbiol. 61:592610.
109. King, G. M. 1992. Ecological aspects of methane oxidation, a key determinant of global methane dynamics. Adv. Microb. Eco. 12:432468.
110. Kjeldsen, P.,, A. Dalager, and, K. Broholm. 1997. Attenuation of methane and nonmethane organic compounds in landfill gas affected soils. J. Air Waste Manag. Assoc. 47:12681275.
111. Klusman, R. W.,, and C. J. Dick. 2000. Seasonal variability in CH4 emissions from a landfill in a cool, semi-arid climate. J. Air Waste Manag. Assoc. 50:16321636.
112. Klute, A. (ed.). 1986. Methods of Soil Analysis, part 1. Physical and Mineralogical Methods. Soil Science Society of America Series no. 5. American Society of Agronomy and Soil Science Society of America, Madison, Wis.
113. Knief, C.,, A. Lipski, and, P. Dunfield. 2003. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69:67036714.
114. Kolb, S.,, C. Knief,, S. Stubner, and, R. Conrad. 2003. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl. Environ. Microbiol. 69:24232429.
115. Kromann, A.,, and T. H. Christensen. 1998. Degradability of organic chemicals in a landfill environment studied by in situ and laboratory leachate reactors. Waste Manag. Res. 16:437445.
116. Leedle, J. A. Z.,, and R. B. Hespell. 1980. Differential carbohydrate media and anaerobic replica plating techniques in delineating carbohydrate-utilizing subgroups in rumen bacterial populations. Appl. Environ. Microbiol. 39:709719.
117. Lelieveld, J.,, P. J. Crutzen, and, F. J. Dentener. 1998. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus Ser. B 50B:128150.
118. Le Mer, J.,, and P. Roger. 2001. Production, oxidation, emission and consumption of CH4 by soils: a review. Eur. J. Soil Biol. 37:2550.
119. Liptay, K.,, J. Chanton,, P. Czepiel, and, B. Mosher. 1998. Use of stable isotopes to determine methane oxidation in landfill cover soils. J. Geophys. Res. 103:82438250.
120. Mackie, R. I.,, and M. P. Bryant. 1981. Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and CO2 to methanogenesis in cattle waste at 40 and 60°C. Appl. Environ. Microbiol. 41:13631373.
121. Mancinelli, R. L.,, and C. P. McKay. 1985. Methane-oxidizing bacteria in sanitary landfills, p. 437–450. In A. Antonopoulos (ed.), Proceedings of the First Symposium on Biotechnological Advances in Processing Municipal Wastes for Fuels and Chemicals. Argonne National Laboratory Report ANL/CNSV-TM-167, ed. August 1984. Argonne National Laboratory, Argonne, Ill.
122. Maule, A.,, P. Luton, and, R. Sharp. 1994. A microbiological and chemical study of the Brogborough test cells. ETSU B/LF/00200/REP. Energy Technology Support Unit, Department of Trade and Industry, Harwell, Oxfordshire, United Kingdom.
123. Maurice, C.,, and A. Lagerkvist. 2004. Assessment of the methane oxidation capacity of soil. Waste Manag. Res. 22:4248.
124. Mehta, R.,, M. A. Barlaz,, R. Yazdani,, D. Augenstein,, M. Byers, and, L. Sinderson. 2002. Refuse decomposition in the presence and absence of leachate recirculation. J. Environ. Eng. 128:228236.
125. Mormile, M. R.,, K. B. Gurijala,, J. A. Robinson,, M. J. McInerney, and, J. M. Suflita. 1996. The importance of hydrogen in landfill fermentation. Appl. Environ. Microbiol. 62:15831588.
126. Murphy, R. J.,, D. E. Jones, and, R. I. Stessel. 1995. Relationship of microbial mass and activity in biodegradation of solid waste. Waste Manag. Res. 13:485497.
127. Nesbit, S. P.,, and G. A. Breitenbeck. 1992. A laboratory study of factors influencing methane uptake by soils. Agric. Ecosyst. Environ. 41:3954.
128. Owens, J. M.,, and D. P. Chynoweth. 1993. Biochemical methane potential of municipal solid waste (MSW) components. Water Sci. Technol. 27:114.
129. Palmisano, A. C.,, and M. A. Barlaz (ed.). 1996. Solid Waste Microbiology. CRC Press, Boca Raton, Fla.
130. Palmisano, A. C.,, D. A. Maruscik, and, B. S. Schwab. 1993. Enumeration and hydrolytic microorganisms from three sanitary landfills. J. Gen. Microbiol. 139:387391.
131. Palmisano, A. C.,, B. S. Schwab, and, D. A. Maruscik. 1993. Hydrolytic enzyme activity in landfilled refuse. Appl. Microbiol. Biotechnol. 38:828832.
132. Parkin, G. F.,, and W. F. Owen. 1986. Fundamentals of anaerobic digestion of wastewater sludges. J. Environ. Eng. ASCE 112:867920.
133. Parks, R. J.,, and E. Senior. 1988. Multistage chemostats and other models for studying anoxic ecosystems, p. 51–71. In J. W. T. Wimpenny (ed.), CRC Handbook of Laboratory Model Systems for Microbial Ecosystems, vol. 1. CRC Press Inc., Boca Raton, Fla.
134. Pettersen, R. C.,, and V. H. Schwandt. 1991. Wood sugar analysis by anion chromatography. J. Wood Chem. Technol. 11:495501.
135. Pfeffer, J. T. 1974. Temperature effects on anaerobic fermentation of domestic refuse. Biotechnol. Bioeng. 16:771787.
136. Pohland, F. G. 1975. Sanitary landfill stabilization with leachate recycle and residual treatment. EPA grant R-801397. United States EPA National Environmental Research Center, Cincinnati, Ohio.
137. Pohland, F. G.,, W. H. Cross,, J. P. Gould, and, D. R. Reinhart. 1993. Behavior and assimilation of organic and inorganic priority pollutants co-disposed with municipal refuse. EPA/600/R-93/137a. United States Environmental Protection Agency, Washington, D.C.
138. Pohland, F. G.,, and J. P. Gould. 1986. Co-disposal of municipal refuse and industrial waste sludge in landfills. Water Sci. Technol. 18:177192.
139. Poulsen, T. G.,, M. Christophersen,, P. Moldrup, and, P. Kjeldsen. 2003. Waste Manag. Res. 21:356366.
140. Price, G.A.,, M. A. Barlaz, and, G. R. Hater. 2003. Nitrogen management in bioreactor landfills. Waste Manag. 23:675688.
141. Qian, X.,, and M. A. Barlaz. 1996. Enumeration of anaerobic refuse decomposing microorganisms on refuse constituents. Waste Manag. Res. 14:151161.
142. Raskin, L.,, L. K. Poulsen,, D. R. Noguera,, B. E. Rittman, and, D. A. Stahl. 1994. Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 60:12411248.
143. Reinhart, D. R.,, and F. G. Pohland. 1991. The assimilation of organic hazardous wastes by MSW landfills. J. Ind. Microbiol. 8:193200.
144. Reinhart, D. R.,, P. McCreanor, and, T. Townsend. 2002. The bioreactor landfill: its status and future. Waste Manag. Res. 20:162171.
145. Ress, B. B.,, P. P. Calvert,, C. A. Pettigrew, and, M. A. Barlaz. 1998. Testing anaerobic biodegradability of polymers in a laboratory-scale simulated landfill. Environ. Sci. Technol. 32:821827.
146. Rhew, R.,, and M. A. Barlaz. 1995. The effect of lime stabilized sludge as a cover material on anaerobic refuse decomposition. J. Environ. Eng. ASCE 121:499506.
147. Robinson, J. P.,, and H. C. Sturz. 1993. Nutrition and inhibition of methanogenic bacteria in the landfill environment. ETSU B 1271. Energy Technology Support Unit, Department of Trade and Industry, Oxfordshire, United Kingdom.
148. Rodriguez, C.,, S. Hiligsman,, M. Ongena,, R. Charlier, and, P. Thonart. 2005. Development of an enzymatic assay for the determination of cellulose bioavailability in municipal solid waste. Biodegradation 16:415422.
149. Rolston, D. E. 1986. Gas flux, p. 1103–1119. In A. Klute (ed.), Methods of Soil Analysis, part 1. Physical and Miner-alogical Methods. Agronomy monograph no. 9, 2nd ed. American Society of Agronomy and Soil Science Society of America, Madison, Wis.
150. Roslev, P.,, and G. M. King. 1995. Aerobic and anaerobic starvation metabolism in methanotrophic bacteria. Appl. Environ. Microbiol. 61:15631570.
151. Ryden, J. C.,, J. H. Skinner, and, D. J. Nixon. 1987. Soil core incubation system for the field measurement of denitrification using acetylene. Soil Biol. Biochem. 19:753757.
152. Sanin, F. D.,, D. R. U. Knappe, and, M. A. Barlaz. 2000. Biodegradation and humification of toluene in a simulated landfill. Water Res. 34:30633074.
153. Scharff, H.,, and A. Hensen. 1999. Methane emission estimates for two landfills in the Netherlands using mobile TDL measurements, p. 71–78. In T. H. Christensen,, R. Cossu, and, R. Stegmann (ed.), Proceedings of the Seventh International Waste Management and Landfill Symposium, vol. 4. Environmental Sanitary Engineering Centre, Cagliari, Italy.
154. Scheutz, C.,, H. Mosbaek, and, P. Kjeldsen. 2004. Attenuation of methane and volatile organic compounds in landfill soil covers. J. Environ. Qual. 33:671.
155. Schnell, S.,, and G. M. King. 1995. Stability of methane oxidation capacity to variations in methane and nutrient concentrations. FEMS Microbiol. Ecol. 17:285294.
156. Scott, J. E.,, G. Quintarelli, and, M. C. Dellovo. 1964. The chemical and histochemical properties of alcian blue. I. The mechanism of alcian blue staining. Histochemie 4:7385.
157. Shelton, D. R.,, and J. M. Tiedje. 1984. General method for determining anaerobic biodegradation potential. Appl. Environ. Microbiol. 47:850857.
158. Silvey, P.,, and L. L. Blackall. 1995. A study of the microbial ecology of MSW, p. 117–125. In T. H. Christensen,, R. Cossu, and, R. Stegmann (coordinators), Proceedings Sardinia 95, Fifth International Landfill Sysmposium. Environmental Sanitary Engineering Centre, Cagliari, Italy.
159. Sparks, D. L.,, A. L. Page,, P. A. Helmke,, R. H. Loeppert,, P. N. Soltanpour,, M. A. Tabatabai,, C. T. Johnson, and, M. E. Sumner (ed.). 1996. Methods of Soil Analysis, part 3. Chemical Methods. Soil Science Society of America Book Series no. 5. American Society of Agronomy and Soil Science Society of America, Madison, Wis.
160. Spokas, K.,, C. Graff,, M. Morcet, and, C. Aran. 2003. Implications of the spatial variability of landfill emission rates on geospatial analyses. Waste Manag. 23:599607.
161. Stralis-Pavese, N.,, A. Sessitsch,, A. Weilharter,, T. Reichenauer,, J. Riesing,, J. Csontos,, J. C. Murrell, and, L. Bodrossy. 2004. Optimization of diagnostic microarray for application in analyzing landfill methanotroph communities under different plant covers. Environ. Microbiol. 6:347363.
162. Strous, M.,, and M. S. M. Jetten. 2004. Anaerobic oxidation of ethane and ammonium. Annu. Rev. Microbiol. 58:99117.
163. Suflita, J. M.,, C. P. Gerba,, R. K. Ham,, A. C. Palmisano,, W. L. Rathje, and, J. A. Robinson. 1992. The world’s largest landfill: a multidisciplinary investigation. Environ. Sci. Technol. 26:14861495.
164. Sulisti, I., A. Watson-Craik,, and E. Senior. 1996. Studies on the co-disposal of o-cresol with municipal refuse. J. Chem. Technol. Biotechnol. 65:7280.
165. Svenning, M. M.,, I. Wartiainen,, A. G. Hestnes, and, S J. Binnerup. 2003. Isolation of methane oxidizing bacteria from soil by use of a soil substrate membrane system. FEMS Microbiol. Ecol. 44:347354.
166. Theodorou, M. K.,, C. King-Spooner, and, D. E. Beever. 1989. Presence or absence of anaerobic fungi in landfill refuse. ETSU B 1246. Energy Technology Support Unit, Department of Energy, Harwell Laboratory, Harwell, Oxfordshire, United Kingdom.
167. Townsend, T. G.,, W. L. Miller,, H.-J. Lee, and, J. F. K. Earle. 1996. Acceleration of landfill stabilization using leachate recycle. J. Environ. Eng. ASCE 122:263268.
168. Tsien, H. C.,, B. J. Bratina,, K. Tsuji, and, R. S. Hanson. 1990. Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Appl. Environ. Microbiol. 56:28582865.
169. U.S. Environmental Protection Agency. 2001. NonCO2 Greenhouse Gas Emissions from Developed Countries. EPA-430-R-01-007. U.S. Environmental Protection Agency, Washington, D.C.
170. U.S. Environmental Protection Agency. 2003. Municipal Solid Waste in the United States: 2001 Facts and Figures. EPA 530-R-03-011. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.
171. Uz, I.,, M. E. Rasche,, T. Townsend,, A. V. Ogram, and, A. S. Linder. 2003. Characterization of methanogenic and methanotrophic assemblages in landfill samples. Ecol. Lett. 270:S202S205.
172. Van Breukelen, B. M.,, and J. Griffioen. 2004. Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH4, and CH4 oxidation J. Contam. Hydrol. 73:181205.
173. Vance, E. D.,, P. C. Brookes, and, D. S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass. Soil Biol. Biochem. 19:703707.
174. Van Stempvoort, D.,, H. Maathuis,, E. Jaworski,, B. Mayer, and, K. Rich. 2005. Oxidation of fugitive methane in ground water linked to bacterial sulfate reduction. Ground Water 45:187199.
175. Wang, Y.-S.,, and M. A. Barlaz. 1998. Anaerobic biodegradability of alkylbenzenes and phenols by landfill-derived microorganisms. FEMS Microbiol. Ecol. 25:405418.
176. Wang, Y.-S.,, C. S. Byrd, and, M. A. Barlaz. 1994. Anaerobic biodegradability of cellulose and hemicellu-lose in excavated refuse samples. J. Ind. Microbiol. 13:147153.
177. Ward, B. B. 1987. Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus. Arch. Microbiol. 147:126133.
178. Watson-Craik, I. A.,, and E. Senior. 1989. Treatment of phenolic wastewaters by co-disposal with refuse. Water Res. 23:12931303.
179. Weaver, R. W.,, S. Angle,, P. Bottomley,, D. Bezdicek,, S. Smith,, A. Tabatabai, and, A. Wollum (ed.). 1994. Methods of Soil Analysis, part 2. Microbiological and Biological Properties. Soil Science Society of America Book Series no. 5. Soil Science Society of America, Madison, Wis.
180. Westlake, K. 1994. Microbial metabolism in the Brogborough landfill gas enhancement test cells. ETSU B/LF/00201/REP. Energy Technology Support Unit, Department of Trade and Industry, Harwell, Oxfordshire, United Kingdom.
181. Westlake, K.,, and D. B. Archer. 1990. Fundamental studies on cellulose degradation in landfills. ETSU B 1228. Energy Technology Support Unit, Department of Energy, Harwell Laboratory, Harwell, Oxfordshire, United Kingdom.
182. Westlake, K.,, D. B. Archer, and, D. R. Boone. 1995. Diversity of cellulolytic bacteria in landfill. J. Appl. Bacteriol. 79:7378.
183. Whalen, S. C.,, W. S. Reeburgh, and, K. A. Sandbeck. 1990. Rapid methane oxidation in a landfill cover soil. Appl. Environ. Microbiol. 56:34053411.
184. Whittenbury, R.,, J. Colby,, H. Dalton, and, H. L. Reed. 1976. Biology and ecology of methane oxidizers, p. 281–292. In H. G. Schlegel,, G. Gottschalk, and, N. Pfennig (ed.), Microbial Production and Utilization of Gases: (H2, CH4, CO). Goltze KG, Göttingen, Germany.
185. Whittenbury, R.,, K. C. Phillips, and, J. F. Wilkinson. 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61:205218.
186. Widdick, D. A.,, and T. M. Embley. 1992. Use of nucleic acid technology in landfill. A feasibility study. ETSU B 1315. Energy Technology Support Unit, Department of Trade and Industry, Harwell, Oxfordshire, United Kingdom.
187. Williams, C. F.,, R. E. Terry,, G. R. Buckner, and, D. F. Hughes. 1993. Understanding biogas effects. Golf Course Manag. February:96102.
188. Williams, G. M.,, R. S. Ward, and, D. J. Noy. 1999. Dynamics of landfill gas migration in unconsolidated sands. Waste Manag. Res. 17:327342.
189. Wilshusen, J. H.,, J. P. A. Hettiaratchi,, A. De Visscher, and, R. Saint-Fort. 2003. Methane oxidation and formation of EPS in compost: effect of oxygen concentration. Environ. Pollut. 129:305314.
190. Windam, W. R.,, and D. E. Akin. 1984. Rumen fungi and forage fiber digestion. Appl. Environ. Microbiol. 48:473476.
191. Wise, M. G.,, J. V. McArthur, and, L. J. Shimkets. 1999. Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl. Environ. Microbiol. 65:48874897.
192. Wolf, H. J.,, and R. S. Hanson. 1980. Isolation and characterization of methane-oxidizing yeasts. J. Gen. Microbiol. 114:187194.
193. Wolin, E. A.,, M. J. Wolin, and, R. S. Wolfe. 1963. Formation of methane by bacterial extracts. Biol. Chem. 238:28822886.
194. Wu, B.,, C. M. Taylor,, D. R. U. Knapp,, M. A. Nanny, and, M. A. Barlaz. 2001. Factors controlling alkylbenzene sorption to municipal solid waste. Environ. Sci. Technol. 35:45694576.
195. Yu, Y.,, C. Lee,, J. Kim, and, S. K. Hwang. 2005. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89:670679.
196. Zehnder, A. J. B. 1978. Ecology of methane formation, p. 349–376. In R. Mitchell (ed.), Water Pollution Microbiology, vol. 2. John Wiley & Sons, Inc., New York, N.Y.
197. Zinder, S. H. 1993. Physiological ecology of methano-genesis, p. 128–206. In J. G. Ferry (ed.), Methanogenesis: Ecology, Physiology, Biochemistry and Genetics. Chapman & Hall, New York, N.Y.

Tables

Generic image for table
TABLE 1

Organic composition of residential refuse

Citation: Hilger H, Barlaz M. 2007. Anaerobic Decomposition of Refuse in Landfills and Methane Oxidation in Landfill Covers, p 818-842. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch67
Generic image for table
TABLE 2

Summary of methods used to study refuse decomposition and landfill microbiology

Citation: Hilger H, Barlaz M. 2007. Anaerobic Decomposition of Refuse in Landfills and Methane Oxidation in Landfill Covers, p 818-842. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch67
Generic image for table
TABLE 3

Media used for MPN tests

Citation: Hilger H, Barlaz M. 2007. Anaerobic Decomposition of Refuse in Landfills and Methane Oxidation in Landfill Covers, p 818-842. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch67

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error