Chapter 68 : Biogeochemistry of Aquifer Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Biogeochemistry of Aquifer Systems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap68-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap68-2.gif


Many studies have examined the differences in bacterial numbers, composition, and activity between groundwater and sediment samples. The majority of the literature has suggested higher percentages of attached bacteria than of unattached bacteria in aquifer systems, including in pristine aquifers and in aquifers contaminated with petroleum, creosote, sewage, and landfill leachate. In studies of aquifer biogeochemistry, much useful information regarding the microbial ecology of the system can be obtained by looking at organic compound and electron acceptor concentrations. An overview of approaches for identifying the redox characteristics of sediment is given in Christensen et al., and methods specific for determining reactive iron species in aquifers are reviewed by Heron et al. and Tuccillo et al. Other solid-phase electron acceptors that are important in aquifer systems include Mn(IV) oxides and barite. Important biogeochemical reactions catalyzed by indigenous microorganisms also are studied using a variety of experimental approaches including laboratory batch and column experiments as well as field-based in situ microcosms, tracer tests, and push-pull tests. The advantage of using a radiolabeled tracer in a study was that the reaction rates could be determined for the different steps in the denitrification pathway. Historically, researchers trained in geochemistry and hydrology created and tested hypotheses about aquifer biogeochemistry through laboratory assays and field-based geo-chemical measurements and experiments. Jeon et al. extended this research by using push-pull tests combined with stable-isotope probing to identify the specific members of the microbial community actively degrading naphthalene and rates of naphthalene degradation.

Citation: Cozzarelli I, Weiss J. 2007. Biogeochemistry of Aquifer Systems, p 843-859. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch68

Key Concept Ranking

Microbial Ecology
Restriction Fragment Length Polymorphism
Denaturing Gradient Gel Electrophoresis
Restriction Fragment Length Polymorphism
Denaturing Gradient Gel Electrophoresis
Organic Chemicals
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Illustration of the flow of water carrying energy and matter through the subsurface domain. Circles show various types of interface systems. Arrows in circles indicate the direction and, by their size, the relative importance of the matter and energy flow. WT, water table; CF, capillary fringe; FR, flow rate. Modified from reference with the permission of Cambridge University Press and from reference .

Citation: Cozzarelli I, Weiss J. 2007. Biogeochemistry of Aquifer Systems, p 843-859. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch68
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Illustration of evolution of redox zones in a plume from a point source of organic contamination. red., reduction/reduced; depl., depleted; ox., oxidation; wt, water table. The axis is in units of time (t), and the axis is the concentration of contaminant (c). Reprinted from the ( ) with permission from Elsevier.

Citation: Cozzarelli I, Weiss J. 2007. Biogeochemistry of Aquifer Systems, p 843-859. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch68
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Albrechtsen, H.-J. 1994. Distribution of bacteria, estimated by a viable count method, and heterotrophic activity in different size fractions of aquifer sediment. Geomicrobiol. J. 12:253264.
2. Albrechtsen, H.-J.,, P. L. Bjerg,, L. Ludvigsen,, K. Rügge, and, T. H. Christensen. 1999. An anaerobic field injection experiment in a landfill leachate plume, Grindsted, Denmark. 2. Deduction of anaerobic (methanogenic, sulfate-, and Fe(III)-reducing) redox conditions. Water Resour. Res. 35:12471256.
3. Alfreider, A.,, M. Krössbacher, and, R. Psenner. 1997. Groundwater samples do not reflect bacterial densities and activity in subsurface systems. Water Res. 31:832840.
4. Allen-King, R. M.,, J. F. Barker,, R. W. Gillham, and, B. K. Jensen. 1994. Substrate and nutrient limited toluene biotransformation in sandy soil. Environ. Toxicol. Chem. 13:693705.
5. Allen-King, R. M.,, K. E. O’Leary,, R. W. Gillham, and, J. F. Barker. 1993. Limitations on the biodegradation rate of dissolved BTEX in a natural, unsaturated, sandy soil: evidence from field and laboratory experiments, p. 175–191. In R. E. Hinchee,, B. C. Alleman,, R. E. Hoeppel, and, R. E. Miller (ed.), Hydrocarbon Bioremediation. Battelle Press, Columbus, Ohio.
6. Amirbahman, A.,, R. Schönenberger,, G. Furrer, and, J. Zobrist. 2003. Experimental study and steady-state simulation of biogeochemical processes in laboratory columns with aquifer material. J. Contam. Hydrol. 64:169190.
7. Anderson, R. T.,, J. N. Rooney-Varga,, C. V. Gaw, and, D. R. Lovley. 1998. Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum contaminated aquifers. Environ. Sci. Technol. 32:12221229.
8. Baedecker, M. J.,, and I. M. Cozzarelli. 1992. The determination and fate of unstable constituents of contaminated groundwater, p. 425–461. In S. Lesage and, R. E. Jackson (ed.), Groundwater Contamination and Analysis at Hazardous Waste Sites. Marcel Dekker, Inc., New York, N.Y.
9. Baedecker, M. J.,, I. M. Cozzarelli,, R. P. Eganhouse,, D. I. Siegel, and, P. C. Bennett. 1993. Crude oil in a shallow sand and gravel aquifer-III. Biogeochemical reactions and mass balance modeling in anoxic groundwater. Appl. Geochem. 8:569586.
10. Bakermans, C.,, A. M. Hohnstock-Ashe,, S. Padmanabhan,, P. Padmanabhan, and, E. L. Madsen. 2002. Geochemical and physiological evidence for mixed aerobic and anaerobic field biodegradation of coal tar waste by subsurface microbial communities. Microb. Ecol. 44:107117.
11. Bakermans, C.,, and E. L. Madsen. 2002. Detection in coal tar waste-contaminated groundwater of mRNA transcripts related to naphthalene dioxygenase by fluorescent in situ hybridization with tyramide signal amplification. J. Microbiol. Methods 50:7584.
12. Bakermans, C.,, and E. L. Madsen. 2002. Diversity of 16S rDNA and naphthalene dioxygenase genes from coal-tarwaste-contaminated aquifer waters. Microb. Ecol. 44:95106.
13. Ball, H. A.,, and M. Reinhard. 1996. Monoaromatic hydrocarbon transformation under anaerobic conditions at Seal Beach, California: laboratory studies. Environ. Toxicol. Chem. 15:114122.
14. Banwart, S. A.,, and S. F. Thorton. 2003. The geochemistry and hydrology of groundwater bioremediation by natural attenuation, p. 93–138. In I. M. Head,, I. Singleton, and, M. G. Milner (ed.), Bioremediation: a Critical Review. Horizon Scientific Press, Norwich, United Kingdom.
15. Barber, L. B.,, II, E. M. Thurman, and, D. D. Runnells. 1992. Geochemical heterogeneity in a sand and gravel aquifer: effect of sediment mineralogy and particle size on the sorption of chlorobenzenes. J. Contam. Hydrol. 9:3554.
16. Barker, J. F.,, J. S. Tessmann,, P. E. Plotz, and, M. Reinhard. 1986. The organic geochemistry of a sanitary landfill leachate plume. J. Contam. Hydrol. 1:171189.
17. Barker, J. F.,, and J. T. Wilson. 1997. Natural biological attenuation of aromatic hydrocarbons under anaerobic conditions, p. 289–300. In C. H. Ward,, J. A. Cherry, and, M. R. Scalf (ed.), Subsurface Restoration. Ann Arbor Press, Chelsea, Mich.
18. Bekins, B. A.,, I. M. Cozzarelli,, E. M. Godsy,, E. Warren,, H. I. Essaid, and, M. E. Tuccillo. 2001. Progression of natural attenuation processes at a crude oil spill site. II. Controls on spatial distribution of microbial populations. J. Contam. Hydrol. 53:387406.
19. Bekins, B. A.,, E. M. Godsy, and, E. Warren. 1999. Distribution of microbial physiologic types in an aquifer contaminated by crude oil. Microb. Ecol. 37:263275.
20. Bekins, B. A.,, F. D. Hostettler,, W. N. Herkelrath,, G. N. Delin,, E. Warren, and, H. I. Essaid. 2005. Progression of methanogenic degradation of crude oil in the subsurface. Environ. Geosci. 12:139152.
21. Beller, H. R. 2000. Metabolic indicators for detecting in situ anaerobic alkylbenzene degradation. Biodegradation 11:125139.
22. Beller, H. R.,, W.-H. Ding, and, M. Reinhard. 1995. Byproducts of anaerobic alkylbenzene metabolism useful as indicators of in situ bioremediation. Environ. Sci. Technol. 29:28642870.
23. Bennett, P. C.,, F. K. Hiebert, and, J. R. Rogers. 2000. Microbial control of mineral-groundwater equilibria: macroscale to microscale. Hydrogeol. J. 8:4762.
24. Bhupathiraju, V. K.,, M. Hernandez,, P. Krauter, and, L. Alvarez-Cohen. 1999. A new direct microscopy based method for evaluating in-situ bioremediation. J. Hazard. Mater. 867:299312.
25. Bjerg, P. L.,, H.-J. Albrechtsen,, P. Kjeldsen,, T. H. Christensen, and, I. M. Cozzarelli. 2003. The groundwater geochemistry of waste disposal facilities, p. 579–612. In H. D. Holland and, K. Turekian (ed.), Treatise on Geochemistry. Elsevier Pergamon, Oxford, United Kingdom.
26. Bjerg, P. L.,, A. Brun,, P. H. Nielsen, and, T. H. Christensen. 1996. Application of a model accounting for kinetic sorption and degradation to in situ microcosm observations on the fate of aromatic hydrocarbons in an aerobic aquifer. Water Resour. Res. 32:18311841.
27. Bjerg, P. L.,, K. Rügge,, J. Cortsen,, P. H. Nielsen, and, T. H. Christensen. 1999. Degradation of aromatic and chlorinated aliphatic hydrocarbons in the anaerobic part of the Grindsted Landfill leachate plume: in situ microcosm and laboratory batch experiments. Ground Water 37:113121.
28. Böhlke, J.,, R. Wanty,, M. Tuttle,, G. Delin, and, M. Landon. 2002. Denitrification in the recharge area and discharge area of a transient agricultural nitrate plume in a glacial outwash and sand aquifer, Minnesota. Water Resour. Res. 38:7.
29. Bouwer, E. J.,, and A. Zehnder. 1993. Bioremediation of organic compounds—putting microbial metabolism to work. Bioremediation 11:360367.
30. Brown, D.,, J. Komlos, and, P. Jaffe. 2005. Simultaneous utilization of acetate and hydrogen by Geobacter sulfurreducens and implications for use of hydrogen as an indicator of redox conditions. Environ. Sci. Technol. 39:30693076.
31. Cervantes, F. J.,, W. Dijksma,, T. Duong-Dac,, A. Ivanova,, G. Lettinga, and, J. A. Field. 2001. Anaerobic mineralization of toluene by enriched sediments with quinoes and humus as terminal electron acceptors. Appl. Environ. Microbiol. 67:44714478.
32. Chapelle, F. H.,, P. M. Bradley,, D. R. Lovley, and, D. A. Vroblesky. 1996. Measuring rates of biodegradation in a contaminated aquifer using field and laboratory methods. Ground Water 34:691698.
33. Chapelle, F. H.,, P. B. McMahon,, N. M. Dubrovsky,, R. F. Fujii,, E. T. Oaksford, and, D. A. Vroblesky. 1995. Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems. Water Resour. Res. 31:359372.
34. Christensen, J. B.,, D. L. Jensen,, C. Gron,, Z. Filip, and, T. H. Christensen. 1998. Characterization of the dissolved organic carbon in landfill leachate-polluted ground-water. Water Res. 32:125135.
35. Christensen, T. H.,, P. L. Bjerg,, S. A. Banwart,, R. Jakobsen,, G. Heron, and, H.-J. Albrechtsen. 2000. Characterization of redox conditions in groundwater contaminant plumes. J. Contam. Hydrol. 45:165241.
36. Cozzarelli, I. M.,, M. J. Baedecker,, R. P. Eganhouse, and, D. F. Goerlitz. 1994. The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater. Geochim. Cosmochim. Acta 58:863877.
37. Cozzarelli, I. M.,, and A. L. Baehr. 2003. Volatile fuel hydrocarbons and MTBE in the environment, p. 433–474. In B. S. Lollar (ed.), Treatise on Geochemistry, vol. 9. Environmental Geochemistry. Elsevier-Pergamon, Oxford, United Kingdom.
38. Cozzarelli, I. M.,, B. A. Bekins,, M. J. Baedecker,, G. R. Aiken,, R. P. Eganhouse, and, M. E. Tuccillo. 2001. Progression of natural attenuation processes at a crude-oil spill site. I. Geochemical evolution of the plume. J. Contam. Hydrol. 53:369385.
39. Cozzarelli, I. M.,, R. P. Eganhouse, and, M. J. Baedecker. 1990. Transformation of monoaromatic hydrocarbons to organic acids in anoxic groundwater environment. Environ. Geol. Water Sci. 16:135141.
40. Cozzarelli, I. M.,, R. P. Eganhouse,, E. M. Godsy,, E. Warren, and, B. A. Bekins. 2001. Measurement of biodegradation of hydrocarbons in situ under different redox conditions, p. 2. In 20th Int. Meet. Organic Geochem. Sept. 1014, 2001, Nancy, France.
41. Cozzarelli, I. M.,, J. S. Herman, and, M. J. Baedecker. 1995. Fate of microbial metabolites of hydrocarbons in a coastal plain aquifer: the role of electron acceptors. Environ. Sci. Technol. 29:458469.
42. Cozzarelli, I. M.,, J. S. Herman,, M. J. Baedecker, and, J. M. Fischer. 1999. Geochemical heterogeneity of a gasoline-contaminated aquifer. J. Contam. Hydrol. 40:261284.
43. Cozzarelli, I. M.,, J. M. Suflita,, G. A. Ulrich,, S. H. Harris,, M. A. Scholl,, J. L. Schlottmann, and, S. Christenson. 2000. Geochemical and microbiological methods for evaluating anaerobic processes in an aquifer contaminated by landfill leachate. Environ. Sci. Technol. 34:40254033.
44. Danielopol, D.,, C. Griebler,, A. Gunatilaka, and, J. Notenboom. 2003. Present state and future prospects for groundwater ecosystems. Environ. Conserv. 30:104130.
45. Davis, J. W.,, J. M. Odom,, K. A. DeWeerd,, D. A. Stahl,, S. S. Fishbain,, R. J. West,, G. M. Klecka, and, J. G. DeCarolis. 2002. Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: characterization of microbial community structure. J. Contam. Hydrol. 57:4159.
46. de Lipthay, J. R.,, N. Tuxen,, K. Johnsen,, L. H. Hansen,, H.-J. Albrechtsen,, P. L. Bjerg, and, J. Aamand. 2003. In situ exposure to low herbicide concentrations affects microbial population composition and catabolic gene frequency in an aerobic shallow aquifer. Appl. Environ. Microbiol. 69:461467.
47. Eganhouse, R. P.,, I. M. Cozzarelli,, M. A. Scholl, and, L. L. Matthews. 2001. Natural attenuation of volatile organic compounds (VOCs) in the leachate plume of a municipal landfill, Norman, Oklahoma. Ground Water 39:192202.
48. Eganhouse, R. P.,, T. F. Dorsey,, C. S. Phinney, and, A. M. Westcott. 1996. Processes affecting the fate of monoaromatic hydrocarbons in an aquifer contaminated by crude oil. Environ. Sci. Technol. 30:33043312.
49. Ehrlich, G. G.,, D. F. Goerlitz,, E. M. Godsy, and, M. F. Hult. 1982. Degradation of phenolic contaminants in groundwater by anaerobic bacteria: St. Louis Park, Minnesota. Ground Water 20:703710.
50. Elshahed, M. S.,, L. M. Gieg,, M. J. McInerney, and, J. M. Suflita. 2001. Signature metabolites attesting to the in situ attenuation of alkylbenzenes in anaerobic environments. Environ. Sci. Technol. 35:682689.
51. Fahy, A.,, G. Lethbridge,, R. Earle,, A. S. Ball,, K. N. Timmis, and, T. J. McGenity. 2005. Effects of long-term benzene pollution on bacterial diversity and community structure in groundwater. Environ. Microbiol. 7:11921199.
52. Fang, J. S.,, M. J. Barcelona,, R. V. Krishnamurthy, and, E. A. Atekwana. 2000. Stable carbon isotope biogeochemistry of a shallow sand aquifer contaminated with fuel hydrocarbons. Appl. Geochem. 15:157169.
53. Feris, K. P.,, K. Hristova,, B. Gebreyesus,, D. Mackay, and, K. M. Scow. 2004. A shallow BTEX and MTBE contaminated aquifer supports a diverse microbial community. Microb. Ecol. 48:589600.
54. Flyvbjerg, J.,, E. Arvin,, B. K. Jensen, and, S. K. Olsen. 1993. Microbial degradation of phenols and aromatic hydrocarbons in creosote-contaminated groundwater under nitrate-reducing conditions. J. Contam. Hydrol. 12:133150.
55. Franklin, R. B.,, D. R. Taylor, and, A. L. Mills. 2000. The distribution of microbial communities in anaerobic and aerobic zones of a shallow coastal plain aquifer. Microb. Ecol. 38:377386.
56. Franzmann, P. D.,, B. M. Patterson,, T. R. Power,, P. D. Nichols, and, G. B. Davis. 1996. Microbial biomass in a shallow, urban aquifer contaminated with aromatic hydrocarbons: analysis by phospholipid fatty acid content and composition. J. Appl. Bacteriol. 80:617625.
57. Gibson, D. T.,, and V. Subramanian. 1984. Microbial degradation of aromatic hydrocarbons, p. 181–252. In D. T. Gibson (ed.), Microbial Degradation of Organic Compounds. Marcel Dekker Inc., New York, N.Y.
58. Gieg, L. M.,, R. V. Kolhatkar,, M. J. McInerney,, R. S. Tanner,, S. H. J. Harris,, K. L. Sublette, and, J. M. Suflita. 1999. Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer. Environ. Sci. Technol. 33:25502560.
59. Gieg, L. M.,, and J. M. Suflita. 2002. Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ. Sci. Technol. 36:37553762.
60. Gillham, R. W.,, R. C. Starr, and, D. J. Miller. 1990. A device for in situ determination of geochemical transport parameters. 2. Biochemical reactions. Ground Water 28:858862.
61. Godsy, E. M.,, D. F. Goerlitz, and, D. Grbic-Galic. 1992. Methanogenic biodegradation of creosote contaminants in natural and simulated groundwater ecosystems. Ground Water 30:232242.
62. Godsy, E. M.,, E. Warren,, I. M. Cozzarelli,, B. A. Bekins, and, R. P. Eganhouse. 1999. Determining BTEX biodegradation rates using in situ microcosms at the Bemidji site, Minnesota: trials and tribulations, p. 159–167. In D. W. Morganwalp and, H. T. Buxton (ed.), U.S. Geological Survey Toxic Substances Hydrology Program. Proceedings of the Technical Meeting. U.S. Geological Survey, Reston, Va.
63. Griebler, C.,, B. Mindl,, D. Slezak, and, M. Geiger-Kaiser. 2002. Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquat. Microb. Ecol. 28:117129.
64. Grossman, E. L.,, L. A. Cifuentes, and, I. M. Cozzarelli. 2002. Anaerobic methane oxidation in a landfill-leachate plume. Environ. Sci. Technol. 36:24362442.
65. Gruden, C. L.,, A. Khijniak, and, P. Adriaens. 2003. Activity assessment of microorganisms eluted from sediments using 5-cyano-2,3-ditolyl tetrazolium chloride: a quantitative comparison of flow cytometry to epifluores-cent microscopy. J. Microbiol. Methods 55:865874.
66. Haack, S. K.,, and B. A. Bekins. 2000. Microbial populations in contaminant plumes. Hydrogeol. J. 8:6376.
67. Haack, S. K.,, L. R. Fogarty,, T. G. West,, E. W. Alm,, J. T. McGuire,, D. T. Long,, D. W. Hyndman, and, L. J. Forney. 2004. Spatial and temporal changes in microbial community structure associated with recharge-influenced chemical gradients in a contaminated aquifer. Environ. Microbiol. 6:438448.
68. Harvey, R. W.,, R. L. Smith, and, L. George. 1984. Effect of organic contamination upon microbial distributions and heterotrophic uptake in a Cape Cod, Mass., aquifer. Appl. Environ. Microbiol. 48:11971202.
69. Heron, G.,, and T. H. Christensen. 1995. Impact of sediment-bound iron on redox buffering in a landfill leachate polluted aquifer (Vejen, Denmark). Environ. Sci. Technol. 29:187192.
70. Heron, G.,, C. Crouzet,, A. C. M. Bourg, and, T. H. Christensen. 1994. Speciation of Fe(II) and Fe(III) in contaminated aquifer sediments using chemical extraction techniques. Environ. Sci. Technol. 28:16981705.
71. Hess, K. M.,, W. N. Herkelrath, and, H. I. Essaid. 1992. Determination of subsurface fluid contents at a crude-oil spill site. J. Contam. Hydrol. 10:7596.
72. Hristova, K. R.,, C. M. Lutenegger, and, K. M. Scow. 2001. Detection and quantification of methyl tert-butyl ether-degrading strain PM1 by real-time TaqMan PCR. Appl. Environ. Microbiol. 67:51545160.
73. Hunkeler, D.,, B. J. Butler,, R. Aravena, and, J. F. Barker. 2001. Monitoring biodegradation of methyl tert-butyl ether (MTBE) using compound-specific carbon isotope analysis. Environ. Sci. Technol. 35:676681.
74. Istok, J. D.,, M. D. Humphrey,, M. H. Schroth,, M. R. Hyman, and, K. T. O’Reilly. 1997. Single-well, “push-pull” test for in situ determination of microbial activities. Ground Water 35:619631.
75. Jakobsen, R.,, and D. Postma. 1999. Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Roemoe, Denmark. Geochim. Cosmochim. Acta 63:137151.
76. Jeon, C. O.,, W. Park,, P. Padmanabhan,, C. DeRito,, J. R. Snape, and, E. L. Madsen. 2003. Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc. Natl. Acad. Sci. USA 100:1359113596.
77. Jones, R. E.,, R. E. Beeman, and, J. M. Suflita. 1989. Anaerobic metabolic processes in the deep terrestrial sub-surface. Geomicrobiol. J. 7:117130.
78. Kappeler, T.,, and K. Wuhrmann. 1978. Microbial degradation of the water-soluble fraction of gas oil—I. Water Res. 12:327333.
79. Kelley, C. A.,, B. T. Hammer, and, R. B. Coffin. 1997. Concentrations and stable isotope values of BTEX in gasoline-contaminated groundwater. Environ. Sci. Technol. 31:24692472.
80. Klecka, G. M.,, J. W. Davis,, D. R. Gray, and, S. S. Madsen. 1990. Natural bioremediation of organic contaminants in groundwater. Cliffs-Dow superfund site. Ground Water 28:534543.
81. Kleikemper, J.,, S. A. Pombo,, M. H. Schroth,, W. V. Sigler,, M. Pesaro, and, J. Zeyer. 2005. Activity and diversity of methanogens in a petroleum hydrocarbon-contaminated aquifer. Appl. Environ. Microbiol. 71:149158.
82. Kleikemper, J.,, M. H. Schroth,, W. V. Sigler,, M. Schmucki,, S. M. Bernasconi, and, J. Zeyer. 2002. Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl. Environ. Microbiol. 68:15161523.
83. Knapp, E. P.,, J. S. Herman,, A. L. Mills, and, G. M. Hornberger. 2002. Changes in the sorption capacity of coastal plain sediments due to redox alteration of mineral surfaces. Appl. Geochem. 17:387398.
84. Kolhatkar, R.,, T. Kuder,, P. Philp,, J. Allen, and, J. T. Wilson. 2002. Use of compound-specific stable carbon isotope analyses to demonstrate anaerobic biodegradation of MTBE in groundwater at a gasoline release site. Environ. Sci. Technol. 36:51395146.
85. Korom, S.,, A. Schlag,, W. Schuh, and, A. Schlag. 2005. In situ mesocosms: denitrification in the Elk Valley aquifer. Ground Water Monit. Remediat. 25:7989.
86. Leenheer, J. A.,, R. L. Malcolm,, P. W. McKinley, and, L. A. Eccles. 1974. Occurrence of dissolved organic carbon in selected groundwater samples in the United States. U. S. Geol. Surv. J. Res. 2:361369.
87. Lehman, R. M.,, F. S. Colwell, and, G. A. Bala. 2001. Attached and unattached microbial communities in a simulated basalt aquifer under fracture- and porous-flow conditions. Appl. Environ. Microbiol. 67:27992809.
88. Lehman, R. M.,, S. P. O’Connell,, A. Banta,, J. K. Fredrickson,, A.-L. Reysenbach,, T. L. Kieft, and, F. S. Colwell. 2004. Microbiological comparison of core and groundwater samples collected from a fractured basalt aquifer with that of dialysis chambers incubated in situ. Geomicrobiol. J. 21:169182.
89. Lorah, M. M.,, and L. D. Olsen. 1999. Natural attenuation of chlorinated volatile organic compounds in a freshwater tidal wetland: field evidence of anaerobic biodegradation. Water Resour. Res. 35:38113827.
90. Lovley, D. R.,, and F. H. Chapelle. 1995. Deep subsurface microbial processes. Rev. Geophys. 33:365381.
91. Lovley, D. R.,, F. H. Chapelle, and, J. C. Woodward. 1994. Use of dissolved H2 concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environ. Sci. Technol. 28:12051210.
92. Lovley, D. R.,, and E. J. P. Phillips. 1992. Reduction of uranium by Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 58:850856.
93. Ludvigsen, L.,, H.-J. Albrechtsen,, G. Heron,, P. L. Bjerg, and, T. H. Christensen. 1998. Anaerobic microbial redox processes in a landfill leachate contaminated aquifer (Grindsted, Denmark). J. Contam. Hydrol. 33:273291.
94. Ludvigsen, L.,, H.-J. Albrechtsen,, H. Holst, and, T. H. Christensen. 1997. Correlating phospholipid fatty acids (PLFA) in a landfill leachate polluted aquifer with biogeochemical factors by multivariate statistical methods. FEMS Microbiol. Rev. 20:447460.
95. Ludvigsen, L.,, H.-J. Albrechtsen,, D. B. Ringelberg,, F. Ekelund, and, T. H. Christensen. 1999. Distribution and composition of microbial populations in landfill leachate contaminated aquifer (Grindsted, Denmark). Microb. Ecol. 37:197207.
96. Macbeth, T. W.,, D. E. Cummings,, S. Spring,, L. M. Petzke, and, K. S. J. Sorenson. 2004. Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture. Appl. Environ. Microbiol. 70:73297341.
97. Madsen, E. L. 2000. Nucleic-acid characterization of the identity and activity of subsurface microorganisms. Hydrogeol. J. 8:112125.
98. Mancini, S. A.,, A. C. Ulrich,, G.-L. Couloume,, B. Sleep,, E. A. Edwards, and, B. S. Lollar. 2003. Carbon and hydrogen isotopic fractionation during anaerobic biodegradation of benzene. Appl. Environ. Microbiol. 69:191198.
99. Martino, D. P.,, E. L. Grossman,, G. A. Ulrich,, K. C. Burger,, J. L. Schlichenmeyer,, J. M. Suflita, and, J. W. Ammerman. 1998. Microbial abundance and activity in a low-conductivity aquifer system in east-central Texas. Microb. Ecol. 35:224234.
100. McGuire, J. T.,, D. T. Long,, M. J. Klug,, S. K. Haack, and, D. W. Hyndman. 2002. Evaluating behavior of oxygen, nitrate, and sulfate during recharge and quantifying reduction rates in a contaminated aquifer. Environ. Sci. Technol. 36:26932700.
101. McGuire, J. T.,, E. W. Smith,, D. T. Long,, D. N. Hyndman,, S. Haack,, M. J. Klug, and, M. A. Velbel. 2000. Temporal variations in parameters reflecting terminal-electron-accepting processes in an aquifer contaminated with waste fuel and chlorinated solvents. Chem. Geol. 169:471485.
102. McMahon, P. B. 1990. Role of Bacterial CO2 Production in the Formation of High-Bicarbonate Ground Water in the Black Creek and Middendorf Aquifers of South Carolina. Ph.D. dissertation. University of South Carolina, Columbia.
103. McMahon, P. B. 2001. Aquifer/aquitard interfaces: mixing zones that enhance biogeochemical reactions. Hydrogeol. J. 9:3443.
104. Meckenstock, R. U.,, B. Morasch,, C. Griebler, and, H. H. Richnow. 2004. Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated aquifers. J. Contam. Hydrol. 75:215255.
105. Meckenstock, R. U.,, B. Morasch,, M. Kästner,, A. Vieth, and, H. H. Richnow. 2002. Assessment of bacterial degradation of aromatic hydrocarbons in the environment by analysis of stable carbon isotope fractionation. Water Air Soil Pollut. Focus 2:141152.
106. Nanny, M. A.,, and N. Ratasuk. 2002. Characterization and comparison of hydrophobic neutral and hydrophobic acid dissolved organic carbon isolated from three municipal landfill leachates. Water Res. 36:15721584.
107. National Research Council. 2000. Natural Attenuation for Groundwater Remediation. National Academy Press, Washington, D.C.
108. Nielsen, P. H.,, H. Bjarnadottir,, P. L. Winter, and, T. H. Christensen. 1995. In situ and laboratory studies on the fate of specific organic compounds in an anaerobic landfill leachate plume. 2. Fate of aromatic and chlorinated aliphatic compounds. J. Contam. Hydrol. 20:5166.
109. Norris, R. D.,, R. E. Hinchee,, R. Brown,, P. L. McCarthy,, L. Semprini,, J. T. Wilson,, D. H. Kampbell,, M. Reinhard,, E. J. Bouwer,, R. C. Borden,, T. M. Vogel, and, J. H. Thomas. 1994. Handbook of Bioremediation. Lewis Publishers, Ann Arbor, Mich.
110. North, N. N.,, S. L. Dollhopf,, L. Petrie,, J. D. Istok,, D. L. Balkwill, and, J. E. Kostka. 2004. Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. Appl. Environ. Microbiol. 70:49114920.
111. Pelz, O.,, A. Chatzinotas,, A. Zarda-Hess,, W.-R. Abraham, and, J. Zeyer. 2001. Tracing toluene-assimilating sulfate-reducing bacteria using 13C incorporation in fatty acids and whole-cell hybridization. FEMS Microbiol. Ecol. 38:123131.
112. Peter, A.,, A. Steinbach,, R. Liedl,, T. Ptak,, W. Michaelis, and, G. Teutsch. 2004. Assessing microbial degradation of o-xylene at field-scale from the reduction in mass flow rate combined with compound-specific isotope analyses. J. Contam. Hydrol. 71:127154.
113. Petrunic, B. M.,, K. T. B. MacQuarrie, and, T. A. Al. 2005. Reductive dissolution of Mn oxides in river-recharged aquifers: a laboratory column study. J. Hydrol. 301:163181.
114. Phanikumar, M. S.,, D. W. Hyndman,, D. C. Wiggert,, M. J. Dybas,, M. E. Witt, and, C. S. Criddle. 2002. Simulation of microbial transport and carbon tetrachloride biodegradation in intermittently-fed aquifer columns. Water Resour. Res. 38:4-14-13.
115. Pombo, S. A.,, J. Kleikemper,, M. H. Schroth, and, J. Zeyer. 2005. Field-scale isotopic labeling of phospholipid fatty acids from acetate-degrading sulfate-reducing bacteria. FEMS Microbiol. Ecol. 51:197267.
116. Reinhard, M.,, N. L. Goodman, and, J. F. Barker. 1984. Occurrence and distribution of organic chemicals in two landfill leachate plumes. Environ. Sci. Technol. 18:953961.
117. Revesz, K.,, T. B. Coplen,, M. J. Baedecker, and, P. D. Glynn. 1995. Methane production and consumption monitored by stable H and C isotope ratios at a crude oil spill site, Bemidji, Minnesota. Appl. Geochem. 10:505516.
118. Rifai, H. S. 1997. Natural aerobic biological attenuation, p. 411. In C. H. Ward,, J. A. Cherry, and, M. R. Scalf (ed.), Subsurface Restoration. Ann Arbor Press, Inc., Chelsea, Mich.
119. Roden, E. E.,, and M. M. Urrutia. 2002. Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction. Geomicrobiol. J. 19:209251.
120. Rogers, G. S. 1917. Chemical relations of the oil-field waters in San Joaquin Valley, California. U. S. Geol. Surv. Bull. 653:9399.
121. Rogers, J. R.,, P. C. Bennett, and, W. J. Choi. 1998. Feldspars as a source of nutrients for microorganisms. Am. Mineral. 83:15321540.
122. Röling, W. F. M.,, B. M. van Breukelen,, M. Braster,, M. T. Goeltom,, J. Groen, and, H. W. van Verseveld. 2000. Analysis of microbial communities in a landfill leachate polluted aquifer using a new method for anaerobic physiological profiling and 16S rDNA based fingerprinting. Microb. Ecol. 40:177188.
123. Röling, W. F. M.,, B. M. van Breukelen,, M. Braster,, B. Lin, and, H. W. van Verseveld. 2001. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl. Environ. Microbiol. 67:46194629.
124. Röling, W. F. M.,, and H. W. van Verseveld. 2002. Natural attenuation: what does the subsurface have in store? Biodegradation 13:5364.
125. Rügge, K.,, P. L. Bjerg,, J. K. Pedersen,, H. Mosbaek, and, T. H. Christensen. 1999. An anaerobic field injection experiment in a landfill leachate plume, Grindsted, Denmark. 1. Experimental setup, tracer movement, and fate of aromatic and chlorinated compounds. Water Resour. Res. 35:12311246.
126. Ryu, J.-H.,, R. A. Dahlgren,, S. Gao, and, K. K. Tanji. 2004. Characterization of redox processes in shallow groundwater of Owens Dry Lake, California. Environ. Sci. Technol. 38:59505957.
127. Sandrin, S. K.,, M. L. Brusseau,, J. J. Piatt,, A. A. Bodour,, W. J. Blanford, and, N. T. Nelson. 2004. Spatial variability of in situ microbial activity: biotracer tests. Ground Water 42:374383.
128. Schmidt, T.,, L. Zwank,, M. Elsner,, M. Berg,, R. Meckenstock, and, S. Haderlein. 2004. Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal. Bioanal. Chem. 378:283300.
129. Schreiber, M. E.,, and J. M. Bahr. 1999. Spatial electron acceptor variability: implications for assessing bioremediation potential. J. Bioremediat. 3:363378.
130. Schroth, M. H.,, J. D. Istok,, G. T. Conner,, M. R. Hyman,, R. Haggerty, and, K. T. O’Reilly. 1998. Spatial variability in in situ aerobic respiration and denitrification rates in a petroleum-contaminated aquifer. Ground Water 36:924937.
131. Schroth, M. H.,, J. Kleikemper,, C. Bolliger,, S. M. Bernasconi, and, J. Zeyer. 2001. In situ assessment of microbial sulfate reduction in a petroleum-contaminated aquifer using push-pull tests and stable sulfur isotope analyses. J. Contam. Hydrol. 51:179195.
132. Schulze, S.,, and A. Tiehm. 2004. Assessment of microbial natural attenuation in groundwater polluted with gasworks residues. Water Sci. Technol. 50:347353.
133. Sinclair, J. L.,, and W. C. Ghiorse. 1989. Distribution of aerobic bacteria, protozoa, algae, and fungi in deep sub-surface sediments. Geomicrobiol. J. 7:1532.
134. Skubal, K. L.,, M. J. Barcelona, and, P. Adriaens. 2001. An assessment of natural biotransformation of petroleum hydrocarbons and chlorinated solvents at an aquifer plume transect. J. Contam. Hydrol. 49:151169.
135. Smith, R. L.,, J. K. Böhlke,, S. P. Garabedian,, K. M. Revesz, and, T. Yoshinari. 2004. Assessing denitrification in groundwater using natural gradient tracer tests with 15N: in situ measurement of a sequential multistep reaction. Water Resour. Res. 40:117.
136. Smith, R. L.,, and S. P. Garabedian. 1998. Using transport model interpretations of tracer tests to study microbial processes in water, p. 95–123. In A. L. Koch,, J. A. Robinson, and, G. A. Milliken (ed.), Mathematical Models in Microbial Ecology. Chapman and Hall, New York, N.Y.
137. Spormann, A. M.,, and F. Widdel. 2000. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85105.
138. Stapleton, R. D.,, S. Ripp,, L. Jimenez,, S. Cheol-Koh,, J. T. Fleming,, I. R. Gregory, and, G. S. Sayler. 1998. Nucleic acid analytical approaches in bioremediation: site assessment and characterization. J. Microbiol. Methods 32:165178.
139. Stolz, J. F.,, and R. S. Oremland. 1999. Bacterial respiration of arsenic and selenium. FEMS Microbiol. Rev. 23:615627.
140. Strevett, K.,, I. Davidova, and, J. M. Suflita. 2002. A comprehensive review of the screening methodology for anaerobic biodegradation of surfactants. Rev. Environ. Sci. Biotechnol. 1:143167.
141. Tebo, B. M.,, and A. Y. Obraztsova. 1998. Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol. Lett. 162:193198.
142. Thomas, J. M.,, J. T. Wilson, and, C. H. Ward. 1997. Microbial processes in the subsurface, p. 99–111. In C. H. Ward,, J. A. Cherry, and, M. R. Scalf (ed.), Subsurface Restoration. Sleeping Bear Press, Inc., Chelsea, Mich.
143. Thurman, E. M. 1985. Organic Geochemistry of Natural Waters. Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht, The Netherlands.
144. Tuccillo, M. E.,, I. M. Cozzarelli, and, J. S. Herman. 1999. Iron reduction in the sediments of a hydrocarbon-contaminated aquifer. Appl. Geochem. 14:655667.
145. Ulrich, G. A.,, G. N. Breit,, I. M. Cozzarelli, and, J. M. Suflita. 2003. Sources of sulfate supporting anaerobic metabolism in a contaminated aquifer. Environ. Sci. Technol. 37:10931099.
146. Ulrich, G. A.,, D. Martino,, K. Burger,, J. Routh,, E. L. Grossman,, J. W. Ammerman, and, J. M. Suflita. 1998. Sulfur cycling in the terrestrial subsurface: commensal interactions, spatial scales, and microbial heterogeneity. Microb. Ecol. 36:141151.
147. van Breukelen, B. M.,, and J. Griffioen. 2004. Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH4, and CH4 oxidation. J. Contam. Hydrol. 73:181205.
148. Vrobelsky, D. A.,, and F. H. Chapelle. 1994. Temporal and spatial changes of terminal electron-accepting processes in a petroleum hydrocarbon-contaminated aquifer and the significance for contaminant biodegradation. Water Resour. Res. 30:15611570.
149. Weiss, J. V.,, I. M. Cozzarelli,, M. Lowit, and, M. A. Voytek. 2005. Biodegradable carbon as a potential control on microbial community structure and function in an aquifer contaminated with landfill leachate. Presented at the Geological Society of America Fall Meeting. October 1619, 2005, Salt Lake City, Utah.
150. Wiedemeier, T. H.,, H. S. Rifai,, C. J. Newell, and, J. T. Wilson. 1999. Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. John Wiley and Sons, New York, N.Y.
151. Wilkes, H.,, C. Boreham,, G. Harms,, K. Zengler, and, R. Rabus. 2000. Anaerobic degradation and carbon isotopic fractionation of alkylbenzenes in crude oil by sulphate-reducing bacteria. Org. Geochem. 31:101115.
152. Wilson, J. T.,, J. S. Cho,, B. H. Wilson, and, J. A. Vardy. 2000. Natural Attenuation of MTBE in the Subsurface under Methanogenic Conditions. U.S. Environmental Protection Agency Report EPA/600/R–00/006. U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C.
153. Wilson, J. T.,, J. F. McNabb,, D. L. Balkwill, and, W. C. Ghiorse. 1983. Enumeration and characterization of bacteria indigenous to a shallow water-table aquifer. Ground Water 21:134142.
154. Wilson, M. S.,, C. Bakermans, and, E. L. Madsen. 1999. In situ, real-time catabolic gene expression: extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater. Appl. Environ. Microbiol. 65:8087.
155. Wilson, R. D.,, S. F. Thornton, and, D. M. Mackay. 2004. Challenges in monitoring the natural attenuation of spatially variable plumes. Biodegradation 15:359369.


Generic image for table

Summary of geochemical approaches for assessing aquifer biogeochemistry

Citation: Cozzarelli I, Weiss J. 2007. Biogeochemistry of Aquifer Systems, p 843-859. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch68
Generic image for table

Use of specific geochemical measurements as indicators of in situ biogeochemical processes in aquifers

Citation: Cozzarelli I, Weiss J. 2007. Biogeochemistry of Aquifer Systems, p 843-859. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch68
Generic image for table

Summary of approaches for investigating microbial community structure and function in aquifers

Citation: Cozzarelli I, Weiss J. 2007. Biogeochemistry of Aquifer Systems, p 843-859. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch68
Generic image for table

Examples of comprehensive, integrative investigations of aquifer biogeochemistry

Citation: Cozzarelli I, Weiss J. 2007. Biogeochemistry of Aquifer Systems, p 843-859. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch68

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error