1887

Chapter 69 : Determining the Terminal Electron-Accepting Reaction in the Saturated Subsurface

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Determining the Terminal Electron-Accepting Reaction in the Saturated Subsurface, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap69-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap69-2.gif

Abstract:

Microorganisms obtain their energy for metabolism by catalyzing a variety of oxidation-reduction reactions. The distribution of the terminal electron-accepting reactions in an aquifer is dictated by several factors. The sequence of terminal electron-accepting reactions occurs in the order shown in a table, but very long periods can be necessary before the supply of a given electron acceptor is depleted. Determining whether aerobic respiration is the dominant terminal process is relatively straightforward. When oxygen is present, it is the electron acceptor, not only for the thermodynamic reasons but also because it is toxic to the obligately anaerobic processes (iron reduction, sulphate reduction, and methanogenesis) and inhibits the expression and the function of the denitrification enzymes. In many aspects, iron reduction differs from the other terminal electron-accepting reactions. The substrate, Fe(III), is present in many forms, all crystalline solids, and often in large quantities in the saturated subsurface. Concentrations of dissolved hydrogen can serve as an additional indicator of the predominant terminal electron-accepting reaction. An integral part of future characterizations and insights regarding microbial communities in the subsurface must necessarily involve the context of the terminal electron-accepting reactions.

Citation: Smith R, Harris, Jr. S. 2007. Determining the Terminal Electron-Accepting Reaction in the Saturated Subsurface, p 860-871. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch69

Key Concept Ranking

Microbial Ecology
1.7735106
Inorganic Compounds
1.2985092
Oxides and Hydroxides
1.2895601
Sulfate Reduction
0.9834844
Carbon Dioxide
0.8811816
Nitrogen Oxides
0.8182399
1.7735106
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Diagram of the sequential succession of electron-accepting reactions in deep pristine groundwater (modified from reference ).

Citation: Smith R, Harris, Jr. S. 2007. Determining the Terminal Electron-Accepting Reaction in the Saturated Subsurface, p 860-871. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch69
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Idealized diagram of the orientation of the electron-accepting reactions in groundwater contaminated with landfill leachate.

Citation: Smith R, Harris, Jr. S. 2007. Determining the Terminal Electron-Accepting Reaction in the Saturated Subsurface, p 860-871. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch69
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Mechanism of humic acid-mediated iron reduction by humic acid-reducing microorganisms in the subsurface (modified from reference ). e–, electron; ox, oxidized; red, reduced.

Citation: Smith R, Harris, Jr. S. 2007. Determining the Terminal Electron-Accepting Reaction in the Saturated Subsurface, p 860-871. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch69
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch69
1. Adrian, N. R.,, J. A. Robinson, and, J. M. Suflita. 1994. Spatial variability in biodegradation rates as evidenced by methane production from an aquifer. Appl. Environ. Microbiol. 60:36323639.
2. Albrechtsen, H.-J.,, G. Heron, and, T. H. Christensen. 1995. Limiting factors for microbial Fe(III)-reduction in a landfill leachate polluted aquifer (Vejen, Denmark). FEMS Microbiol. Ecol. 16:233248.
3. American Public Health Association. 1981. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.
4. Aravena, R.,, M. L. Evans, and, J. A. Cherry. 1993. Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems. Ground Water 31:180186.
5. Arnold, R. G.,, T. M. Olson, and, M. R. Hofmann. 1986. Kinetics and mechanism of dissimilative Fe(III) reduction by Pseudomonas sp. 200. Biotechnol. Bioeng. 28:16571671.
6. Baedecker, M. J.,, and W. Back. 1979. Modern marine sediments as a natural analog to the chemically stressed environment of a landfill. J. Hydrol. 43:393414.
7. Balderston, W. L.,, B. Sherr, and, W. J. Payne. 1976. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl. Environ. Microbiol. 31:504508.
8. Barker, J. F.,, and P. Fritz. 1981. The occurrence and origin of methane in some groundwater flow systems. Can. J. Earth Sci. 18:18021816.
9. Beeman, R. E.,, and J. M. Suflita. 1987. Microbial ecology of a shallow unconfined groundwater aquifer polluted by municipal landfill leachate. Microb. Ecol. 14:3954.
10. Beeman, R. E.,, and J. M. Suflita. 1990. Environmental factors influencing methanogenesis in a shallow anoxic aquifer: a field and laboratory study. J. Ind. Microbiol. 5:4558.
11. Bengtsson, G.,, and H. Annadotter. 1989. Nitrate reduction in a groundwater microcosm determined by 15N gas chromatography-mass spectrometry. Appl. Environ. Microbiol. 55:28612870.
12. Benz, M.,, B. Schink, and, A. Brune. 1998. Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl. Environ. Microbiol. 64:45074512.
13. Böhlke, J. K.,, R. Wanty,, M. Tuttle,, G. Delin, and, M. Landon. 2002. Denitrification in the recharge area and discharge area of a transient agricultural nitrate plume in a glacial outwash sand aquifer, Minnesota. Water Resour. Res. [Online.] doi:10.1029/2001WR000663.
14. Bond, D.,, and D. R. Lovley. 2002. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellulear quinones. Environ. Microbiol. 4:115124.
15. Böttcher, J.,, O. Strebel,, S. Voerkelius, and, H. L. Schmidt. 1990. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J. Hydrol. 114:413424.
16. Bradley, P. M,, F. H. Chapelle, and, D. R. Lovley. 1998. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl. Environ. Microbiol. 64:31023105.
17. Casciotti, K. L.,, D. M. Sigman,, M. G. Hastings,, J. K. Böhlke, and, A. Hilkert. 2002. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal. Chem. 74:49054912.
18. Chapelle, F. H. 1993. Ground-Water Microbiology and Geochemistry. John Wiley & Sons, Inc., New York, N.Y.
19. Chapelle, F. H.,, P. B. McMahon,, N. M. Dubrovsky,, R. F. Fujii,, E. T. Oaksford, and, D. A. Vroblesky. 1995. Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems. Water Resour. Res. 31:359371.
20. Curtis, G. P.,, and M. Reinhard. 1994. Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic acid. Environ. Sci. Technol. 28:23932401.
21. Dockins, W. S.,, G. J. Olson,, G. A. McFeters, and, S. C. Turbak. 1980. Dissimilatory bacterial sulfate reduction in Montana groundwaters. Geomicrobiol. J. 2:8397.
22. Dunnivant, F. M.,, and R. P. Schwarzenbach. 1992. Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environ. Sci. Technol. 26:21332141.
23. Ehleringer, J. R.,, and P. W. Rundel. 1989. Stable isotopes: history, units, and instrumentation, p. 1–15. In P. W. Rundel,, J. R. Ehleringer, and, K. A. Nagy (ed.), Stable Isotopes in Ecological Research. Springer-Verlag, New York, N.Y.
24. Finneran, K. T.,, H. M. Forbush,, C. V. Gaw VanPraagh, and, D. R. Lovley. 2002. Desulfitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds. Int. J. Syst. Evol. Microbiol. 52:19291935.
25. Finneran, K. T.,, and D. R. Lovley. 2001. Anaerobic degradatin of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Environ. Sci. Technol. 35:17851790.
26. Fossing, H.,, and B. B. Jörgensen. 1990. Isotope exchange reactions with radiolabeled sulfur compounds in anoxic seawater. Biogeochemistry 9:223245.
27. Freeze, R. A.,, and J. A. Cherry. 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, N.J.
28. Geig, L. M.,, R. V. Kolhatkar,, M. J. McInerney,, R. S. Tanner,, S. H. Harris,, K. L. Sublette, and, J. M. Suflita. 1999. Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer. Environ. Sci. Technol. 33:25502560.
29. Ghiorse, W. C.,, and J. T. Wilson. 1988. Microbial ecology of the terrestrial subsurface. Adv. Appl. Microbiol. 33:107172.
30. Gibbs, M. M. 1979. A simple method for the rapid determination of iron in natural waters. Water Res. 13:295297.
31. Gormly, J. R.,, and R. F. Spalding. 1979. Sources and concentrations of nitrate-nitrogen in groundwater of the Central Platte region, Nebraska. Ground Water 17:291301.
32. Grossman, E. L.,, B. K. Coffman,, S. J. Fritz, and, H. Wada. 1989. Bacterial production of methane and its influence on ground-water chemistry in east-central Texas aquifers. Geology 17:495499.
33. Harris, S. H.,, J. D. Istok, and, J. M. Suflita. 2006. Changes in organic matter biodegradability influencing sulfate reduction in an aquifer contaminated by landfill leachate. Microb. Ecol. 51:535542.
34. Heron, G.,, C. Crouzet,, A. C. M. Bourg, and, T. H. Christensen. 1994. Speciation of Fe(II) and Fe(III) in contaminated aquifer sediments using chemical extraction techniques. Environ. Sci. Technol. 28:16981705.
35. Holm, T. R.,, G. K. George, and, M. J. Barcelona. 1988. Oxygen transfer through flexible tubing and its effects on groundwater sampling results. Ground Water Monit. Rev. 8:8389.
36. Ianotti, E. L.,, P. Kafkewitz,, M. J. Wolin, and, M. P. Bryant. 1973. Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transer of H2. J. Bacteriol. 114:12311240.
37. Jakobsen, R.,, H. J. Albrechtsen,, M. Rasmussen,, H. Bay,, P. L. Bjerg, and, T. H. Christensen. 1998. H2 concentrations in a landfill leachate plume (Grindsted, Denmark): in situ energetics of terminal electron acceptor processes. Environ. Sci. Technol. 32:21422148.
38. Johnson, R. L.,, J. F. Pankow, and, J. A. Cherry. 1987. Design of a ground-water sampler for collecting volatile organics and dissolved gases in small-diameter wells. Ground Water 25:448454.
39. Jörgensen, B. B. 1978. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. Geomicrobiol. J. 1:2964.
40. Kassenga, G.,, J. H. Pardue,, W. M. Moe, and, K. S. Bowman. 2004. Hydrogen thresholds as indicators of dehalorespiration in constructed treatment wetlands. Environ. Sci. Technol. 38:10241030.
41. Kleikemper, J.,, M. H. Schroth,, W. V. Sigler,, M. Schmucki,, S. M. Bernasconi, and, J. Zeyer. 2002. Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl. Environ. Microbiol. 68:15161523.
42. Knowles, R. 1982. Denitrification. Microbiol. Rev. 46:4370.
43. Korom, S. F. 1992. Natural denitrification in the saturated zone: a review. Water Resour. Res. 28:16571668.
44. Kreitler, C. W.,, S. E. Ragone, and, B. G. Katz. 1978. N15/N14 ratios of groundwater nitrate, Long Island, New York. Ground Water 16:404409.
45. Krumholz, L. R.,, J. P. McKinley,, G. A. Ulrich, and, J. M. Suflita. 1997. Confined subsurface microbial communities in Cretaceous rock. Nature 386:6466.
46. Lovley, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55:259287.
47. Lovley, D. R.,, F. H. Chapelle, and, J. C. Woodward. 1994. Use of dissolved H2 concentrations to determine distribution of microbially catalyzed reactions in anoxic groundwater. Environ. Sci. Technol. 28:12051210.
48. Lovley, D. R.,, H. D. Coates,, E. L. Blunt-Harris,, E. J. P. Phillips, and, J. C. Woodward. 1996. Humic substances as electron acceptors for microbial respiration. Nature 382:445448.
49. Lovley, D. R.,, J. L. Fraga,, E. L. Blunt-Harris,, L. A. Hayes,, E. J. P. Phillips, and, J. D. Coates. 1998. Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim. Hydrobiol. 26:152157.
50. Lovley, D. R.,, and S. Goodwin. 1988. Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta 52:29933003.
51. Lovley, D. R.,, and E. J. P. Phillips. 1986. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl. Environ. Microbiol. 52:751757.
52. Lovley, D. R.,, and J. C. Woodward. 1996. Mechanisms for chelator stimulation of microbial Fe(III)-oxide reduction. Chem. Geol. 132:1924.
53. Lovley, D. R.,, J. C. Woodward, and, F. H. Chapelle. 1994. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370:128131.
54. Lovley, D. R.,, J. C. Woodward, and, F. H. Chapelle. 1996. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms. Appl. Environ. Microbiol. 62:288291.
55. Mariotti, A.,, A. Landreau, and, B. Simon. 1988. 15N isotope biogeochemistry and natural denitrification process in groundwater: application to the chalk aquifer of northern France. Geochim. Cosmochim. Acta 52:18691878.
56. McGuire, J. T.,, D. T. Long,, M. J. Klug,, S. K. Haack, and, D. W. Hyndman. 2002. Evaluating behavior of oxygen, nitrate, and sulfate during recharge and quantifying reduction rates in a contaminated aquifer. Environ. Sci. Technol. 36:26932700.
57. Newman, D. K.,, and R. Kolter. 2000. A role for excreted quinones in extracellular electron transfer. Nature 405:9497.
58. Olson, G. J.,, W. S. Dockins,, G. A. McFeters, and, W. P. Iverson. 1981. Sulfate-reducing and methanogenic bacteria from deep aquifers in Montana. Geomicrobiol. J. 2:327340.
59. Plummer, L. N.,, J. F. Busby,, R. W. Lee, and, B. B. Hanshaw. 1990. Geochemical modeling of the Madison Aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour. Res. 26:19812014.
60. Postma, D.,, C. Boesen,, H. Kristiansen, and, F. Larsen. 1991. Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling. Water Resour. Res. 27:20272045.
61. Robertson, L. A.,, and J. G. Kuenen. 1984. Aerobic denitrification—old wine in new bottles? Antonie Leeuwenhoek 50:525544.
62. Schroth, M. H.,, J. Kleikemper,, C. Bolliger,, S. M. Bernasconi, and, J. Zeyer. 2001. In situ assessment of microbial sulfate reduction in a petroleum-contaminated aquifer using push-pull tests and stable sulfur isotope analyses. J. Contam. Hydrol. 51:179195.
63. Schwarzenbach, R. P.,, R. Stierli,, K. Lanz, and, J. Zeyer. 1990. Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution. Environ. Sci. Technol. 24:15661574.
64. Scott, D. T.,, D. M. McKnight,, E. L. Blunt-Harris,, S. E. Kolesar, and, D. R. Lovley. 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 32:29842989.
65. Sexstone, A. J.,, N. P. Revsbech,, T. B. Parkin, and, J. M. Tiedje. 1985. Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci. Soc. Am. J. 49:645651.
66. Sigman, D. M.,, K. L. Casciotti,, M. Andreani,, C. Barford,, M. Galanter, and, J. K. Bohlke. 2001. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 73:41454153.
67. Simpkins, W. W.,, and T. B. Parkin. 1993. Hydrogeology and redox geochemistry of CH4 in a late Wisconsinan till and loess sequence in central Iowa. Water Resour. Res. 29:36433657.
68. Smith, R. L.,, J. K. Böhlke,, S. P. Garabedian,, K. M. Revesz, and, T. Yoshinari. 2004. Assessing denitrification in groundwater using natural gradient tracer tests with 15N: in situ measurement of a sequential multistep reaction. Water Resour. Res. [Online.] doi:10.1029/2003WR002919.
69. Smith, R. L.,, and J. H. Duff. 1988. Denitrification in a sand and gravel aquifer. Appl. Environ. Microbiol. 54:10711078.
70. Smith, R. L.,, and S. P. Garabedian. 1998. Using transport model interpretations of tracer tests to study microbial processes in ground water, p. 94–123. In A. L. Koch,, J. A. Robinson, and, G. A. Milliken (ed.), Mathematical Models: Applications to Microbial Ecology. Chapman and Hall, New York, N.Y.
71. Smith, R. L.,, S. P. Garabedian, and, M. H. Brooks. 1996. Comparison of denitrification activity measurements in groundwater using cores and natural gradient tracer tests. Environ. Sci. Technol. 30:34483456.
72. Smith, R. L.,, R. W. Harvey, and, D. R. LeBlanc. 1991. Importance of closely spaced vertical sampling in delineating chemical and microbiological gradients in groundwater studies. J. Contam. Hydrol. 7:285300.
73. Smith, R. L.,, B. L. Howes, and, J. H. Duff. 1991. Denitrification in nitrate-contaminated groundwater: occurrence in steep vertical geochemical gradients. Geochim. Cosmochim. Acta 55:18151825.
74. Smith, R. L.,, B. L. Howes, and, S. P. Garabedian. 1991. In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests. Appl. Environ. Microbiol. 57:19972004.
75. Spalding, R. F.,, and J. D. Parrott. 1994. Shallow ground-water denitrification. Sci. Total Environ. 141:1725.
76. Straub, K. L.,, and B. Schink. 2003. Evaluation of electron-shuttling compounds in microbial ferric iron reduction. FEMS Microbiol. Lett. 220:229233.
77. Tiedje, J. M.,, A. J. Sexstone,, D. D. Myrold, and, J. A. Robinson. 1982. Denitrification: ecological niches, competition and survival. Antonie Leeuwenhoek 48:569583.
78. Trevors, J. T. 1985. The influence of oxygen concentrations on denitrification in soil. Appl. Microbiol. Biotechnol. 23:152155.
79. Trevors, J. T.,, and M. E. Starodub. 1987. Effect of oxygen concentration on denitrification in freshwater sediment. J. Basic Microbiol. 7:387391.
80. Trudell, M. R.,, R. W. Gillham, and, J. A. Cherry. 1986. An in-situ study of the occurrence and rate of denitrification in a shallow unconfined sand aquifer. J. Hydrol. 83:251268.
81. Ulrich, G. A.,, G. N. Breit,, I. M. Cozzarelli, and, J. M. Suflita. 2003. Sources of sulfate supporting anaerobic metabolism in a contaminated aquifer. Environ. Sci. Technol. 37:10931099.
82. Ulrich, G. A.,, D. Martino,, K. Burger,, J. Routh,, E. L. Grossman,, J. W. Ammerman, and, J. M. Suflita. 1998. Sulfur cycling in the terrestrial subsurface: commensal interactions, spatial scales, and microbial heterogeneity. Microb. Ecol. 36:141151.
83. van Beek, C. G. E. M.,, and D. van der Kooij. 1982. Sulfate-reducing bacteria in groundwater from clogging and nonclogging shallow wells in the Netherlands river region. Ground Water 20:298302.
84. White, A. F.,, M. L. Peterson, and, R. D. Solbau. 1990. Measurement and interpretation of low levels of dissolved oxygen in groundwater. Ground Water 28:584590.
85. Whiticar, M. J.,, E. Faber, and, M. Schoell. 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotope evidence. Geochim. Cosmochim. Acta 50:693709.
86. Yoshinari, T.,, R. Hynes, and, R. Knowles. 1977. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol. Biochem. 9:177183.

Tables

Generic image for table
TABLE 1

General characteristics of the electron acceptors most commonly found in groundwater

Citation: Smith R, Harris, Jr. S. 2007. Determining the Terminal Electron-Accepting Reaction in the Saturated Subsurface, p 860-871. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch69
Generic image for table
TABLE 2

Sampling techniques to measure dissolved oxygen in groundwater

Citation: Smith R, Harris, Jr. S. 2007. Determining the Terminal Electron-Accepting Reaction in the Saturated Subsurface, p 860-871. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch69
Generic image for table
TABLE 3

Anticipated hydrogen concentrations corresponding to terminal electron-accepting reactions

Citation: Smith R, Harris, Jr. S. 2007. Determining the Terminal Electron-Accepting Reaction in the Saturated Subsurface, p 860-871. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch69

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error