1887

Chapter 70 : Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap70-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap70-2.gif

Abstract:

This chapter describes and discusses laboratory and field techniques for studying microbial transport behavior in aquifer materials and model porous media. Changes in ionic strength (I) during transport studies may occur inadvertently as a result of using halides as conservative tracers and may lead to density-induced sinking of the tracer cloud. Substantive increases in I as a result of injection of high concentrations of halide tracers can also result in overestimations of microbial attachment. In order to differentiate "test" microorganisms from indigenous subsurface populations and/or from other inadvertently introduced populations, microorganisms used in laboratory or in situ transport tests are typically labeled a priori with a stable tag. Other methods of labeling microorganisms for use in in situ and column transport studies have involved the use of stable isotopes ratio mass spectrometry (IRMS). The characteristics of the conservative tracer breakthrough curve can then be used comparatively to determine some of the major transport parameters exhibited by the introduced microorganisms. Most controlled field investigations of subsurface microbial transport are conducted on limited spatial scales relative to the scales of interest to those concerned with pathogen transport to water supply wells, with microbially enhanced oil recovery from petroleum reservoirs, and with the feasibility of using introduced bacteria for aquifer restoration.

Citation: Harvey R, Harms H, Landkamer L. 2007. Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, p 872-897. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch70

Key Concept Ranking

Outer Membrane Proteins
0.45297617
Atomic Force Microscopy
0.4392284
0.45297617
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Integrated field and laboratory experimental approach to investigating transport behavior of microorganisms in ground-water environments.

Citation: Harvey R, Harms H, Landkamer L. 2007. Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, p 872-897. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch70
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic representation of a hollow-fiber-type tangential-flow filtration device modified for on-site concentration of indigenous microorganisms from groundwater. Modified from Kuwabara and Harvey ( ) with permission from the .

Citation: Harvey R, Harms H, Landkamer L. 2007. Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, p 872-897. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch70
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Harvey R, Harms H, Landkamer L. 2007. Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, p 872-897. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch70
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Harvey R, Harms H, Landkamer L. 2007. Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, p 872-897. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch70
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Dimensionless concentration histories for bacteria and bromide transported downgradient through aquifers from the point of coinjection. (A) Natural-gradient test in a well-sorted, sandy aquifer in Cape Cod, Mass. (reprinted from reference with permission from Wiley-Liss). (B) Forced-gradient test in a fractured, granite aquifer at Chalk River Laboratory, Ontario, Canada (redrawn from reference with permission from the publisher of ).

Citation: Harvey R, Harms H, Landkamer L. 2007. Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, p 872-897. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch70
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Harvey R, Harms H, Landkamer L. 2007. Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, p 872-897. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch70
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Harvey R, Harms H, Landkamer L. 2007. Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, p 872-897. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch70
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Harvey R, Harms H, Landkamer L. 2007. Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, p 872-897. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch70
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Schematic depiction of experimental designs for small- to intermediate-scale injection and recovery investigations examining microbial transport behavior in aquifers (modified from reference with permission from Wiley Liss, Inc.). (A) Divergent, forced gradient; (B) convergent, forced gradient; (C) doublet cell, forced gradient; (D) natural gradient.

Citation: Harvey R, Harms H, Landkamer L. 2007. Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, p 872-897. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch70
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Harvey R, Harms H, Landkamer L. 2007. Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, p 872-897. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch70
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Harvey R, Harms H, Landkamer L. 2007. Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, p 872-897. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch70
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Experimental apparatuses for conducting laboratory-scale studies of microbial transport behavior in saturated subsurface media. (A) Upflow column at a slight incline to the horizontal employing a pressure-sensitive, high-precision piston pump to supply a constant head. (B) Experimental setup for examining microbial transport behavior through consolidated materials under static conditions. (Reproduced from D. G. Jewett et al., 73–89, 1999 [ ], © 1999, with permission from Elsevier.) (C) Experimental apparatus for assessing bacterial transport in porous media as a function of water content. (Modified from reference with permission from the American Society for Microbiology.) (D) Experimental setup for evaluating the effect of porous media on the effective random motility and chemotactic sensitivity coefficients. (Reprinted from reference with permission from the American Society for Microbiology.)

Citation: Harvey R, Harms H, Landkamer L. 2007. Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, p 872-897. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch70
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Harvey R, Harms H, Landkamer L. 2007. Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, p 872-897. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch70
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Harvey R, Harms H, Landkamer L. 2007. Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, p 872-897. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch70
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Harvey R, Harms H, Landkamer L. 2007. Transport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods, p 872-897. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch70
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch70
1. Abba, F.,, B. Orlandi, and, A. Rondelli. 1898. Über die Filtrationskraft des Bodens und die Fortschwemmung von Bakterien durch das Grundwasser. Z. Hyg. Infekt. Krankh. 31:6684.
2. Abbaszadegan, M.,, M. S. Huber,, C. P. Gerba, and, I. L. Pepper. 1993. Detection of enteroviruses in groundwater with the polymerase chain reaction. Appl. Environ. Microbiol. 59:13181324.
3. Absolom, D. R.,, F. V. Lamberti,, Z. Policova,, W. Zingg,, C. J. van Oss, and, A. W. Neumann. 1983. Surface thermodynamics of bacterial adhesion. Appl. Environ. Microbiol. 46:9097.
4. Abudalo, R. A.,, Y. G. Bogatsu,, J. N. Ryan,, R. W. Harvey,, D. W. Metge, and, M. Elimelech. 1995. The effect of ferric oxyhydroxide grain coatings on the transport of bacteriophage PRD1 and Cryptosporidium parvum oocysts in saturated porous media. Environ. Sci. Technol. 39:64126419.
5. Albinger, O.,, B. K. Biesemeyer,, R. G. Arnold, and, B. E. Logan. 1994. Effect of bacterial heterogeneity on adhesion to uniform collectors by monoclonal populations. FEMS Microbiol. Lett. 124:321.
6. Albrechtsen, H. J.,, and A. Winding. 1992. Microbial bio-mass and activity in subsurface sediments from Vejen, Denmark. Microb. Ecol. 23:303317.
7. Ammons, D.,, J. Rampersad, and, G. E. Fox. 1998. A genomically modified marker strain of Escherichia coli. Curr. Microbiol. 37:341346.
8. Badawy, A. S.,, J. B. Rose, and, C. P. Gerba. 1990. Comparative survival of enteric viruses and coliphage on sewage irrigated grass. J. Environ. Sci. Health A 25:937952.
9. Bales, R. C.,, C. P. Gerba,, G. H. Grondin, and, S. L. Jensen. 1989. Bacteriophage transport in sandy soil and fractured tuff. Appl. Environ. Microbiol. 55:20612067.
10. Bales, R. C.,, S. R. Hinkle,, T. W. Kroeger,, K. Stocking, and, C. P. Gerba. 1991. Bacteriophage adsorption during transport through porous-media-chemical perturbations and reversibility. Environ. Sci. Technol. 25:20882095.
11. Bales, R. C.,, S. M. Li,, K. M. Maguire,, M. T. Yahya, and, C. P. Gerba. 1993. Ms-2 and poliovirus transport in porous-media—hydrophobic effects and chemical perturbations. Water Resour. Res. 29:957963.
12. Bales, R. C.,, S. M. Li,, K. M. Maguire,, M. T. Yahya,, C. P. Gerba, and, R. W. Harvey. 1995. Virus and bacteria transport in a sandy aquifer, Cape Cod, MA. Ground Water 33:653661.
13. Bales, R. C.,, S. M. Li,, T. C. J. Yeh,, M. E. Lenczewski, and, C. P. Gerba. 1997. Bacteriophage and microsphere transport in saturated porous media: forced-gradient experiment at Borden, Ontario. Water Resour. Res. 33:639648.
14. Barton, J. W.,, and R. M. Ford. 1995. Determination of effective transport coefficients for bacterial migration in sand columns. Appl. Environ. Microbiol. 61:33293335.
15. Baveye, P.,, P. Vandevivere,, B. L. Hoyle,, P. C. DeLeo, and, D. S. de Lozada. 1998. Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials. Crit. Rev. Environ. Sci. Technol. 28:123191.
16. Bayer, M.,, and J. Sloyer. 1990. The electrophoretic mobility of Gram-negative and Gram-positive bacteria: an electrokinetic analysis. J. Gen. Microbiol. 136:867874.
17. Baygents, J. C.,, J. R. Glynn,, O. Albinger,, B. K. Biesemeyer,, K. L. Ogden, and, R. G. Arnold. 1998. Variation of surface charge density in monoclonal bacterial populations: implications for transport through porous media. Environ. Sci. Technol. 32:15961603.
18. Becker, M. W.,, P. W. Reimus, and, P. Vilks. 1999. Transport and attenuation of carboxylate-modified latex microspheres in fractured rock laboratory and field tracer tests. Ground Water 37:387395.
19. Beeder, J.,, R. K. Nilsen,, T. Thorstenson, and, T. Torsvik. 1996. Penetration of sulfate reducers through a porous North Sea oil reservoir. Appl. Environ. Microbiol. 62:35513553.
20. Bengtsson, G.,, and R. Lindqvist. 1995. Transport of soil bacteria controlled by density-dependent sorption kinetics. Water Resour. Res. 31:12471256.
21. Beres, M.,, A. Green,, P. Huggenberger, and, H. Horstmeyer. 1995. Mapping the architecture of glaciofluvial sediments with 3-dimensional georadar. Geology 23:10871090.
22. Beres, M.,, P. Huggenberger,, A. G. Green, and, H. Horstmeyer. 1999. Using two- and three-dimensional georadar methods to characterize glaciofluvial architecture. Sedimentary Geol. 129:124.
23. Bitton, G.,, and R. W. Harvey. 1992. Transport of pathogens through soils and aquifers., p. 103–124. In R. Michell (ed.), Environmental Microbiology. Wiley-Liss, New York, N.Y.
24. Blanchard, D. C.,, and D. L. Syzdek. 1974. Bubble tube: apparatus for determining rate of collection of bacteria by a bubble rising in water. Limnol. Oceanogr. 23:133138.
25. Boadu, F. K. 2000. Hydraulic conductivity of soils from grain-size distribution: new models. J. Geotech. Geoenviron. Eng. 126:739746.
26. Bolster, C. H.,, G. M. Hornberger,, A. L. Mills, and, J. L. Wilson. 1998. A method for calculating bacterial deposition coefficient using the fraction of bacteria recovered from laboratory columns. Environ. Sci. Technol. 32:13291332.
27. Bolster, C. H.,, A. L. Mills,, G. M. Hornberger, and, J. S. Herman. 1999. Spatial distribution of deposited bacteria following miscible displacement experiments in intact cores. Water Resour. Res. 35:17971807.
28. Bos, R.,, H. C. van der Mei, and, H. J. Busscher. 1999. Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol. Rev. 23:179230.
29. Bouwer, H. 1978. Groundwater Hydrology. McGraw Hill, New York, N.Y.
30. Bradford, S. A.,, and M. Bettahar. 2005. Straining, attachment, and detachment of cryptosporidium oocysts in saturated porous media. J. Environ. Qual. 34:469478.
31. Briandet, R.,, V. Leriche,, B. Carpentier, and, M. N. Bellon-Fontaine. 1999. Effects of the growth procedure on the surface hydrophobicity of Listeria monocytogenes cells and their adhesion to stainless steel. J. Food Prot. 62:994998.
32. Brown, D.,, and P. R. Jaffe. 2001. Effects of nonionic surfactants on bacterial transport through porous media. Environ. Sci. Technol. 35:38773883.
33. Brush, C. F.,, W. C. Ghiorse,, L. J. Anguish,, J. Y. Parlange, and, H. G. Grimes. 1999. Transport of Cryptosporidium parvum oocysts through saturated columns. J. Environ. Qual. 28:809815.
34. Burlage, R. S.,, Z. K. Yang, and, T. Mehlhorn. 1996. A transposon for green fluorescent protein transcriptional fusions: application for bacterial transport experiments. Gene 173:5358.
35. Camesano, T. A.,, and B. E. Logan. 1998. Influence of fluid velocity and cell concentration on the transport of motile and nonmotile bacteria in porous media. Environ. Sci. Technol. 32:16991708.
36. Camesano, T. A.,, M. J. Natan, and, B. E. Logan. 2000. Observation of changes in bacterial cell morphology using tapping mode atomic force microscopy. Langmuir 16:45634572.
37. Camper, A. K.,, J. T. Hayes,, P. J. Sturman,, W. L. Jones, and, A. B. Cunningham. 1993. Effects of motility and adsorption rate coefficient on transport of bacteria through saturated porous media. Appl. Environ. Microbiol. 59:34553462.
38. Chalfie, M.,, Y. Tu,, G. Euskirchen,, W. W. Ward, and, D. C. Prasher. 1994. Green fluorescent protein as a marker for gene-expression. Science 263:802805.
39. Champ, D. R.,, and J. Schroeter. 1988. Bacterial transport in fractured rock—a field-scale tracer test at the Chalk River Nuclear Laboratories. Water Sci. Technol. 20:8187.
40. Chang, P. L.,, and T. F. Yen. 1985. Interaction of Pseudo-monas putida ATCC 12633 and bacteriophage gh-1 in Berea sandstone rock. Appl. Environ. Microbiol. 59:34553462.
41. Chen, J.,, and B. Koopman. 1997. Effect of fluorochromes on bacterial surface properties and interaction with granular media. Appl. Environ. Microbiol. 63:39413945.
42. Chu, Y.,, Y. Jin,, T. Baumann, and, M. V. Yates. 2003. Effect of soil properties on saturated and unsaturated virus transport through columns. J. Environ. Qual. 32:20172025.
43. Colwell, F. S.,, G. J. Stormberg,, T. J. Phelps,, S. A. Birnbaum,, J. McKinley,, S. A. Rawson,, C. Veverka,, S. Goodwin,, P. E. Long,, B. F. Russell,, T. Garland,, D. Thompson,, P. Skinner, and, S. Grover. 1992. Innovative techniques for collection of saturated and unsaturated sub-surface basalts and sediments for microbiological characterization. J. Microbiol. Methods 15:279292.
44. Corapcioglu, M. Y.,, and S. H. Kim. 1995. Modeling facilitated contaminant transport by mobile bacteria. Water Resour. Res. 31:26392647.
45. Cusack, F.,, S. Singh,, C. McCarthy,, J. Grieco,, M. Derocco,, D. Nguyen,, H. Lappinscott, and, J. W. Costerton. 1992. Enhanced oil-recovery—3-dimensional sandpack simulation of ultramicrobacteria resuscitation in reservoir formation. J. Gen. Microbiol. 138:647655.
46. Dabros, T.,, and T. G. M. van de Ven. 1987. Deposition of latex particles on glass surfaces in an impinging jet. Phys. Chem. Hydrodynamics 8:161172.
47. Daniell, T. J.,, M. L. Davy, and, R. J. Smith. 2000. Development of a genetically modified bacteriophage for use in tracing sources of pollution. J. Appl. Microbiol. 88:860869.
48. DeFlaun, M. F.,, M. E. Fuller,, P. Zhang,, W. P. Johnson,, B. J. Mailloux,, W. E. Holben,, W. P. Kovacik,, D. L. Balkwill, and, T. C. Onstott. 2001. Comparison of methods for monitoring bacterial transport in the subsurface. J. Microbiol. Methods 47:219231.
49. DeFlaun, M. F.,, C. J. Murray,, W. Holben,, T. Scheibe,, A. Mills,, T. Ginn,, T. Griffin,, E. Majer, and, J. L. Wilson. 1997. Preliminary observations on bacterial transport in a coastal plain aquifer. FEMS Microbiol. Rev. 20:473487.
50. DeFlaun, M. F.,, S. R. Oppenheimer,, S. Streger,, C. W. Condee, and, M. Fletcher. 1999. Alterations in adhesion, transport, and membrane characteristics in an adhesion-deficient pseudomonad. Appl. Environ. Microbiol. 65:759765.
51. DeLeo, P. C.,, and P. Baveye. 1996. Enumeration and bio-mass estimation of bacteria in aquifer microcosm studies by flow cytometry. Appl. Environ. Microbiol. 62:45804586.
52. Deshpande, P. A.,, and D. R. Shonnard. 2000. An improved spectrophotometric method to study the transport, attachment, and breakthrough of bacteria through porous media. Appl. Environ. Microbiol. 66:763768.
53. Deshpande, P. A.,, and D. R. Shonnard. 1999. Modeling the effects of systematic variation in ionic strength on the attachment kinetics of Pseudomonas fluorescens UPER-1 in saturated sand columns. Water Resour. Res. 35:16191627.
54. Dong, H. 2002. Significance of electrophoretic mobility distribution to bacterial transport in granular porous media. J. Microbiol. Methods 51:8393.
55. Dong, H.,, T. C. Onstott,, M. F. DeFlaun,, M. E. Fuller,, K. M. Gillespie, and, J. K. Fredrickson. 1999. Development of radiographic and microscopic techniques for the characterization of bacterial transport in intact sediment cores from Oyster, Virginia. J. Microbiol. Methods 37:139154.
56. Dowd, S. E.,, S. D. Pillai,, S. Y. Wang, and, M. Y. Corapcioglu. 1998. Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils. Appl. Environ. Microbiol. 64:405410.
57. Dubois, S. M.,, B. E. Moore, and, S. P. Sagik. 1976. Poliovirus survival and movement in a sandy forest soil. Appl. Environ. Microbiol. 31:536543.
58. Duffy, K. J.,, P. T. Cummings, and, R. M. Ford. 1995. Random-walk calculations for bacterial migration in porous media. Biophys. J. 68:800806.
59. Eisenmann, H.,, H. Harms,, R. Meckenstock,, E. I. Meyer, and, A. J. B. Zehnder. 1998. Grazing of a Tetrahymena sp. on adhered bacteria in percolated columns monitored by in situ hybridization with fluorescent oligonucleotide probes. Appl. Environ. Microbiol. 64:12641269.
60. Elowitz, M. B.,, M. G. Surette,, P. E. Wolf,, J. Stock, and, S. Leibler. 1997. Photoactivation turns green fluorescent protein red. Curr. Biol. 7:809812.
61. Emerson, R. J., IV,, and T. A. Camesano. 2004. Nanoscale investigation of pathogenic microbial adhesion to a biomaterial. Appl. Environ. Microbiol. 70:60126022.
62. Fang, Y.,, and B. E. Logan. 1999. Bacterial transport in gas-sparged porous medium. J. Environ. Eng. 125:668673.
63. Fischer, U.,, R. Schulin,, M. Keller, and, F. Stauffer. 1996. Experimental and numerical investigation of soil vapor extraction. Water Resour. Res. 32:34133427.
64. Fontes, D. E.,, A. L. Mills,, G. M. Hornberger, and, J. S. Herman. 1991. Physical and chemical factors influencing transport of microorganisms through porous media. Appl. Environ. Microbiol. 57:24732481.
65. Fortineau, N.,, P. Trieu-Cuot,, O. Gaillot,, E. Pellegrini,, P. Berche, and, J. L. Gaillard. 2000. Optimization of green fluorescent protein expression vectors for in vitro and in vivo detection of Listeria monocytogenes. Res. Microbiol. 151:353360.
66. Franchi, A.,, and C. R. O’Melia. 2003. Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media. Environ. Sci. Technol. 37:11221129.
67. Freeze, R. A.,, and J. A. Cherry. 1979. Groundwater. Prentice Hall, Englewood Cliffs, N.J.
68. Fuller, C. C.,, and J. W. Harvey. 2000. Reactive uptake of trace metals in the hyporheic zone of a mining-contaminated stream, Pinal Creek, Arizona. Environ. Sci. Technol. 34:11501155.
69. Fuller, M. E.,, B. J. Mailloux,, S. H. Streger,, J. A. Hall,, P. Zhang,, W. P. Kovacik,, S. Vainberg,, W. P. Johnson,, T. C. Onstott, and, M. F. DeFlaun. 2004. Application of a vital fluorescent staining method for simultaneous, near-real-time concentration monitoring of two bacterial strains in an Atlantic coastal plain aquifer in Oyster, Virginia. Appl. Environ. Microbiol. 70:16801687.
70. Gallop, P. M.,, M. A. Paz,, E. Henson, and, S. A. Latt. 1984. Dynamic approaches to the delivery of reporter reagents into living cells. BioTechniques 1:3236.
71. Gannon, J.,, Y. H. Tan,, P. Baveye, and, M. Alexander. 1991. Effect of sodium chloride on transport of bacteria in a saturated aquifer material. Appl. Environ. Microbiol. 57:24972501.
72. Gannon, J. T.,, V. B. Manilal, and, M. Alexander. 1991. Relationship between cell-surface properties and transport of bacteria through soil. Appl. Environ. Microbiol. 57:190193.
73. Garabedian, S. P.,, D. R. Leblanc,, L. W. Gelhar, and, M. A. Celia. 1991. Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts. 2. Analysis of spatial moments for a nonreactive tracer. Water Resour. Res. 27:911924.
74. Glynn, J. R., Jr.,, B. M. Belongia,, R. G. Arnold,, K. L. Ogden, and, J. C. Baygents. 1998. Capillary electrophoresis measurements of electrophoretic mobility for colloidal particles of biological interest. Appl. Environ. Microbiol. 64:25722577.
75. Goltz, M. N.,, and P. V. Roberts. 1987. Using the method of moments to analyze 3-dimensional diffusion-limited solute transport from temporal and spatial perspectives. Water Resour. Res. 23:15751585.
76. Graham, D. W.,, D. G. Korich,, R. P. Leblanc,, N. A. Sinclair, and, R. G. Arnold. 1992. Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl. Environ. Microbiol. 58:22312236.
77. Grasso, D.,, B. F. Smets,, K. A. Strevett,, B. D. Machinist,, C. J. VanOss,, R. F. Giese, and, W. Wu. 1996. Impact of physiological state on surface thermodynamics and adhesion of Pseudomonas aeruginosa. Environ. Sci. Technol. 30:36043608.
78. Groffman, P. M.,, A. J. Gold, and, G. Howard. 1995. Hydrologic tracer effects on soil microbial activities. Soil Sci. Soc. Am. J. 59:478481.
79. Gross, M. J.,, O. Albinger,, D. G. Jewett,, B. E. Logan,, R. C. Bales, and, R. G. Arnold. 1995. Measurement of bacterial collision efficiencies in porous-media. Water Res. 29:11511158.
80. Gross, M. J.,, and B. E. Logan. 1995. Influence of different chemical treatments on transport of Alcaligenes paradoxus in porous media. Appl. Environ. Microbiol. 61:17501756.
81. Guimares, V. F.,, I. V. Cruz,, A. N. Hagler,, L. C. Mendonca-Hagler, and, J. D. van Elsas. 1997. Transport of a genetically modified Pseudomonas fluorescens and its parent strain through undisturbed tropical soil cores. Appl. Soil Ecol. 7:4150.
82. Hahn, M. W.,, and C. R. O’Melia. 2004. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications. Environ. Sci. Technol. 38:210220.
83. Harms, H.,, and T. N. P. Bosma. 1997. Mass transfer limitation of microbial growth and pollutant degradation. J. Ind. Microbiol. Biotechnol. 18:97105.
84. Harms, H.,, and A. J. B. Zehnder. 1994. Influence of substrate diffusion on degradation of Dibenzofuran and 3-chlorodibenzofuran by attached and suspended bacteria. Appl. Environ. Microbiol. 60:27362745.
85. Hart, A.,, and C. Edwards. 1987. Buoyant density-fluctuations during the cell-cycle of Bacillus subtilis. Arch. Microbiol. 147:6872.
86. Harter, T.,, S. Wagner, and, E. R. Atwill. 2000. Colloid transport and filtration of Cryptosporidium parvum in sandy soils and aquifer sediments. Environ. Sci. Technol. 34:6270.
87. Harvey, R. W. 1991. Parameters involved in modeling movement of bacteria in groundwater, p. 89–114. In C. J. Hurst (ed.), Modeling the Environmental Fate of Microorganisms. American Society for Microbiology, Washington, D.C.
88. Harvey, R. W.,, and S. P. Garabedian. 1991. Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer. Environ. Sci. Technol. 25:178185.
89. Harvey, R. W.,, and L. H. George. 1987. Growth determinations for unattached bacteria in a contaminated aquifer. Appl. Environ. Microbiol. 53:29922996.
90. Harvey, R. W.,, L. H. George,, R. L. Smith, and, D. R. Leblanc. 1989. Transport of microspheres and indigenous bacteria through a sandy aquifer: results of natural-gradient and forced-gradient tracer experiments. Environ. Sci. Technol. 23:5156.
91. Harvey, R. W.,, and H. Harms. 2002. Tracers in ground-water: use of microorganisms and microspheres, p. 3194–3202. In G. Bitton (ed.), Encyclopedia of Environmental Microbiology, vol. 6. John Wiley & Sons, Inc., New York, N.Y.
92. Harvey, R. W.,, N. E. Kinner,, A. Bunn,, D. MacDonald, and, D. Metge. 1995. Transport behavior of groundwater protozoa and protozoan-sized microspheres in sandy aquifer sediments. Appl. Environ. Microbiol. 61:209217.
93. Harvey, R. W.,, N. E. Kinner,, D. Macdonald,, D. W. Metge, and, A. Bunn. 1993. Role of physical heterogeneity in the interpretation of small-scale laboratory and field observations of bacteria, microbial-sized micro-sphere, and bromide transport through aquifer sediments. Water Resour. Res. 29:27132721.
94. Harvey, R. W.,, N. Mayberry,, N. E. Kinner,, D. W. Metge, and, F. Novarino. 2002. Effect of growth conditions and staining procedure upon the subsurface transport and attachment behaviors of a groundwater protist. Appl. Environ. Microbiol. 68:18721881.
95. Harvey, R. W.,, D. W. Metge,, N. Kinner, and, N. Mayberry. 1997. Physiological considerations in applying laboratory-determined buoyant densities to predictions of bacterial and protozoan transport in groundwater: results of in situ and laboratory tests. Environ. Sci. Technol. 31:289295.
96. Harvey, R. W.,, D. W. Metge,, A. M. Shapiro,, R. A. Renken,, K. J. Cunningham, and, M. Zygnerski. Cryptosporidium parvum oocyst transport potential in the karstic limestone of the Biscayne Aquifer. 2. Results of tracer studies with carboxylated polystyrene microspheres and killed oocysts. Submitted for publication.
97. Heise, S.,, and G. Gust. 1999. Influence of the physiological status of bacteria on their transport into permeable sediments. Mar. Ecol. Prog. Ser. 190:141153.
98. Heitzer, A.,, B. Applegate,, S. Kehrmeyer,, H. Pinkart,, O. F. Webb,, T. J. Phelps,, D. C. White, and, G. S. Sayler. 1998. Physiological considerations of environmental applications of lux reporter fusions. J. Microbiol. Methods 33:4557.
99. Hekman, W. E.,, C. E. Heijnen,, S. Burgers,, J. A. Vanveen, and, J. D. Vanelsas. 1995. Transport of bacterial inoculants through intact cores of 2 different soils as affected by water percolation and the presence of wheat plants. FEMS Microbiol. Ecol. 16:143157.
100. Hendry, M. J.,, J. R. Lawrence, and, P. Maloszewski. 1997. The role of sorption in the transport of Klebsiella oxytoca through saturated silica sand. Ground Water 35:574584.
101. Hess, K. M.,, S. H. Wolf, and, M. A. Celia. 1992. Large-scale natural gradient tracer test in sand and gravel, Cape-Cod, Massachusetts. 3. Hydraulic conductivity variability and calculated macrodispersivities. Water Resour. Res. 28:20112027.
102. Hobbie, J. E.,, R. J. Daley, and, S. Jasper. 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33:12251228.
103. Holben, W. E.,, and P. H. Ostrom. 2000. Monitoring bacterial transport by stable isotope enrichment of cells. Appl. Environ. Microbiol. 66:49354939.
104. Hornberger, G. M.,, A. L. Mills, and, J. S. Herman. 1992. Bacterial transport in porous-media-evaluation of a model using laboratory observations. Water Resour. Res. 28:915923.
105. Huggenberger, P.,, E. Meier, and, A. Pugin. 1994. Ground-probing radar as a tool for heterogeneity estimation in gravel deposits—advances in data-processing and facies analysis. J. Appl. Geophys. 31:171184.
106. Hurst, C. J. (ed.). 1991. Modeling the Environmental Fate of Microorganisms. American Society for Microbiology, Washington, D.C.
107. Huysman, F.,, and W. Verstraete. 1993. Water-facilitated transport of bacteria in unsaturated soil columns—influence of cell-surface hydrophobicity and soil properties. Soil Biol. Biochem. 25:8390.
108. Illangasekare, T. H.,, E. J. Armbruster, and, D. N. Yates. 1995. Non-aqueous-phase fluids in heterogeneous aquifers—experimental-study. J. Environ. Eng. 121:571579.
109. Jang, L. K.,, P. W. Chang,, J. E. Findley, and, T. F. Yen. 1983. Selection of bacteria with favorable transport properties through porous rock for the application of microbial-enhanced oil recovery. Appl. Environ. Microbiol. 46:10661072.
110. Jaspers, M. C. M.,, S. Totevova,, K. Demnerova,, H. Harms, and, J. R. van der Meer. 1999. The use of whole-cell living biosensors to determine the bioavailability of pollutants to microorganisms, p. 153–158. In P. Baveye, J., C. Block, and, V. V. Goncharuk (ed.), Bioavailability of Organic Xenobiotics in the Environment. Kluwer Academic Publishers, London, England.
111. Jenkins, M. B.,, and L. W. Lion. 1993. Mobile bacteria and transport of polynuclear aromatic hydrocarbons in porous media. Appl. Environ. Microbiol. 59:33063313.
112. Jenneman, G. E.,, M. J. McInerney,, M. E. Crocker, and, R. M. Knapp. 1986. Effect of sterilization by dry heat or autoclaving on bacterial penetration through Berea sandstone. Appl. Environ. Microbiol. 51:3943.
113. Jenneman, G. E.,, M. J. McInerney, and, R. M. Knapp. 1985. Microbial penetration through nutrient-saturated Berea sandstone. Appl. Environ. Microbiol. 50:383391.
114. Jewett, D. G.,, T. A. Hilbert,, B. E. Logan,, R. G. Arnold, and, R. C. Bales. 1995. Bacterial transport in laboratory columns and filters—influence of tonic strength and pH on collision efficiency. Water Res. 29:16731680.
115. Jewett, D. G.,, B. E. Logan,, R. G. Arnold, and, R. C. Bales. 1999. Transport of Pseudomonas fluorescens strain P17 through quartz sand columns as a function of water content. J. Contam. Hydrol. 36:7389.
116. Jin, Y.,, Y. J. Chu, and, Y. S. Li. 2000. Virus removal and transport in saturated and unsaturated sand columns. J. Contam. Hydrol. 43:111128.
117. Jin, Y.,, M. V. Yates,, S. S. Thompson, and, W. A. Jury. 1997. Sorption of viruses during flow through saturated sand columns. Environ. Sci. Technol. 31:548555.
118. Johnson, M. J. 1990. Relative permeabilities of gasoline, water, and air in sand. M.S. thesis. University of New Hampshire, Durham.
119. Johnson, T. E.,, and D. K. Kreamer. 1994. Physical and mathematical-modeling of diesel fuel liquid and vapor movement in porous-media. Ground Water 32:551560.
120. Johnson, W. P.,, K. A. Blue,, B. E. Logan, and, R. G. Arnold. 1995. Modeling bacterial detachment during transport through porous media as a residence-time-dependent process. Water Resour. Res. 31:26492658.
121. Johnson, W. P.,, and B. E. Logan. 1996. Enhanced transport of bacteria in porous media by sediment-phase and aqueous-phase natural organic matter. Water Res. 30:923931.
122. Johnson, W. P.,, P. Zhang,, M. E. Fuller,, T. D. Scheibe,, B. J. Mailloux,, T. C. Onstott,, M. F. Deflaun,, S. S. Hubbard,, J. Radtke,, W. P. Kovacik, and, W. Holben. 2001. Ferrographic tracking of bacterial transport in the field at the narrow channel focus area, Oyster, VA. Environ. Sci. Technol. 35:182191.
123. Jucker, B. A.,, H. Harms,, S. J. Hug, and, A. J. B. Zehnder. 1997. Adsorption of bacterial surface polysaccharides on mineral oxides is mediated by hydrogen bonds. Colloids Surf. B 9:331343.
124. Jucker, B. A.,, H. Harms, and, A. J. B. Zehnder. 1996. Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and Teflon. J. Bacteriol. 178:54725479.
125. Jucker, B. A.,, H. Harms, and, A. J. B. Zehnder. 1998. Polymer interactions between five gram-negative bacteria and glass investigated using LPS micelles and vesicles as model systems. Colloids Surf. B 11:3345.
126. Jucker, B. A.,, A. J. B. Zehnder, and, H. Harms. 1998. Quantification of polymer interactions in bacterial adhesion. Environ. Sci. Technol. 32:29092915.
127. Karatani, H.,, T. Wilson, and, J. W. Hastings. 1992. A blue fluorescent protein from a yellow-emitting luminous bacterium. Photochem. Photobiol. 55:293299.
128. Katz, Y.,, and H. Gvirtzman. 2000. Capture and cleanup of a migrating VOC plume by the in-well vapor stripping: a sand tank experiment. J. Contam. Hydrol. 43:2544.
129. Kemp, J. S.,, E. Paterson,, S. M. Gammack,, M. S. Cresser, and, K. Killham. 1992. Leaching of genetically modified Pseudomonas fluorescens through organic soils—influence of temperature, soil pH, and roots. Biol. Fertil. Soils 13:218224.
130. Kim, C. K.,, M. J. Kwak, and, S. G. Lee. 1996. Structural and functional stability of the genetic recombinant plasmid pCU103 in different water environments. J. Microbiol. 34:241247.
131. Kim, S. H.,, and M. Y. Corapcioglu. 1996. A kinetic approach to modeling mobile bacteria-facilitated ground-water contaminant transport. Water Resour. Res. 32:321331.
132. Kinner, N. E.,, R. W. Harvey, and, M. Kazmierkiewicz-Tabaka. 1997. Effect of flagellates on free-living bacterial abundance in an organically contaminated aquifer. FEMS Microbiol. Rev. 20:249259.
133. Kinoshita, T.,, R. C. Bales,, K. M. Maguire, and, C. P. Gerba. 1993. Effect of pH on bacteriophage transport through sandy soils. J. Contam. Hydrol. 14:5570.
134. Kinoshita, T.,, R. C. Bales,, M. T. Yahya, and, C. P. Gerba. 1993. Bacteria transport in a porous-medium—retention of Bacillus and Pseudomonas on silica surfaces. Water Res. 27:12951301.
135. Krumme, M. L.,, R. L. Smith,, J. Egestorff,, S. M. Thiem,, J. M. Tiedje,, K. N. Timmis, and, D. F. Dwyer. 1994. Behavior of pollutant-degrading microorganisms in aquifers—predictions for genetically engineered organisms. Environ. Sci. Technol. 28:11341138.
136. Kucukcolak, E.,, B. Koopman,, G. Bitton, and, S. Farrah. 1998. Validity of fluorochrome-stained bacteria as tracers of short-term microbial transport through porous media. J. Contam. Hydrol. 31:349357.
137. Kuwabara, J. S.,, and R. W. Harvey. 1990. Application of a hollow-fiber, tangential-flow device for sampling suspended bacteria and particles from natural-waters. J. Environ. Qual. 19:625629.
138. Lahlou, M.,, H. Harms,, D. Springael, and, J. J. Ortega-Calvo. 2000. Influence of soil components on the transport of polycyclic aromatic hydrocarbon-degrading bacteria through saturated porous media. Environ. Sci. Technol. 34:36493656.
139. Lance, J. C.,, and C. P. Gerba. 1984. Virus movement in soil during saturated and unsaturated flow. Appl. Environ. Microbiol. 47:335337.
140. Leblanc, D. R.,, S. P. Garabedian,, K. M. Hess,, L. W. Gelhar,, R. D. Quadri,, K. G. Stollenwerk, and, W. W. Wood. 1991. Large-scale natural gradient tracer test in sand and gravel, Cape-Cod, Massachusetts. 1. Experimental-design and observed tracer movement. Water Resour. Res. 27:895910.
141. Lewus, P.,, and R. M. Ford. 1999. Temperature-sensitive motility of Sulfolobus acidocaldarius influences population distribution in extreme environments. J. Bacteriol. 181:40204025.
142. Li, B. L.,, C. Loehle, and, D. Malon. 1996. Microbial transport through heterogeneous porous media: random walk, fractal, and percolation approaches. Ecol. Modelling 85:285302.
143. Li, Q.,, and B. E. Logan. 1999. Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants. Water Res. 33:10901100.
144. Lindlow, S. E.,, A. C. Amy,, W. R. Barchet, and, C. D. Upper. 1978. The role of bacterial ice nuclei in frost injury to sensitive plants, p. 249–263. In P. Li (ed.), Plant Cold Hardiness and Freezing Stress. Academic Press, New York, N.Y.
145. Lindqvist, R.,, and G. Bengtsson. 1995. Diffusion-limited and chemical-interaction-dependent sorption of soil bacteria and microspheres. Soil Biol. Biochem. 27:941948.
146. Lindqvist, R.,, and G. Bengtsson. 1991. Dispersal dynamics of groundwater bacteria. Microb. Ecol. 21:4972.
147. Lindqvist, R.,, J. S. Cho, and, C. G. Enfield. 1994. A kinetic-model for cell-density dependent bacterial transport in porous-media. Water Resour. Res. 30:32913299.
148. Lindqvist, R.,, and C. G. Enfield. 1992. Biosorption of dichlorodiphenyltrichloroethane and hexachlorobenzene in groundwater and its implications for facilitated transport. Appl. Environ. Microbiol. 58:22112218.
149. Lindqvist, R.,, and C. G. Enfield. 1992. Cell-density and nonequilibrium sorption effects on bacterial dispersal in groundwater microcosms. Microb. Ecol. 24:2541.
150. Logan, B. E.,, D. G. Jewett,, R. G. Arnold,, E. J. Bouwer, and, C. R. Omelia. 1995. Clarification of clean-bed filtration models. J. Environ. Eng. 121:869873.
151. Logan, B. E.,, D. G. Jewett,, R. G. Arnold,, E. J. Bouwer, and, C. R. Omelia. 1997. Clarification of clean-bed filtration models-closure. J. Environ. Eng. 123:730731.
152. Loveland, J. P.,, J. N. Ryan,, G. L. Amy, and, R. W. Harvey. 1996. The reversibility of virus attachment to mineral surfaces. Colloids Surf. A 107:205221.
153. Mace, R. E. 1999. Estimation of hydraulic conductivity in large-diameter, hand-dug wells using slug-test methods. J. Hydrol. 219:3445.
154. MacLeod, F. A.,, H. M. Lappin-Scott, and, J. W. Costerton. 1988. Plugging of a model rock system by using starved bacteria. Appl. Environ. Microbiol. 54:13651372.
155. Macler, B. A.,, and J. C. Merkle. 2000. Current knowledge on groundwater microbial pathogens and their control. Hydrogeol. J. 8:2940.
156. Mailloux, B. J.,, and M. E. Fuller. 2003. Determination of in situ bacterial growth rates in aquifers and aquifer sediments. Appl. Environ. Microbiol. 69:37983808.
157. Martin, M. J.,, B. E. Logan,, W. P. Johnson,, D. G. Jewett, and, R. G. Arnold. 1996. Scaling bacterial filtration rates in different sized porous media. J. Environ. Eng.-ASCE 122:407415.
158. Martin, R.,, and A. Thomas. 1974. An example of the use of bacteriophage as a groundwater tracer. J. Hydrol. 23:7378.
159. Martin, R. E.,, and E. J. Bouwer. 1991. Determination of bacterial collision efficiencies in a rotating disk system. Environ. Sci. Technol. 25:20752082.
160. Martin, R. E.,, E. J. Bouwer, and, L. M. Hanna. 1992. Application of clean-bed filtration theory to bacterial deposition in porous-media. Environ. Sci. Technol. 26:10531058.
161. Mas, J.,, C. Pedrosalio, and, R. Guerrero. 1989. Variations in cell-size and buoyant density of Escherichia coli-K12 during glycogen accumulation. FEMS Microbiol. Lett. 57:231236.
162. Mawdsley, J. L.,, A. E. Brooks, and, R. J. Merry. 1996. Movement of the protozoan pathogen Cryptosporidium parvum through three contrasting soil types. Biol. Fertil. Soils 21:3036.
163. McCaulou, D. R.,, R. C. Bales, and, R. G. Arnold. 1995. Effect of temperature-controlled motility on transport of bacteria and microspheres through saturated sediment. Water Resour. Res. 31:271280.
164. McCaulou, D. R.,, R. C. Bales, and, J. F. McCarthy. 1994. Use of short-pulse experiments to study bacteria transport through porous-media. J. Contam. Hydrol. 15:114.
165. McInerney, M. J. 1991. Use of models to predict bacterial penetration and movement within a subsurface matrix, p. 115–135. In C. J. Hurst (ed.), Modeling the Environmental Fate of Microorganisms. American Society for Microbiology, Washington, D.C.
166. McKay, L. D.,, J. A. Cherry,, R. C. Bales,, M. T. Yahya, and, C. P. Gerba. 1993. A field example of bacteriophage as tracers of fracture flow. Environ. Sci. Technol. 27:10751079.
167. McKay, L. D.,, W. E. Sanford, and, J. M. Strong. 2000. Field-scale migration of colloidal tracers in a fractured shale saprolite. Ground Water 38:139147.
168. McKay, L. D.,, P. L. Stafford, and, L. E. Toran. 1997. EPM modeling of a field-scale tritium tracer experiment in fractured, weathered shale. Ground Water 35:9971007.
169. Miller, W. G.,, and S. E. Lindow. 1997. An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene 191:149153.
170. Mills, A. L.,, J. S. Herman,, G. M. Hornberger, and, T. H. Dejesus. 1994. Effect of solution ionic-strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand. Appl. Environ. Microbiol. 60:33003306.
171. Mohammed, N.,, and R. I. Allayla. 2000. Effect of groundwater velocity on pilot scale bioremediation of gasoline contaminated sandy aquifers. Water Air Soil Pollut. 120:315329.
172. Mohammed, N.,, and R. I. Allayla. 1997. Modeling transport and biodegradation of BTX compounds in saturated sandy soil. J. Hazard. Mater. 54:155174.
173. Mohanty, B. P.,, R. S. Kanwar, and, C. J. Everts. 1994. Comparison of saturated hydraulic conductivity measurement methods for a glacial-till soil. Soil Sci. Soc. Am. J. 58:672677.
174. Montgomery, A. D.,, M. J. McInerney, and, K. L. Sublette. 1990. Microbial control of the production of hydrogen-sulfide by sulfate-reducing bacteria. Biotechnol. Bioeng. 35:533539.
175. Morley, L. M.,, G. M. Hornberger,, A. L. Mills, and, J. S. Herman. 1998. Effects of transverse mixing on transport of bacteria through heterogeneous porous media. Water Resour. Res. 34:19011908.
176. Murphy, E. M.,, and T. R. Ginn. 2000. Modeling microbial processes in porous media. Hydrogeol. J. 8:142158.
177. Murray, J. P.,, and S. Laband. 1979. Degradation of poliovirus by adsorption on inorganic surfaces. Appl. Environ. Microbiol. 37:480486.
178. Niehren, S.,, and W. Kinzelbach. 1998. Artificial colloid tracer tests: development of a compact on-line micro-sphere counter and application to soil column experiments. J. Contam. Hydrol. 35:249259.
179. Niehren, S.,, W. Kinzelbach,, S. Seeger, and, J. Wolfrum. 1995. An all-solid-state flow cytometer for counting fluorescent microspheres. Anal. Chem. 67:26662671.
180. Nir, S. 1976. Van der Waals interactions between surfaces of biological interest. Prog. Surf. Sci. 8:158.
181. Olson, M. S.,, R. M. Ford,, J. A. Smith, and, E. J. Fernandez. 2004. Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging. Environ. Sci. Technol. 38:38643870.
182. Pang, L. P.,, M. Close, and, M. Noonan. 1998. Rhodamine WT and Bacillus subtilis transport through an alluvial gravel aquifer. Ground Water 36:112122.
183. Parolin, C.,, A. Montecucco,, G. Ciarrocchi,, G. Pedralinoy,, S. Valisena,, M. Palumbo, and, G. Palu. 1990. The effect of the minor groove binding-agent DAPI (2-amidino-diphenyl-indole) on DNA-directed enzymes—an attempt to explain inhibition of plasmid expression in Escherichia coli. FEMS Microbiol. Lett. 68:341346.
184. Pedrosalio, C.,, J. Mas, and, R. Guerrero. 1985. The influence of poly-beta-hydroxybutyrate accumulation on cell-volume and buoyant density in Alcaligenes eutrophus. Arch. Microbiol. 143:178184.
185. Petushkov, V. N.,, and J. Lee. 1997. Purification and characterization of flavoproteins and cytochromes from the yellow bioluminescence marine bacterium Vibrio fischeri strain Y1. Eur. J. Biochem. 245:790796.
186. Pickens, J. F.,, J. A. Cherry,, G. E. Grisak,, W. F. Merritt, and, B. A. Risto. 1978. A multilevel device for ground-water sampling and piezometric monitoring. Ground Water 16:322327.
187. Pieper, A. P.,, J. N. Ryan,, R. W. Harvey,, G. L. Amy,, T. H. Illangasekare, and, D. W. Metge. 1997. Transport and recovery of bacteriophage PRD1 in a sand and gravel aquifer: effect of sewage-derived organic matter. Environ. Sci. Technol. 31:11631170.
188. Powelson, D. K.,, and C. P. Gerba. 1994. Virus removal from sewage effluents during saturated and unsaturated flow-through soil columns. Water Res. 28:21752181.
189. Powelson, D. K.,, and A. L. Mills. 1996. Bacterial enrichment at the gas-water interface of a laboratory apparatus. Appl. Environ. Microbiol. 62:25932597.
190. Powelson, D. K.,, and A. L. Mills. 2001. Transport of Escherichia coli in sand columns with constant and changing water contents. J. Environ. Qual. 30:238245.
191. Powelson, D. K.,, and A. L. Mills. 1998. Water saturation and surfactant effects on bacterial transport in sand columns. Soil Sci. 163:694704.
192. Powelson, D. K.,, J. R. Simpson, and, C. P. Gerba. 1991. Effects of organic matter on virus transport in unsatu-rated flow. Appl. Environ. Microbiol. 57:21922196.
193. Pusey, P. N.,, and J. A. Tough. 1985. Particle interactions, p. 85–102. In R. Pecora (ed.), Dynamic Light Scattering: Applications to Photon Correlation Spectroscopy. Plenum, New York, N.Y.
194. Raiders, R. A.,, M. J. McInerney,, D. E. Revus,, H. M. Torbati,, R. M. Knapp, and, G. E. Jenneman. 1986. Selectivity and depth of microbial plugging in Berea sandstone cores. J. Ind. Microbiol. 1:195203.
195. Rajagopalan, R.,, and C. Tien. 1976. Trajectory analysis of deep-bed filtration with the sphere-in-cell porous media model. J. Am. Inst. Chem. Eng. 22:523533.
196. Reddy, H. L.,, and R. M. Ford. 1996. Analysis of bio-degradation and bacterial transport: comparison of models with kinetic and equilibrium bacterial adsorption. J. Contam. Hydrol. 22:271287.
197. Redman, J. A.,, S. B. Grant,, T. M. Olson,, J. M. Adkins,, J. L. Jackson,, M. S. Castillo, and, W. A. Yanko. 1999. Physicochemical mechanisms responsible for the filtration and mobilization of a filamentous bacteriophage in quartz sand. Water Res. 33:4352.
198. Redman, J. A.,, S. B. Grant,, T. M. Olson,, M. E. Hardy, and, M. K. Estes. 1997. Filtration of recombinant Norwalk virus particles and bacteriophage MS2 in quartz sand: importance of electrostatic interactions. Environ. Sci. Technol. 31:33783383.
199. Redman, J. A.,, S. L. Walker, and, M. Elimelech. 2004. Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environ. Sci. Technol. 38:17771785.
200. Rehmann, L. L. C.,, C. Welty, and, R. W. Harvey. 1999. Stochastic analysis of virus transport in aquifers. Water Resour. Res. 35:19872006.
201. Ren, J.,, A. I. Packman, and, C. Welty. 2000. Correlation of colloid collision efficiency with hydraulic conductivity of silica sands. Water Resour. Res. 36:24932500.
202. Reynolds, P. J.,, P. Sharma,, G. E. Jenneman, and, M. J. McInerney. 1989. Mechanisms of microbial movement in subsurface materials. Appl. Environ. Microbiol. 55:22802286.
203. Rice, K. C.,, and G. M. Hornberger. 1998. Comparison of hydrochemical tracers to estimate source contributions to peak flow in a small, forested, headwater catchment. Water Resour. Res. 34:17551766.
204. Rijnaarts, H.,, W. Norde,, E. Bouwer,, J. Lyklema, and, A. Zehnder. 1993. Bacterial adhesion under static and dynamic conditions. Appl. Environ. Microbiol. 59:32553265.
205. Rijnaarts, H. H. M.,, W. Norde,, E. J. Bouwer,, J. Lyklema, and, A. J. B. Zehnder. 1996. Bacterial deposition in porous media related to the clean bed collision efficiency and to substratum blocking by attached cells. Environ. Sci. Technol. 30:28692876.
206. Ripple, C. D.,, R. V. James, and, J. Rubin. 1974. Packing-induced radial particle-size segregation: influence on hydrodynamic dispersion and water transfer measurements. Soil Sci. Soc. Am. J. 38:219222.
207. Robertson, B. R.,, D. K. Button, and, A. L. Koch. 1998. Determination of the biomasses of small bacteria at low concentrations in a mixture of species with forward light scatter measurements by flow cytometry. Appl. Environ. Microbiol. 64:39003909.
208. Rossi, P.,, A. Carvalho-Dill,, I. Müller, and, M. Aragno. 1994. Comparative tracing experiments in a porous aquifer using bacteriophages and fluorescent dye on a test field socated at Wilerwald (Switzerland) and simultaneously surveyed in detail on a local scale by radio-magneto-tellury (12–240 Khz). Environ. Geol. 23:192200.
209. Rossi, P.,, N. Dorfliger,, K. Kennedy,, I. Muller, and, M. Aragno. 1998. Bacteriophages as surface and ground water tracers. Hydrol. Earth Sys. Sci. 2:101110.
210. Rothmel, R. K.,, R. W. Peters,, E. St Martin, and, M. F. Deflaun. 1998. Surfactant foam bioaugmentation technology for in situ treatment of TCE-DNAPLs. Environ. Sci. Technol. 32:16671675.
211. Rutter, P. R.,, and P. Vincent. 1980. The adhesion of microorganisms to surfaces: physicochemical aspects, p. 79–92. In R. C. W. Berkeley,, J. M. Lynch,, J. Melling,, P. R. Rutter, and, P. Vincent (ed.), Microbial Adhesion to Surfaces. E. Horwood Ltd., Chichester, United Kingdom.
212. Ryan, J. N.,, M. Elimelech,, R. A. Ard,, R. W. Harvey, and, P. R. Johnson. 1999. Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer. Environ. Sci. Technol. 33:6373.
213. Ryan, J. N.,, R. W. Harvey,, D. Metge,, M. Elimelech,, T. Navigato, and, A. P. Pieper. 2002. Field and laboratory investigations of inactivation of viruses (PRD1 and MS2) attached to iron oxide-coated quartz sand. Environ. Sci. Technol. 36:24032413.
214. Salanitro, J. P.,, G. E. Spinnler,, C. C. Neaville,, P. M. Maner,, S. M. Stearns, and, P. C. Johnson. 1999. Presented at the 5th International Symposium on In Situ and On Site Bioremediation, San Diego, Calif., April 19 to 22, 1999.
215. Schafer, A.,, H. Harms, and, A. J. B. Zehnder. 1998. Bacterial accumulation at the air-water interface. Environ. Sci. Technol. 32:37043712.
216. Schafer, A.,, P. Ustohal,, H. Harms,, F. Stauffer,, T. Dracos, and, A. J. B. Zehnder. 1998. Transport of bacteria in unsaturated porous media. J. Contam. Hydrol. 33:149169.
217. Schijven, J. F.,, W. Hoogenboezem,, S. M. Hassanizadeh, and, J. H. Peters. 1999. Modeling removal of bacteriophages MS2 and PRD1 by dune recharge at Castricum, Netherlands. Water Resour. Res. 35:11011111.
218. Scholl, M. A.,, and R. W. Harvey. 1992. Laboratory investigations on the role of sediment surface and groundwater chemistry in transport of bacteria through a contaminated sandy aquifer. Environ. Sci. Technol. 26:14101417.
219. Scholl, M. A.,, A. L. Mills,, J. S. Herman, and, G. M. Hornberger. 1990. The influence of mineralogy and solution chemistry on the attachment of bacteria to representative aquifer materials. J. Contam. Hydrol. 6:321336.
220. Shales, S. W.,, and S. Kumarasingham. 1987. Bacterial transport through porous solids—interactions between Micrococcus luteus cells and sand particles. J. Ind. Microbiol. 2:219227.
221. Sharma, P. K.,, and M. J. McInerney. 1994. Effect of grain size on bacterial penetration, reproduction, and metabolic activity in porous-glass bead chambers. Appl. Environ. Microbiol. 60:14811486.
222. Sharma, P. K.,, M. J. McInerney, and, R. M. Knapp. 1993. In situ growth and activity and modes of penetration of Escherichia coli in unconsolidated porous materials. Appl. Environ. Microbiol. 59:36863694.
223. Simoni, S. F.,, T. N. P. Bosma,, H. Harms, and, A. J. B. Zehnder. 2000. Bivalent cations increase both the sub-population of adhering bacteria and their adhesion efficiency in sand columns. Environ. Sci. Technol. 34:10111017.
224. Simoni, S. F.,, H. Harms,, T. N. P. Bosma, and, A. J. B. Zehnder. 1998. Population heterogeneity affects transport of bacteria through sand columns at low flow rates. Environ. Sci. Technol. 32:21002105.
225. Simoni, S. F.,, A. Schafer,, H. Harms, and, A. J. B. Zehnder. 2001. Factors affecting mass transfer limited biodegradation in saturated porous media. J. Contam. Hydrol. 50:99120.
226. Sirokman, G.,, T. Wilson, and, J. W. Hastings. 1995. A bacterial luciferase reaction with a negative temperature-coefficient attributable to protein-protein interaction. Biochemistry 34:1307413081.
227. Sjollema, J.,, H. J. Busscher, and, A. H. Weerkamp. 1989. Experimental approaches for studying adhesion of microorganisms to solid substrata: applications and mass transport. J. Microbiol. Methods 9:7990.
228. Smith, M. S.,, G. W. Thomas,, R. E. White, and, D. Ritonga. 1985. Transport of Escherichia coli through intact and disturbed soil columns. J. Environ. Qual. 14:8791.
229. Smith, R. L.,, R. W. Harvey, and, D. R. Leblanc. 1991. Importance of closely spaced vertical sampling in delineating chemical and microbiological gradients in ground-water studies. J. Contam. Hydrol. 7:285300.
230. Stauffer, F.,, and T. Dracos. 1986. Experimental and numerical study of water and solute infiltration in layered porous-media. J. Hydrol. 84:934.
231. Stephen, J. R.,, Y. J. Chang,, Y. D. Gan,, A. Peacock,, S. M. Pfiffner,, M. J. Barcelona,, D. C. White, and, S. J. Macnaughton. 1999. Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)-based approach. Environ. Microbiol. 1:231241.
232. Story, S. P.,, P. S. Amy,, C. W. Bishop, and, F. S. Colwell. 1995. Bacterial transport in volcanic tuff cores under saturated flow conditions. Geomicrobiol. J. 13:249264.
233. Straub, T. M.,, I. L. Pepper, and, C. P. Gerba. 1995. Comparison of PCR and cell culture for detection of enteroviruses in sludge-amended field soils and determination of their transport. Appl. Environ. Microbiol. 61:20662068.
234. Streger, S. H.,, S. Vainberg,, H. Dong, and, P. B. Hatzinger. 2002. Enhancing transport of Hydrogenophaga flava ENV735 for bioaugmentation of aquifers contaminated with methyl tert-butyl ether. Appl. Environ. Microbiol. 68:55715579.
235. Strong-Gunderson, J. M.,, and A. V. Palumbo. 1997. Laboratory studies identify a colloidal groundwater tracer: implications for bioremediation. FEMS Microbiol. Lett. 148:131135.
236. Sun, Y.,, J. N. Petersen,, J. Bear,, T. P. Clement, and, B. S. Hooker. 1999. Modeling microbial transport and biodegradation in a dual-porosity system. Transport Porous Media 35:4965.
237. Sutton, D. J.,, Z. J. Kabala,, D. E. Schaad, and, N. C. Ruud. 2000. The dipole-flow test with a tracer: a new single-borehole tracer test for aquifer characterization. J. Contam. Hydrol. 44:71101.
238. Tan, Y.,, J. T. Gannon,, P. Baveye, and, M. Alexander. 1994. Transport of bacteria in an aquifer sand—experiments and model simulations. Water Resour. Res. 30:32433252.
239. Taylor, S. W.,, and P. R. Jaffe. 1990. Substrate and bio-mass transport in a porous-medium. Water Resour. Res. 26:21812194.
240. Thompson, S. S.,, and M. V. Yates. 1999. Bacteriophage inactivation at the air-water-solid interface in dynamic batch systems. Appl. Environ. Microbiol. 65:11861190.
241. Tong, M.,, X. Li,, C. N. Brow, and, W. P. Johnson. 2005. Detachment-influenced transport of an adhesion-deficient bacterial strain within water-reactive porous media. Environ. Sci. Technol. 39:25002508.
242. Toran, L.,, and A. V. Palumbo. 1992. Colloid transport through fractured and unfractured laboratory sand columns. J. Contam. Hydrol. 9:289303.
243. Trevors, J. T.,, J. D. Vanelsas,, L. S. Vanoverbeek, and, M. E. Starodub. 1990. Transport of a genetically engineered Pseudomonas fluorescens strain through a soil microcosm. Appl. Environ. Microbiol. 56:401408.
244. Troussellier, M.,, C. Courties,, P. Lebaron, and, P. Servais. 1999. Flow cytometric discrimination of bacterial populations in seawater based on SYTO 13 staining of nucleic acids. FEMS Microbiol. Ecol. 29:319330.
245. Tufenkji, N.,, and M. Elimelech. 2004. Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 38:529536.
246. Tufenkji, N.,, and M. Elimelech. 2005. Spatial distributions of Cryptosporidium oocysts in porous media: evidence for dual mode deposition. Environ. Sci. Technol. 39:36203629.
247. Tufenkji, N.,, G. F. Miller,, J. N. Ryan,, R. W. Harvey, and, M. Elimelech. 2004. Transport of Cryptosporidium oocysts in porous media: role of straining and physicochemical filtration. Environ. Sci. Technol. 38:59325938.
248. Unge, A.,, R. Tombolini,, L. Molbak, and, J. K. Jansson. 1999. Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl. Environ. Microbiol. 65:813821.
249. Unge, A.,, R. Tombolini,, A. Moller, and, J. K. Jansson. 1997. Optimization of GPF as a marker for detection of bacteria in environmental samples, p. 391–394. In J. W. Hastings,, L. J. Kricka, and, P. E. Stanley (ed.), Bioluminescence and Chemiluminescence: Molecular Reporting with Photons. John Wiley & Sons, Chichester, United Kingdom.
250. Unice, K. M.,, and B. E. Logan. 2000. Insignificant role of hydrodynamic dispersion on bacterial transport. J. Environ. Eng. 126:491500.
251. Vandevivere, P.,, and P. Baveye. 1992. Relationship between transport of bacteria and their clogging efficiency in sand columns. Appl. Environ. Microbiol. 58:25232530.
252. Vandevivere, P.,, and P. Baveye. 1992. Saturated hydraulic conductivity reduction caused by aerobic bacteria in sand columns. Soil Sci. Soc. Am. J. 56:113.
253. Van Elsas, J. D.,, J. T. Trevors, and, L. S. Vanoverbeek. 1991. Influence of soil properties on the vertical movement of genetically-marked Pseudomonas fluorescens through large soil microcosms. Biol. Fertil. Soils 10:249255.
254. van Oss, C. J. 1994. Interfacial Forces in Aqueous Media. Marcel Dekker, New York, N.Y.
255. Van Oss, C. J.,, and C. F. Gillman. 1972. Phagocytosis as a surface phenomenon. Contact angles and phagocytosis of non-opsonized bacteria. J. Reticuloendothel. Soc. 12:283292.
256. van Oss, C. J.,, R. J. Good, and, M. K. Chaudry. 1986. The role of van der Waals forces and hydrogen bonds in hydrophobic interactions between biopolymers and low energy surfaces. J. Colloid Interface Sci. 111:378390.
257. Walker, M.,, and D. Redelman. 2004. Detection of Cryptosporidium parvum in soil extracts. Appl. Environ. Microbiol. 70:18271829.
258. Walker, S. L.,, J. E. Hill,, J. A. Redman, and, M. Elimelech. 2005. Influence of growth phase on adhesion kinetics of Escherichia coli D21g. Appl. Environ. Microbiol. 71:30933099.
259. Walker, S. L.,, J. A. Redman, and, M. Elimelech. 2004. Role of cell surface lipopolysaccharides in Escherichia coli K12 adhesion and transport. Langmuir 20:77367746.
260. Wan, J. M.,, T. K. Tokunaga, and, C. F. Tsang. 1995. Bacterial sedimentation through a porous medium. Water Resour. Res. 31:16271636.
261. Wan, J. M.,, and J. L. Wilson. 1994. Visualization of the role of the gas-water interface on the fate and transport of colloids in porous-media. Water Resour. Res. 30:1123.
262. Wan, J. M.,, J. L. Wilson, and, T. L. Kieft. 1994. Influence of the gas-water interface on transport of microorganisms through unsaturated porous media. Appl. Environ. Microbiol. 60:509516.
263. Wang, D. S.,, C. P. Gerba, and, J. C. Lance. 1981. Effect of soil permeability on virus removal through soil columns. Appl. Environ. Microbiol. 42:8388.
264. Wellings, F. M.,, A. L. Lewis,, C. W. Mountain, and, L. V. Pierce. 1975. Demonstration of virus in groundwater after effluent discharge into soil. Appl. Environ. Microbiol. 29:751757.
265. Williams, V.,, and M. Fletcher. 1996. Pseudomonas fluorescens adhesion and transport through porous media are affected by lipopolysaccharide composition. Appl. Environ. Microbiol. 62:100104.
266. Witt, M. E.,, M. J. Dybas,, R. M. Worden, and, C. S. Criddle. 1999. Motility-enhanced bioremediation of carbon tetrachloride-contaminated aquifer sediments. Environ. Sci. Technol. 33:29582964.
267. Wood, W. W.,, and G. G. Ehrlich. 1978. Use of baker’s yeast to trace microbial movement in ground water. Ground Water 16:398403.
268. Yao, K. M.,, M. T. Habibian, and, C. R. O’Melia. 1971. Water and waste water filtration: concepts and applications. Environ. Sci. Technol. 5:11051112.
269. Yates, M. V.,, and C. P. Gerba. 1985. Factors controlling the survival of viruses in groundwater. Water Sci. Technol. 17:681687.
270. Yee, N.,, J. B. Fein, and, C. J. Daughney. 2000. Experimental study of the pH, ionic strength, and reversibility behavior of bacteria-mineral adsorption. Geochim. Cosmochim. Acta 64:609617.
271. You, Y.,, G. F. Vance,, D. L. Sparks,, J. Zhuang, and, Y. Jin. 2003. Sorption of MS2 bacteriophage to layered double hydroxides: effects of reaction time, pH, and competing anions. J. Environ. Qual. 32:20462053.
272. Zhang, P.,, and W. P. Johnson. 1999. Rapid selective ferrographic enumeration of bacteria. J. Magn. Magn. Mater. 194:267274.
273. Zhang, P.,, W. P. Johnson, and, R. Rowland. 1999. Bacterial tracking using ferrographic separation. Environ. Sci. Technol. 33:24562460.
274. Zlotnik, V. A.,, and V. L. McGuire. 1998. Multi-level slug tests in highly permeable formations: 2. Hydraulic conductivity identification, method verification, and field applications. J. Hydrol. 204:283296.

Tables