1887

Chapter 71 : Oil Field Microbiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Oil Field Microbiology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap71-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap71-2.gif

Abstract:

This chapter discusses the methods used to characterize the microbial populations in oil reservoirs, to detect and control their detrimental activities such as souring and corrosion, and to stimulate their beneficial activities such as improved oil recovery. To be effective for enhanced oil recovery (EOR), the biosurfactant must reduce the interfacial tension between oil and brine by several orders of magnitude. Nitrite-reducing bacteria (NRB) can be placed in two functional groupings, the heterotrophic NRB (hNRB), and the nitrate- or nitrite-reducing, sulfide-oxidizing bacteria (NR-SOB). Samples to enumerate sulfate-reducing bacteria (SRB), general aerobic bacteria (GAB), or acid-producing bacteria (APB) should be taken at various points in the system, and the same sample should be used for the enumeration of each group of bacteria. The presence of SRB indicates a potential for corrosion and souring. The design of a microbially enhanced oil recovery (MEOR) process varies depending on the reservoir and problems that limits oil production. Oil reservoirs contain diverse and metabolically active microbial communities. Cultivation-dependent and cultivation-independent approaches can be used to characterize these communities and determine how their activities may affect operations. Knowledge of the potential microbial activities present in the surface facilities and the reservoir is critical to avoid the stimulation of unwanted microbial activities such as corrosion, souring, and biofouling during petroleum exploitation activities. This knowledge can also be used to stimulate the beneficial activities of microorganisms to improve oil recovery or alter the terminal electron-accepting process by nitrate addition.

Citation: Mcinerney M, Voordouw G, Jenneman G, Sublette K. 2007. Oil Field Microbiology, p 898-911. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch71

Key Concept Ranking

Bacteria and Archaea
0.8962852
Microbial Ecology
0.8962852
Hydrogen Sulfide
0.5054645
Nitrates and Nitrites
0.46069747
Enzyme-Linked Immunosorbent Assay
0.44626483
0.8962852
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Untitled
Untitled

Citation: Mcinerney M, Voordouw G, Jenneman G, Sublette K. 2007. Oil Field Microbiology, p 898-911. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch71
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Mcinerney M, Voordouw G, Jenneman G, Sublette K. 2007. Oil Field Microbiology, p 898-911. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch71
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch71
1. American Petroleum Institute. 1975. Recommended Practice for the Biological Analysis of Subsurface Injection Waters. American Petroleum Institute, Washington, D.C.
2. Bakke, R. B.,, B. Rivedal, and, S. Mehan. 1992. Oil reservoir biofouling control. Biofouling 6:5360.
3. Belyaev, S. S.,, I. A. Borzenkov,, I. F. Glumov,, R. R. Ibatullin,, E. I. Milekhina, and, M. V. Ivanov. 1998. Activation of the geochemical activity of stratal micro-flora as basis of a biotechnology for enhancement. Microbiology (Moscow) 67:708714.
4. Bhupathiraju, V. K.,, M. J. McInerney, and, R. M. Knapp. 1993. Pretest studies for a microbially enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiol. J. 11:1934.
5. Bodour, A. A.,, and R. M. Miller-Maier. 1998. Application of a modified drop-collapse technique for surfactant quantification and screening of biosurfactant-producing microorganisms. J. Microbiol. Methods 32:273280.
6. Boivin, J. 1995. Oil field biocides. Mater. Perform. 34:6568.
7. Bonch-Osmolovskaya, E. A.,, M. L. Miroshnichenko,, A. V. Lebedinsky,, N. A. Chernyh,, T. N. Nazina,, V. S. Ivoilov,, S. S. Belyaev,, E. S. Boulygina,, Y. P. Lysov,, A. N. Perov,, A. D. Mirzabekov,, H. Hippe,, E. Stackebrandt,, S. L’Haridon, and, C. Jeanthon. 2003. Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl. Environ. Microbiol. 69:61436151.
8. Brink, D. E.,, I. Vance, and, D. C. White. 1994. Detection of Desulfobacter in oil field environments by non-radioactive DNA probes. Appl. Microbiol. Biotechnol. 42:469475.
9. Broderick, L. S.,, and J. J. Cooney. 1982. Emulsification of hydrocarbons by bacteria from freshwater ecosystems. Dev. Ind. Microbiol. 23:425434.
10. Brown, F. G. 1992. Microbes: the practical and environmental safe solution to production problems, enhanced production, and enhanced oil recovery. SPE 23955. In Proceedings of the 1992 Permian Basin Oil and Gas Recovery Conference. Society of Petroleum Engineers, Richardson, Tex.
11. Brown, L. R.,, A. A. Vadie, and, J. O. Stephens. 2002. Slowing production decline and extending the economic life of an oil field: new MEOR technology. SPE Reservoir Eval. Eng. 5:3341.
12. Bryant, R. S.,, T. E. Burchfield,, D. M. Dennis, and, D. O. Hitzman. 1990. Microbial-enhanced waterflooding: Mink Unit project. SPE Reservoir Eng. 5:913.
13. Bryant, R. S.,, and J. Douglas. 1988. Evaluation of microbial systems in porous media for EOR. SPE Reservoir Eng. 3:489495.
14. Bryant, R. S.,, A. K. Steep,, K. M. Bertus,, T. E. Burchfield, and, M. Dennis. 1993. Microbial-enhanced waterflooding field pilots. Dev. Pet. Sci. 39:289306.
15. Buciak, J.,, A. Vazquez,, R. Frydman,, J. Mediavilla, and, R. S. Bryant. 1995. Enhanced oil recovery by means of microorganisms: pilot test. SPE Adv. Technol. Ser. 4:144149.
16. Carroll, V.,, G. R. Chilvers,, D. Franklin,, M. J. Miles,, V. J. Morris, and, S. G. Ring. 1983. Rheology and microstructure of solutions of the microbial polysaccharide from Pseudomonas elodea. Carbohydr. Res. 114:181191.
17. Characklis, W. G. 1990. Microbial biofouling control, p. 585–633. In W. G. Characklis and, K. C. Marshall (ed.), Biofilms. John Wiley & Sons, Inc., New York, N.Y.
18. Christensen, B.,, T. Torsvik, and, T. Lien. 1992. Immuno-magnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters. Appl. Environ. Microbiol. 58:12441248.
19. Craig, B. 2002. Corrosion product analysis—a road map to corrosion in oil and gas pipelines. Mater. Perform. 41:5658.
20. Crolet, J.-L.,, and M. F. Magot. 1996. Non-SRB sulfidogenic bacteria in oilfield production facilities. Mater. Perform. 35:6064.
21. Desai, J. D.,, and I. M. Banat. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61:4764.
22. Dietrich, F. L.,, F. G. Brown,, Z. H. Zhou, and, M. A. Maure. 1996. Microbial EOR technology advancement: case studies of successful projects. SPE 36746. In Proceedings of the SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, Richardson, Tex.
23. Eckford, R. E.,, and P. M. Fedorak. 2002. Planktonic nitrate-reducing bacteria and sulfate-reducing bacteria in some western Canadian oil field waters. J. Ind. Microbiol. Biotechnol. 27:8086.
24. Eckford, R. E.,, and P. M. Fedorak. 2002. Second derivative UV absorbance analysis to monitor nitrate-reduction by bacteria in most probable number determinations. J. Microbiol. Methods 50:141153.
25. Gas Research Institute. 1990. Gas Research Institute Field Guide I. Microbiologically Influenced Corrosion (MIC): Methods of Detection in the Field. Gas Research Institute, Chicago, Ill.
26. Gas Research Institute. 1994. Microbiologically Influenced Souring (MIS): Assessment of MIC in Natural Gas Storage Fields. Gas Research Institute, Chicago, Ill.
27. Geesey, G. G.,, Z. Lewandowski, and, H.-C. Flemmig. 1994. Biofouling and Biocorrosion in Industrial Water Systems. Lewis Publishers, Boca Raton, Fla.
28. Gevertz, D.,, A. J. Telang,, G. Voordouw, and, G. E. Jenneman. 2000. Isolation and characterization of strains CVO and FWKO B: two novel nitrate-reducing, sulfideoxidizing bacteria isolated from oil field brine. Appl. Environ. Microbiol. 66:24912501.
29. Granick, S. 1991. Motions and relaxations of confined liquids. Science 253:13741379.
30. Grassia, G. S.,, K. M. McLean,, P. Glénat,, J. Bauld, and, A., J. Sheehy. 1996. A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol. Ecol. 21:4758.
31. Greene, E. A.,, C. Hubert,, M. Nemati,, G. E. Jenneman, and, G. Voordouw. 2002. Nitrite reductase activity of sulfate-reducing bacteria prevents their inhibition by nitrate-reducing, sulfide-oxidizing bacteria. Environ. Microbiol. 5:607617.
32. Gutnick, D. L.,, and E. Rosenberg. 1977. Oil tankers and pollution: a microbiological approach. Annu. Rev. Microbiol. 31:379396.
33. Hamilton, W. A. 1985. Sulfate-reducing bacteria and anaerobic corrosion. Annu. Rev. Microbiol. 39:195217.
34. Hitzman, D. O. 1983. Petroleum microbiology and the history of its role in enhanced oil recovery, p. 162–218. In E. C. Donaldson and, J. B. Clark (ed.), Proceedings of the 1982 International Conference on Microbial Enhancement of Oil Recovery. CONF-8205140. U.S. Department of Energy, Bartlesville, Okla.
35. Hitzman, D. O. 1988. Review of microbial enhanced oil recovery field tests, p. VI1–VI41. In T. E. Burchfield and, R. S. Bryant (ed.), Proceedings of the Symposium on Applications of Microorganisms to Petroleum Technology. National Technical Information Service, Springfield, Va.
36. Hitzman, D. O.,, M. Dennis, and, D. C. Hitzman. 2004. Recent successes: MEOR using synergistic H2S prevention and increased oil recovery systems. SPE 89453. In Proceedings of the SPE/DOE Fourteenth Symposium on Improved Oil Recovery. Society of Petroleum Engineers, Richardson, Tex.
37. Horacek, G. L.,, and L. J. Gawel. 1988. New kit for the rapid detection of SRB in the oil field. SPE 18199. In Proceedings of the 63rd Annual Technical Conference. Society of Petroleum Engineers, Richardson, Tex.
38. Huang, H.,, and S. Larter. 2005. Biodegradation of petroleum in subsurface geological reservoirs, p. 91–121. In B. Ollivier and, M. Magot (ed.), Petroleum Microbiology. ASM Press, Washington, D.C.
39. Hubert, C.,, M. Nemati,, G. E. Jenneman, and, G. Voordouw. 2003. Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite. Biotechnol. Prog. 19:338345.
40. 40. Reference deleted.
41. Hubert, C. R. J. 2004. Control of hydrogen sulfide production in oil fields by managing microbial communities through nitrate or nitrite addition. Ph.D. dissertation. University of Calgary, Calgary, Alberta, Canada.
42. Jenneman, G. E. 1992. The effect of in-situ pressure on MEOR processes. SPE/DOE 24203. Presented at the SPE/DOE Eighth Symposium on Enhanced Oil Recovery, Society of Petroleum Engineers, Richardson, Tex.
43. Jenneman, G. E. 1989. The potential for in-situ microbial applications. Dev. Pet. Sci. 22:3774.
44. Jenneman, G. E.,, J. B. Clark, and, P. D. Moffitt. 1993. A nutrient control process for microbially enhanced oil recovery. Dev. Pet. Sci. 39:319334.
45. Jenneman, G. E.,, R. M. Knapp,, M. J. McInerney,, D. E. Menzie, and, D. E. Revus. 1984. Experimental studies of in situ microbial enhanced oil recovery. Soc. Pet. Eng. J. 24:3337.
46. Jenneman, G. E.,, M. J. McInerney, and, R. M. Knapp. 1985. Microbial penetration through nutrient-saturated Berea sandstone. Appl. Environ. Microbiol. 50:383391.
47. Jenneman, G. E.,, P. D. Moffitt, and, G. R. Young. 1996. Application of a microbial selective-plugging process at the North Burbank unit: prepilot tests. SPE Prod. Facil. 11:1117.
48. Jenneman, G. E.,, and R. H. Webb. 2004. Evaluation of an on-line biofilm detector and bio-traps for monitoring MIC in produced oilfield brine. Paper 04758. Presented at the Corrosion 2004, NACE International, Houston, Tex.
49. Kane, R. D.,, and S. Campbell. 2004. Real-time corrosion monitoring of steel influenced by microbial activity (SRB) in simulated seawater injection environments. Paper 04579. Presented at Corrosion 2004, NACE International, Houston, Tex.
50. Knapp, R. M.,, M. J. McInerney,, J. D. Coates,, D. E. Menzie, and, V. K. Bhupathiraju. 1992. Design and implementation of a microbially enhanced oil recovery field pilot, Payne County, Oklahoma. SPE 24818. In Proceedings of the SPE Annual Technical Conference. Society of Petroleum Engineers, Richardson, Tex.
51. Kodama, Y.,, and K. Watanabe. 2003. Isolation and characterization of a sulfur-oxidizing chemolithotroph growing on crude oil under anaerobic conditions. Appl. Environ. Microbiol. 69:107112.
52. Kohring, L. L.,, D. B. Ringelberg,, R. Devereux,, D. A. Stahl,, M. W. Mittelman, and, D. C. White. 1994. Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among sulfate-reducing bacteria. FEMS Microbiol. Lett. 119:303308.
53. Lappin-Scott, H. L.,, F. Cusack, and, J. W. Costerton. 1988. Nutrient resuscitation and growth of starved cells in sandstone cores: a novel approach to enhanced oil recovery. Appl. Environ. Microbiol. 54:13731382.
54. Larsen, J. 2002. Downhole nitrate applications to control sulfate reducing bacteria activity and reservoir souring. Paper 02025. Presented at Corrosion 2002, NACE International, Houston, Tex.
55. Larsen, J.,, M. H. Rod, and, S. Zwolle. 2004. Prevention of reservoir souring in the Halfdan field by nitrate injection. Paper 04761. Presented at Corrosion 2004, NACE International, Houston, Tex.
56. Lazar, I. 1991. MEOR field trials carried out over the world during the last 35 years. Dev. Pet. Sci. 31:485530.
57. Lazar, I.,, S. Dobrota,, M. C. Stefanescu,, L. Sandulescu,, R. Paduraru, and, M. Stefanescu. 1993. MEOR, recent field trials in Romania: reservoir selection, type of inoculum, protocol for well treatment and line monitoring. Dev. Pet. Sci. 39:265288.
58. Lee Gullapalli, I.,, J. H. Bae,, K. Heji, and, A. Edwards. 2000. Laboratory design and field implementation of microbial profile modification process. SPE Reservoir Eval. Eng. 3:4249.
59. Licina, G. J. 2001. Monitoring biofilms on metallic surfaces in real time. Paper 01442. Presented at Corrosion 2001, NACE International, Houston, Tex.
60. Licina, G. J.,, and C. S. Carney. 1999. Monitoring biofilm fomation and incipient MIC in real time. Paper 175. Presented at Corrosion 1999, NACE International, Houston, Tex.
61. Machel, H. G.,, and J. Foght. 2000. Products and depth limits of microbial activity in petroliferous subsurface settings, p. 105–120. In R. E. Riding and, S. M. Awrdmik (ed.), Microbial Sediments. Springer-Verlag, New York, N.Y.
62. Magot, M.,, B. Ollivier, and, B. K. C. Patel. 2000. Microbiology of petroleum reservoirs. Antonie Leeuwenhoek J. Microbiol. Serol. 77:103116.
63. Marquis, R. E.,, and P. Matsumura. 1978. Microbial life under pressure, p. 105–158. In D. J. Kushner (ed.), Microbial Life in Extreme Environments. Academic Press, London, United Kingdom.
64. McCoy, W. F.,, J. D. Bryers,, J. Robbins, and, J. W. Costerton. 1981. Observations of fouling biofilm formation. Can. J. Microbiol. 27:910917.
65. McInerney, M. J.,, M. Javaheri, and, D. P. Nagle, Jr. 1990. Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. J. Ind. Microbiol. 5:95101.
66. McInerney, M. J.,, D. P. Nagle, and, R. M. Knapp. 2005. Microbially enhanced oil recovery: past, present and future, p. 215–237. In B. Ollivier and, M. Magot (ed.), Petroleum Microbiology. ASM Press, Washington, D.C.
67. McInerney, M. J.,, and K. L. Sublette. 2002. Oil field microbiology, p. 777–787. In C. J. Hurst,, R. L. Crawford,, G. R. Knudsen,, M. J. McInerney, and, L. D. Stetzenbach (ed.), Manual of Environmental Microbiology, 2nd ed. ASM Press, Washington, D.C.
68. McInerney, M. J.,, and D. W. S. Westlake. 1990. Microbially enhanced oil recovery, p. 409–445. In H. L. Ehrlich and, C. L. Brierley (ed.), Microbial Mineral Recovery. McGraw-Hill Publishing Co., New York, N.Y.
69. McKinley, V. L.,, J. W. Costerton, and, D. C. White. 1988. Microbial biomass, activity, and community structure of water and particles retrieved by backflow from a waterflood injection well. Appl. Environ. Microbiol. 54:13831393.
70. Miranda-Tello, E.,, M.-L. Fardeau,, J. Sepulveda,, L. Fernandez,, J.-L. Cayol,, P. Thomas, and, B. Ollivier. 2003. Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrate- and thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico. Int. J. Syst. Evol. Microbiol. 53:15091514.
71. Morikawa, M.,, Y. Hirata, and, T. Imanaka. 2000. A study on the structure-function relationship of lipopeptide biosurfactants. Biochim. Biophys. Acta 1488:211218.
72. Mulligan, C. N.,, D. G. Cooper, and, R. J. Neufeld. 1984. Selection of microbes producing biosurfactants in media without hydrocarbons. J. Ferment. Technol. 62:311314.
73. Myhr, S.,, and T. Torsvik. 2000. Denitrivibrio acetiphilus, a novel genus and species of dissimilatory nitrate-reducing bacterium isolated from an oil reservoir model column. Int. J. Syst. Bacteriol. 50:16111619.
74. Nagase, K.,, S.-T. Zhang,, H. Asami,, N. Yazawa,, K. Fujiwara,, H. Enomoto,, C. Hong, and, C. Liang. 2001. Improvement of sweep efficiency by microbial EOR process in Fuyu oilfield, China. SPE 68720. Presented at the SPE Asia Pacific Oil and Gas Conference, Society of Petroleum Engineers, Richardson, Tex.
75. Nagase, K.,, S.-T. Zhang,, H. Asami,, N. Yazawa,, K. Fujiwara,, H. Enomoto,, C. Hong, and, C. Liang. 2003. A successful application of microbial EOR field test in Fuyu oilfield, China. SPE 75238. Presented at the SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers, Richardson, Tex.
76. Nakagawa, T.,, S. Nakagawa,, F. Inagaki,, K. Takai, and, K. Horikoshi. 2004. Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures. FEMS Microbiol. Lett. 232:145152.
77. National Association of Corrosion Engineers. 1990. Review of Non-Conventional and Supplemental Methods for the Detection of Sulphate-Reducing Bacteria in Oilfield Waters. NACE International, Houston, Tex.
78. National Association of Corrosion Engineers. 1982. The Role of Bacteria in the Corrosion of Oil Field Equipment. NACE International, Houston, Tex.
79. National Association of Corrosion Engineers. 1991. Standard Recommended Practice: Preparation and Installation of Corrosion Coupons and Interpretation of Test Data in Oilfield Operations. NACE International, Houston, Tex.
80. National Association of Corrosion Engineers. 1994. Standard Test Method—Field Monitoring of Bacterial Growth in Oilfield Systems TMO194-94. NACE International, Houston, Tex.
81. National Association of Corrosion Engineers. 2004. Standard Test Method—Field Monitoring of Bacterial Growth in Oilfield Systems TMO194-2004. NACE International, Houston, Tex.
82. Nazina, T. N.,, A. E. Ivanova,, V. S. Ivoilov,, Y. M. Miller,, G. F. Kandaurova,, R. R. Ibatullin,, S. S. Belyaev, and, M. V. Ivanov. 1999. Results of the trial of the microbiological method for the enhancement of oil recovery at the carbonate collector of the Romashkinskoe oil field: biogeochemical and productional characteristics. Microbiology (Moscow) 68:222226.
83. Nealson, K. H.,, and D. Saffarini. 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48:311343.
84. Nelson, L.,, and D. R. Schneider. 1993. Six years of paraffin control and enhanced oil recovery with the microbial product, Para-BacTM. Dev. Pet. Sci. 39:355362.
85. Nemati, M.,, E. A. Greene, and, G. Voordouw. 2005. Permeability profile modification using bacterially formed calcium carbonate: comparison with enzymic option. Proc. Biochem. 40:925933.
86. Obuekwe, C. O.,, D. W. S. Westlake, and, F. D. Cook. 1983. Corroison of Pembina crude oil pipeline. The origin and mode of formation of hydrogen sulfide. Eur. J. Appl. Microbiol. Biotechnol. 17:173177.
87. Odom, J. M. 1993. Industrial and environmental activities of sulfate-reducing bacteria, p. 189–209. In J. M. Odom and, J. R. Singleton (ed.), The Sulfate-Reducing Bacteria: Contemporary Perspectives. Springer-Verlag, New York, N.Y.
88. Odom, J. M.,, K. Jessie,, E. Knodel, and, M. Emptage. 1991. Immunological cross-reactivities of adenosine 5′-phosphosulfate reductases from sulfate-reducing and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 57:727733.
89. Ollivier, B.,, and M. Magot (ed.). 2005. Petroleum Microbiology. ASM Press, Washington, D.C.
90. Orphan, V. J.,, L. T. Taylor,, D. Hafenbradl, and, E. F. Delong. 2000. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl. Environ. Microbiol. 66:700711.
91. Patton, C. C. 1991. Applied Water Technology. Campbell Petroleum Series, Norman, Okla.
92. Pfiffner, S. M.,, M. J. McInerney,, G. E. Jenneman, and, R. M. Knapp. 1986. Isolation of halotolerant, thermotolerant, facultative polymer-producing bacteria and characterization of the exopolymer. Appl. Environ. Microbiol. 51:12241229.
93. Pope, D. H. 1991. Microbiologically Influenced Corrosion in the Natural Gas Industry. Bioindustrial Technologies, Inc., Georgetown, Tex.
94. Posfai, M.,, M. K. Cziner,, E. Márton,, P. Márton,, D. R. Buseck,, R. R. B. Frankel, and, D. A. Bazylinski. 2001. Crystal-size distributions and possible biogenic origin of Fe sulfides. Eur. J. Mineral. 13:691703.
95. Rabus, R. 2005. Biodegradation of hydrocarbons under anoxic conditions, p. 277–299. In B. Ollivier and, M. Magot (ed.), Petroleum Microbiology. ASM Press, Washington, D.C.
96. Rabus, R.,, M. Fukui,, H. Wilkes, and, F. Widdel. 1996. Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl. Environ. Microbiol. 62:36053613.
97. Raiders, R. A.,, R. M. Knapp, and, M. J. McInerney. 1989. Microbial selective plugging and enhanced oil recovery. J. Ind. Microbiol. 4:215230.
98. Raiders, R. A.,, M. J. McInerney,, D. E. Revus,, H. M. Torbati,, R. M. Knapp, and, G. E. Jenneman. 1986. Selectivity and depth of microbial plugging in Berea sandstone cores. J. Ind. Microbiol. 1:195203.
99. Reinsel, M. A.,, J. T. Sears,, P. S. Stewart, and, M. J. McInerney. 1996. Control of microbial souring by nitrate, nitrite, or glutaraldehyde injection in a sandstone column. J. Ind. Microbiol. 17:128136.
100. Rosenberg, E.,, M. Rosenberg, and, D. L. Gutnick. 1983. Adherence of bacteria to hydrocarbons, p. 20–28. In E. C. Donaldson and, J. B. Clark (ed.), Proceedings of 1982 International Conference on Microbial Enhancement Oil Recovery. CONF-8205140. U.S. Department of Energy, Bartlesville, Okla.
101. Rosenberg, E.,, A. Zuckerberg,, C. Rubinovitz, and, D. L. Gutnick. 1979. Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl. Environ. Microbiol. 37:402408.
102. Ruseska, I.,, J. Robbins,, J. W. Costerton, and, E. S. Kashen. 1982. Biocide testing against corrosion-causing oil field bacteria. Oil Gas J. 80:253264.
103. Scott, P. J. B. 2004. Part 2: expert consensus on MIC: failure analysis and control. Mater. Perform. 43:4650.
104. Semple, K. M.,, and D. W. S. Westlake. 1987. Characterization of iron-reducing Alteromonas putrefaciens strains from oil field fluids. Can. J. Microbiol. 33:366371.
105. Smith, J. S.,, and J. D. A. Miller. 1975. Nature of sulphides and their corrosive effect on ferrous metals: a review. Br. Corros. J. 10:136143.
106. Smith, S. N. 2003. Corrosion product analysis in oil and gas pipelines. Mater. Perform. 42:4447.
107. Stetter, K. O.,, R. Huber,, E. Blöchl,, M. Kurr,, R. D. Eden,, M. Fielder,, H. Cash, and, I. Vance. 1993. Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743745.
108. Strappa, L. A.,, J. P. DeLucia,, M. A. Maure, and, M. L. Lopez Llopiz. 2004. A novel and successful MEOR pilot project in a strong water-drive reservoir. SPE 89456. In Proceedings of the SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers, Richardson, Tex.
109. Streeb, L. P.,, and F. G. Brown. 1992. MEOR-Altamount/Bluebell field project. SPE 24334. In Proceedings of the SPE Rocky Mountain Regional Meeting. Society of Petroleum Engineers, Richardson, Tex.
110. Sturman, P. J.,, and D. M. Goeres. 1999. Control of hydrogen sulfide in oil and gas wells with nitrite injection. SPE 56772. In Proceedings of the SPE Annual Technical Conference. Society of Petroleum Engineers, Richardson, Tex.
111. Sunde, E.,, and T. Torsvik. 2005. Microbial control of hydrogen sulfide production in oil reservoirs, p. 201–213. In B. Ollivier and, M. Magot (ed.), Petroleum Microbiology. ASM Press, Washington, D.C.
112. Tako, M.,, and S. Nakamura. 1984. Rheological properties of deacetylated xanthan in aqueous media. Agric. Biol. Chem. 48:29872993.
113. Tanner, R. S. 1989. Monitoring sulfate-reducing bacteria: comparison of enumeration media. J. Microbiol. Methods 10:8390.
114. Tanner, R. S.,, E. O. Udegbunam,, M. J. McInerney, and, R. M. Knapp. 1991. Microbially enhanced oil recovery from carbonate reservoirs. Geomicrobiol. J. 9:169195.
115. Telang, A. J.,, S. Ebert,, J. M. Foght,, D. W. S. Westlake,, G. E. Jenneman,, D. Gevertz, and, G. Voordouw. 1997. Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl. Environ. Microbiol. 63:17851793.
116. Telang, A. J.,, G. E. Jenneman, and, G. Voordouw. 1999. Sulfur cycling in mixed cultures of sulfide-oxidizing and sulfate- or sulfur-reducing oil field bacteria. Can. J. Microbiol. 45:905913.
117. Tempest, D. W.,, and J. T. M. Wouters. 1981. Properties and performance of microorganisms in chemostat culture. Enzyme Microb. Technol. 3:283290.
118. Thomas, C. P.,, G. A. Bala, and, M. L. Duvall. 1991. Surfactant-based enhanced oil recovery mediated by naturally occurring microorganisms. SPE 22844. SPE Reservoir Eng. 8:285291.
119. Thorstenson, T.,, B. Bodtker,, E. Sunde, and, J. Beeder. 2002. Biocide replacement by nitrate in sea water injection systems. Paper 02033. Presented at Corrosion 2002, NACE International, Houston, Tex.
120. Trebbau, G.,, G. J. Nunez,, R. L. Caira,, N. Y. Molina,, L. C. Entzeroth, and, D. R. Schneider. 1999. Microbial stimulation of Lake Maracaibo oil wells. SPE 56503. In Proceedings of the Annual Technical Conference and Exhibition. Society of Petroleum Engineers, Richardson, Tex.
121. Trebbau de Acevedo, G.,, and M. J. McInerney. 1996. Emulsifying activity in thermophilic and extremely thermophilic microorganisms. J. Ind. Microbiol. 16:17.
122. Ulrich, G. A.,, L. R. Krumholz, and, J. M. Suflita. 1997. A rapid method for estimating sulfate reduction activity and quantifying inorganic sulfides. Appl. Environ. Microbiol. 63:16271630.
123. Vance, I.,, and D. R. Thrasher. 2005. Reservoir souring: mechanisms and prevention, p. 123–142. In B. Ollivier and, M. Magot (ed.), Petroleum Microbiology. ASM Press, Washington, D.C.
124. Venure, C. C. E. J. 1987. Review of Current Practices for Monitoring Bacterial Growth in Oilfield Systems. Corrosion Control Engineering Joint Venture, Birmingham, United Kingdom.
125. Videla, H. A. 1996. Manual of Biocorrosion. Lewis Publishers, Boca Raton, Fla.
126. Voordouw, G.,, S. M. Armstrong,, M. F. Reimer,, B. Fouts,, A. J. Telang,, Y. Shen, and, D. Gevertz. 1996. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 62:16231629.
127. Wagner, M.,, D. Lungerhausen,, H. Murtada, and, G. Rosenthal. 1995. Development and application of a new biotechnology of molasses in-situ method: detailed evaluation for selected wells in the Romashkino carbonate reservoir, p. 153–174. In R. S. Bryant and, K. L. Sublette (ed.), The Fifth International Conference on Microbial Enhanced Oil Recovery and Related Problems for Solving Environmental Problems. CONF-9509173. National Technical Information Service, Springfield, Va.
128. Watanabe, K.,, Y. Kodama, and, N. Kaku. 2002. Diversity and abundance of bacteria in an underground oil-storage cavity. BMC Microbiol. 2:23.
129. Watanabe, K.,, K. Watanabe,, Y. Kodama,, K. Syutsubo, and, S. Harayama. 2000. Molecular characterization of bacterial populations in petroleum-contaminated ground-water discharged from underground crude-oil-storage cavities. Appl. Environ. Microbiol. 66:48034809.
130. Willhelms, A.,, S. R. Larter,, I. Head,, P. Farrimond,, R. di-Primio, and, C. Zwach. 2001. Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411:10341036.
131. Willumsen, P. A.,, and U. Karlson. 1997. Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7:415423.
132. Worden, R. H.,, P. C. Smalley, and, N. H. Oxtoby. 1995. Gas souring by thermochemical sulfate reduction at 140°C. Am. Assoc. Pet. Geol. Bull. 79:854863.
133. Yarbrough, H. F.,, and V. F. Coty. 1983. Microbially enhanced oil recovery from the Upper Cretaceous Nacatoch Formation, Union County, Arkansas, p. 162–218. In E. C. Donaldson and, J. B. Clark (ed.), Proceedings of the 1982 International Conference on Microbial Enhancement of Oil Recovery. Technology Transfer Branch, U.S. Department of Energy, Bartlesville, Okla.
134. Youssef, N. H.,, K. E. Duncan,, D. P. Nagle,, K. N. Savage,, R. M. Knapp, and, M. J. McInerney. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods 56:339347.

Tables

Generic image for table
TABLE 1

Types of microbial processes for oil recovery

Citation: Mcinerney M, Voordouw G, Jenneman G, Sublette K. 2007. Oil Field Microbiology, p 898-911. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch71
Generic image for table
TABLE 2

Composition of media used to detect SRB

Citation: Mcinerney M, Voordouw G, Jenneman G, Sublette K. 2007. Oil Field Microbiology, p 898-911. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch71
Generic image for table
TABLE 3

Survey of methods used in MEOR field trials

Citation: Mcinerney M, Voordouw G, Jenneman G, Sublette K. 2007. Oil Field Microbiology, p 898-911. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch71

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error