1887

Chapter 85 : Using Genetic Algorithms To Optimize Functions of Microbial Ecosystems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Using Genetic Algorithms To Optimize Functions of Microbial Ecosystems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap85-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap85-2.gif

Abstract:

Genetic algorithms (GAs) have a number of specific advantages over other optimization techniques that make them especially attractive for such use in microbial ecology. This chapter provides a general outline of the GA approach to optimization and lists a number of specific considerations for microbial ecological applications. For the microbial ecological applications discussed here in which algorithm speed is not a concern, this can be implemented by going over every gene on the chromosome of every new individual and tossing a weighted coin. From a fundamental ecological point of view, using GAs to optimize functions in microbial ecosystems offers great promise. Genetic algorithms belong to the larger field of evolutionary computation, which contains other population-based optimization methods that are similarly inspired by the biological principle of natural evolution. Evolutionary programming and evolution strategies are similar to genetic algorithms but typically do not include a recombination or crossover step. These two types of methods may provide an alternative to genetic algorithms for the optimization of functions of microbial ecosystems, especially when the optimization task is to find the appropriate level of various ecosystem factors, rather than more simply to find the right combination of such factors. The genetic programming approach essentially uses genetic algorithms to evolve computer programs, typically represented as tree structures. This approach seems less suitable for the optimization of functions of microbial ecosystems because there is no obvious way to tie an evolving computer program to the properties of an ecosystem.

Citation: Vandecasteele F, Hess T, Crawford R. 2007. Using Genetic Algorithms To Optimize Functions of Microbial Ecosystems, p 1072-1078. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch85

Key Concept Ranking

Environmental Microbiology
0.7156819
Microbial Ecology
0.7102601
Chromosome Structure
0.6440716
Toluene Degradation
0.45478648
Microbial Ecosystems
0.44267535
Natural Selection
0.44175577
0.7156819
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815882.ch85
1. Bapat, P. M.,, and P. P. Wangikar. 2004. Optimization of rifamycin B fermentation in shake flasks via a machine-learning-based approach. Biotechnol. Bioeng. 86:201208.
2. Beste, H.,, M. Fackeldey,, M. Willems,, L. Stockmann, and, D. Weuster-Botz. 1997. Optimization of fermentation medium composition in substrate-controlled continuous stirred tank reactors. Chem. Eng. Technol. 20:403413.
3. Beyer, H.-G.,, and H.-P. Schwefel. 2002. Evolution strategies—a comprehensive introduction. Nat. Comput. 1:352.
4. Coello Coello, C. A.,, D. A. Van Veldhuizen, and, G. B. Lamont. 2002. Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Boston, Mass.
5. Davies, Z. S.,, R. J. Gilbert,, R. J. Merry,, D. B. Kell,, M. K. Theodorou, and, G. W. Griffith. 2000. Efficient improvement of silage additives by using genetic algorithms. Appl. Environ. Microbiol. 66:14351443.
6. Deb, K. 2001. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester, United Kingdom.
7. Etschmann, M. M. W.,, D. Sell, and, J. Schrader. 2004. Medium optimization for the production of the aroma compound 2-phenylethanol using a genetic algorithm. J. Mol. Catal. B Enzym. 29:187193.
8. Fang, B. S.,, H. W. Chen,, X. L. Xie,, N. Wan, and, Z. D. Hu. 2003. Using genetic algorithms coupling neural networks in a study of xylitol production: medium optimization. Process Biochem. 38:979985.
9. Fogel, L. J.,, A. J. Owens, and, M. J. Walsh. 1966. Artificial Intelligence through Simulated Evolution. John Wiley, New York, N.Y.
10. Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, Mass.
11. Holland, J. H. 1975. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor.
12. Kennedy, M.,, and D. Krouse. 1999. Strategies for improving fermentation medium performance: a review. J. Ind. Microbiol. Biotechnol. 23:456475.
13. Koza, J. R. 1992. Genetic Programming: on the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge, Mass.
14. Li, S. X.,, D. Xing,, H. M. Qin,, X. B. Yang, and, S. C. Tan. 2004. Experimental study on genetic algorithms of medium optimization for oil-degradation. Chin. J. Anal. Chem. 32:481484.
15. Marteijn, R. C. L.,, O. Jurrius,, J. Dhont,, C. D. de Gooijer,, J. Tramper, and, D. E. Martens. 2003. Optimization of a feed medium for fed-batch culture of insect cells using a genetic algorithm. Biotechnol. Bioeng. 81:269278.
16. Parekh, S.,, V. A. Vinci, and, R. J. Strobel. 2000. Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol. 54:287301.
17. Patil, S. V.,, V. K. Jayaraman, and, B. D. Kulkarni. 2002. Optimization of media by evolutionary algorithms for production of polyols. Appl. Biochem. Biotechnol. 102–103:119128.
18. Reeves, C. R. 1993. Using genetic algorithms with small populations, p. 92–99. In S. Forrest (ed.), Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, Calif.
19. Shioya, S.,, K. Shimizu, and, T. Yoshida. 1999. Knowledge-based design and operation of bioprocess systems. J. Biosci. Bioeng. 87:261266.
20. Vandecasteele, F. 2002. Moleculair-genetische karakterisatie van een BTEX-gecontamineerd grondwatersediment en gerichte biostimulatie via een genetisch algoritme. Thesis towards the degree of Bio-ingenieur, Ghent University, Belgium.
21. Vandecasteele, F. P. J. 2003. Constructing efficient microbial consortia using a genetic algorithm, p. 69–71. In A. M. Barry (ed.), Biological Applications for Genetic and Evolutionary Computation (BioGEC)—2003 Genetic and Evolutionary Computation Conference Workshop Program. American Association for Artificial Intelligence, Menlo Park, Calif.
22. Vandecasteele, F. P. J.,, T. F. Hess, and, R. L. Crawford. 2003. Constructing microbial consortia with optimal biomass production using a genetic algorithm, p. 299–302. In J. A. Foster (ed.), 2003 Genetic and Evolutionary Computation Conference—Late-Breaking Papers. American Association for Artificial Intelligence, Menlo Park, Calif.
23. Vandecasteele, F. P. J.,, T. F. Hess, and, R. L. Crawford. 2004. A correlated fitness landscape describes growth in experimental microbial ecosystems: initial results. In M. Keijzer (ed.), 2004 Genetic and Evolutionary Computation Conference—Late-Breaking Papers. American Association for Artificial Intelligence, Menlo Park, Calif.
24. Vandecasteele, F. P. J.,, T. F. Hess, and, R. L. Crawford. 2004. Constructing microbial consortia with minimal growth using a genetic algorithm, p. 123–129. In G. R. Raidl et al. (ed.), Applications of Evolutionary Computing—EvoWorkshops 2004. Lecture Notes in Computer Science Vol. 3005. Springer-Verlag, Berlin, Germany.
25. Vandecasteele, F. P. J.,, T. F. Hess, and, R. L. Crawford. 2004. Thoughts on using evolutionary computation to assemble efficient ecosystems. In R. Poli et al. (ed.), Biological Applications of Genetic and Evolutionary Computation (BioGEC)—2004 Genetic and Evolutionary Computation Conference Workshop Proceedings. American Association for Artificial Intelligence, Menlo Park, Calif.
26. Weuster-Botz, D.,, V. Pramatarova,, G. Spassov, and, C. Wandrey. 1995. Use of a genetic algorithm in the development of a synthetic growth medium for Arthrobacter simplex with high hydrocortisone Δ1-dehydrogenase activity. J. Chem. Technol. Biotechnol. 64:386392.
27. Weuster-Botz, D.,, and C. Wandrey. 1995. Medium optimization by genetic algorithm for continuous production of formate dehydrogenase. Process Biochem. 30:563571.
28. Weuster-Botz, D.,, M. Karutz,, B. Joksch,, D. Schartges, and, C. Wandrey. 1996. Integrated development of fermentation and downstream processing for l-isoleucine production with Corynebacterium glutamicum. Appl. Micro-biol. Biotechnol. 46:209219.
29. Weuster-Botz, D. 2000. Experimental design for fermentation media development: statistical design or global random search? J. Biosci. Bioeng. 90:473483.
30. Zuzek, M.,, J. Friedrich,, B. Cestnik,, A. Karalic, and, A. Cimerman. 1996. Optimization of fermentation medium by a modified method of genetic algorithms. Biotechnol. Tech. 10:991996.

Tables

Generic image for table
Untitled

Citation: Vandecasteele F, Hess T, Crawford R. 2007. Using Genetic Algorithms To Optimize Functions of Microbial Ecosystems, p 1072-1078. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch85
Generic image for table
Untitled

Citation: Vandecasteele F, Hess T, Crawford R. 2007. Using Genetic Algorithms To Optimize Functions of Microbial Ecosystems, p 1072-1078. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch85
Generic image for table
FIGURE 3

Mutation at position 5.

Citation: Vandecasteele F, Hess T, Crawford R. 2007. Using Genetic Algorithms To Optimize Functions of Microbial Ecosystems, p 1072-1078. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch85
Generic image for table
Untitled

Citation: Vandecasteele F, Hess T, Crawford R. 2007. Using Genetic Algorithms To Optimize Functions of Microbial Ecosystems, p 1072-1078. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch85
Generic image for table
Untitled

Citation: Vandecasteele F, Hess T, Crawford R. 2007. Using Genetic Algorithms To Optimize Functions of Microbial Ecosystems, p 1072-1078. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch85
Generic image for table
Untitled

Citation: Vandecasteele F, Hess T, Crawford R. 2007. Using Genetic Algorithms To Optimize Functions of Microbial Ecosystems, p 1072-1078. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch85
Generic image for table
Untitled

Citation: Vandecasteele F, Hess T, Crawford R. 2007. Using Genetic Algorithms To Optimize Functions of Microbial Ecosystems, p 1072-1078. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch85

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error