1887

Chapter 88 : Current Progress in the Application of Mycoremediation to Soil Cleanup

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Current Progress in the Application of Mycoremediation to Soil Cleanup, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap88-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap88-2.gif

Abstract:

Mycoremediation, or fungus-based remediation, is an ex situ form of bioaugmentation, in which hazardous organics are degraded or detoxified by fungi that are introduced into the contaminated soil via a fungal inoculum. Due to the ability of white-rot fungi (WRF) to degrade extremely recalcitrant contaminants (e.g., high-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo--dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs), work on fungus-based remediation has focused on the treatment of soils contaminated with these types of chemicals. In addition, work has progressed on the soil microbiology of mycoremediation and on the development of techniques to monitor the fate of fungi inoculated into soils. Fallout of PCDDs and PCDFs from combustion at incineration facilities has resulted in serious pollution of the surrounding soil environment because of their extremely high persistence and toxicity. Importantly, the extent of the enhancement varied with soil and fungal species. While degradation of fluorene was complete in all three treatments, the extents of degradation of the low-molecular-weight (LMW) PAHs phenanthrene and pyrene were less in the soil inoculated with than in soil inoculated with or noninoculated soil. Several techniques have been adapted or developed for tracking of inoculated fungi in soils treated with mycoremediation. The phospholipid fatty acid (PLFA) method has the added benefit of revealing interactions between inoculated fungi and indigenous soil bacteria by simultaneous extraction of other marker PLFAs.

Citation: Lamar R, White R. 2007. Current Progress in the Application of Mycoremediation to Soil Cleanup, p 1097-1106. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch88
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815882.ch88
1. Reference deleted.
2. Ali, T. A.,, and M. Wainwright. 1994. Growth of Phanerochaete chrysosporium in soil and its ability to degrade the fungicide benomyl. Bioresour. Technol. 49:197201.
3. Amin, S.,, J. Krzeminski,, A. Rivenson,, C. Kurtzke,, S. S. Hecht, and, K. El-Bayoumi. 1995. Mammary carcinogenicity in female CD rats of fjord region diol epoxides of benzo[c]phenanthrene, benzo[g]chrysene, and dibenzo[a,l]-pyrene. Carcinogenesis 16:19711974.
4. Andersson, B. E.,, S. Lundstedt,, K. Tornberg,, Y. Schnurer,, L. G. Oberg, and, B. Mattiasson. 2003. Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on the indigenous soil bacteria. Environ. Toxicol. Chem. 22:12381243.
5. Bezalel, L.,, Y. Hadar, and, C. E. Cerniglia. 1997. Enzymatic mechanisms involved in phenanthrene degradation by the white-rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 63:24952501.
6. Bogan, B. W.,, R. T. Lamar,, W. D. Burgos, and, M. Tien. 1999. Extent of humification of anthracene, fluoranthene, and benzo(a)pyrene by Pleurotus ostreatus during growth in PAH-contaminated soils. Lett. Appl. Microbiol. 28:250254.
7. Bogan, B. W. 1996. Ph.D. thesis. University of Wisconsin, Madison.
8. Bogan, B. W.,, and R. T. Lamar. 1995. One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 61:26312635.
9. Bogan, B. W.,, and R. T. Lamar. 1996. Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochate laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl. Environ. Microbiol. 62:15971603.
10. Bogan, B. W.,, R. T. Lamar, and, K. E. Hammel. 1996. Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Appl. Environ. Microbiol. 62:17881792.
11. Bohmer, S.,, K. Messner, and, E. Srebotnik. 1998. Oxidation of phenanthrene by a fungal laccase in the presence of 1-hydroxybenzotriazole and unsaturated lipids. Biochem. Biophys. Res. Commun. 244:233238.
12. Bourbonnais, R.,, and M. G. Paice. 1990. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 27:99102.
13. Bumpus, J. A. 1989. Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 55:154158.
14. Bumpus, J.A.,, M. Tien,, D. Wright, and, S. D. Aust. 1985. Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:14341436.
15. Burdsall, H. H., Jr.,, and W. Eslyn. 1974. A new Phanerochaete with a Chrysosporium imperfect state. Mycotaxon 1:124.
16. Call, H. P.,, and I. Mucke. 1995. The laccase-mediator system (LMS)—a new concept, p. 27–32. In E. Srebotnik and, J. Messner (ed.), Biotechnology in the Pulp and Paper Industry. Facultas-Universitätsverlag, Vienna, Austria.
17. Canet, R.,, J. G. Birnstingl,, D. G. Malcolm,, J. M. Lopez-Real, and, A. J. Beck. 2001. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresour. Technol. 76:113117.
18. Cerniglia, C. E.,, and M. A. Heitkamp. 1989. Microbial degradation of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment, p. 41–68. In U. Varanasi (ed.), Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. CRC Press, Inc., Boca Raton, Fla.
19. Chadwick, R. W.,, S. E. George,, M. J. Kohan,, R. W. Williams,, J. C. Allison,, D. L. Talley,, Y. O. Hayes, and, J. Chang. 1995. Potentiation of 2,6-dinitrotoluene genotoxi-city in Fischer 344 rats by pretreatment with coal tar creosote. J. Toxicol. Environ. Health 44:319336.
20. Collins, P. J.,, and A. D. W. Dobson. 1997. Regulation of laccase gene transcription in Trametes versicolor. Appl. Environ. Microbiol. 63:34443450.
21. Collins, P. J.,, and A. D. W. Dobson. 1996. Oxidation of fluorene and phenanthrene by Mn(II) dependent peroxidase activity in whole cultures of Trametes (Coriolus) versicolor. Biotechnol. Lett. 18:801804.
22. Collins, P. J.,, M. J. J. Kotterman,, J. A. Field, and, A. D. W. Dobson. 1996. Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl. Environ. Microbiol. 62:45634567.
23. Cui, F.,, and D. Dolphin. 1990. The role of manganese in model systems related to lignin biodegradation. Holzforschung 44:279283.
24. D’Annibale, A.,, C. Crestini,, E. Di Mattia, and, G. G. Sermanni. 1996. Veratryl alcohol oxidation by manganese-dependent peroxidase from Lentinus edodes. J. Biotechnol. 48:231239.
25. Dhawale, S. W.,, S. S. Dhawale, and, D. Dean-Ross. 1992. Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic conditions as well as nonligninolytic conditions. Appl. Environ. Microbiol. 58:30003006.
26. Djomo, J. E.,, V. Ferrier,, L. Gauthier,, C. Zoll-Moreux, and, J. Marty. 1995. Amphibian micronucleus test in vivo: evaluation of the genotoxicity of some major polycyclic aromatic hydrocarbons found in crude oil. Mutagenesis 10:223226.
27. Durrant, A. J.,, D. A. Wood, and, R. B. Cain. 1991. Lignocellulose biodegradation by Agaricus bisporus during solid substrate fermentation. J. Gen. Microbiol. 137:751755.
28. Eaton, D. C. 1985. Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium: a ligninolytic fungus. Enzyme Microb. Technol. 7:194196.
29. Eggert, C.,, U. Temp,, J. F. D. Dean, and, K.-E. L. Eriksson. 1996. A fungal metabolite mediates degradation of nonphenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 391:144148.
30. Eschenbach, A., B. Weinberg,, and B. Mahro. 1998. Fate and stability of nonextractable residues of [14C]PAH in contaminated soils under stress conditions. Environ. Sci. Technol. 32:25852590.
31. Evans, C. S.,, and J. N. Hedger. 2001. Degradation of plant cell wall polymers, p. 1–26. In G. M. Gadd (ed.), Fungi in Bioremediation. Cambridge University Press, Cambridge, United Kingdom.
32. Field, J. A.,, E. de Jong,, G. Feijoo Costa, and, J. A. de Bont. 1992. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl. Environ. Microbiol. 58:22192226.
33. Fischer, C. L. J.,, R. D. Schmitter, and, E. O. Lane. 1999. Manufactured gas plants: the environmental legacy. http://www.hsrc.org/hsrc/html/tosc/sswtosc/mgp.html.
34. Forrester, I. T.,, A. C. Grabski,, R. R. Burgess, and, G. F. Leatham. 1988. Manganese, Mn-dependent peroxidases and the biodegradation of lignin. Biochem. Biophys. Res. Commun. 157:992999.
35. Fuhr, F.,, R. Kloskowski, and, P. W. Burauel. 1985. Bedeutung der gebundenen Rickstande. Pflanzenschutzmittel im Boden. Z. Agrarpolit. Landwirtsch. 198:106116.
36. Galkin, S.,, T. Vares,, M. Kalsi, and, A. Hatakka. 1998. Production of organic acids by white-rot fungi as detected by capillary zone electrophoresis. Biotechnol. Tech. 12:267271.
37. Glatt, H.,, A. Piee,, K. Pauly,, T. Steinbrecher,, R. Schrode,, F. Oesch, and, A. Seidel. 1991. Fjord- and bay-region diol-epoxides investigated for stability, SOS induction in Escherichia coli, and mutagenicity in Salmonella typhimurium and mammalian cells. Cancer Res. 51:16591667.
38. Glenn, J. K.,, and M. H. Gold. 1985. Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch. Biochem. Biophys. 242:329341.
39. Glenn, J. K.,, L. Akileswaran, and, M. H. Gold. 1986. Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 251:688696.
40. Haemmerli, S. D.,, M. S. A. Leisola,, D. Sanglard, and, A. Fiechter. 1986. Oxidation of benzo[a]pyrene by extracellular ligninases of Phanerochaete chrysosporium. Veratryl alcohol and stability of ligninase. J. Biol. Chem. 261:69006903.
41. Hammel, K. E.,, B. Kalyanaraman, and, T. K. Kirk. 1986. Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. J. Biol. Chem. 261:1694816952.
42. Hatakka, A. 1994. Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin biodegradation. FEMS Microbiol. Rev. 13:125135.
43. Heindl, A.,, and O. Hutzinger. 1986. Search for industrial sources of PCDD/PCDF. I. Approaches in the Federal Republic of Germany. Chemosphere 15:20012002.
44. Hofrichter, M.,, T. Vares,, M. Kalsi,, S. Galkin,, K. Scheibner,, W. Fritsche, and, A. Hatakka. 1999. Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid-state fermentation of wheat straw with the white rot fungus Nematoloma frowardii. Appl. Environ. Microbiol. 65:18641870.
45. Hofrichter, M.,, K. Scheibner,, I. Schneegass, and, W. Fritsche. 1998. Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Appl. Environ. Microbiol. 64:399404.
46. Hutzinger, O.,, M. J. Blumich,, M. van den Berg, and, K. Olie. 1985. Sources and fate of PCDDs and PCDFs: an overview. Chemosphere 14:581600.
47. in der Wiesche, C.,, R. Martens, and, F. Zadrazil. 1996. Two-step degradation of pyrene by white-rot fungi and soil microorganisms. Appl. Microbiol. Biotechnol. 46:653659.
48. Johannes, C.,, A. Majcherczyk, and, A. Hutterman. 1996. Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediating substrate compounds. Appl. Microbiol. Biotechnol. 46:313317.
49. Kastner, M. 2000. Degradation of aromatic and polyaromatic compounds, p. 211–239. In H.-J. Rehm and, G. Reed (ed.), Biotechnology, vol. 11b. Wiley-VCH, Weinheim, Germany.
50. Kastner, M.,, S. Streibich,, M. Beyrer,, H. H. Richnow, and, W. Fritsche. 1999. Formation of bound residues during microbial degradation of [14C]anthracene in soil. Appl. Environ. Microbiol. 65:18341842.
51. Kersten, P. J.,, B. Kalyanaraman,, K. E. Hammel,, B. Reinhammar, and, T. K. Kirk. 1990. Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem. J. 268:475480.
52. Kirk, T. K.,, and R. L. Farrell. 1987. Enzymatic combustion: the microbial degradation of lignin. Annu. Rev. Microbiol. 41:465505.
53. Kishi, K.,, H. Wariishi,, L. Marquez,, H. B. Dunford, and, M. H. Gold. 1994. Mechanism of manganese peroxidase compound II reduction. Effect of organic acid chelators and pH. Biochemistry 33:86948701.
54. Kotterman, M. J.,, E. H. Vis, and, J. A. Field. 1998. Successive mineralization and detoxification of benzo(a)pyrene by the white-rot fungus Bjerkandera sp. strain BOS55 and indigenous microflora. Appl. Environ. Microbiol. 64:28532858.
55. Kuwahara, M.,, J. K. Glenn,, M. A. Morgan, and, M. H. Gold. 1984. Separation and characterization of 2 extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 169:247250.
56. Lang, E.,, I. Kleeberg, and, F. Zadrazil. 2000. Extractable organic carbon and counts of bacteria near the lignocellu-lose-soil interface during the interaction of soil microbiota and white-rot fungi. Bioresour. Technol. 75:5765.
57. Lang, E.,, G. Eller, and, F. Zadrazil. 1997. Lignocellulose decomposition and production of ligninolytic enzymes during interaction of white rot fungi with soil microorganisms. Microb. Ecol. 34:110.
58. Lankinen, V. P. 2004. Ligninolytic enzymes of the basidiomycetous fungi Agaricus bisporus and Phlebia radiata on lignocellulose-containing media. Ph.D. thesis. University of Helsinki, Helsinki, Finland.
59. Larsen, J.,, P. A. Olsson, and, I. Jakobsen. 1998. The use of fatty acid signatures to study mycelial interaction between the arbuscular mycrorrhizal fungus Glomus intradices and the saprophytic fungus Fusarium culmorum in root-free soil. Mycol. Res. 102:14911496.
60. Majcherczyk, A., C. Johannes,, and A. Huttermann. 1998. Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb. Technol. 22:335341.
61. Makela, M.,, S. Galkin,, A. Hatakka, and, T. Lundell. 2002. Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme Microb. Technol. 30:542549.
62. Martens, R.,, M. Wolter,, M. Bahadir, and, F. Zadrazil. 1999. Mineralization of 14C-labelled highly-condensed polycyclic aromatic hydrocarbons in soils by Pleurotus sp. Florida. Soil Biol. Biochem. 31:18931899.
63. Martens, R.,, and F. Zadrazil. 1992. Screening of white-rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil, p. 505–510. In Preprints from the International Symposium on Soil Decontamination Using Biological Processes. Dechema, Frankfurt am Main, Germany.
64. Marvin, C. H.,, J. A. Lundrigan,, B. E. McCarry, and, D. W. Bryant. 1993. Chemico/biological investigation of contaminated sediment from the Hamilton Harbour area of western Lake Ontario. Environ. Mol. Mutagen. 22:6170.
65. Marvin, C. H.,, J. A. Lundrigan,, B. E. McCarry, and, D. W. Bryant. 1995. Determination and genotoxicity of high molecular mass polycyclic aromatic hydrocarbons isolated from coal-tar-contaminated sediment. Environ. Toxicol. Chem. 14:20592066.
66. McEldoon, J. P.,, and J. S. Dordick. 1991. Thiol and Mn2+-mediated oxidation of veratryl alcohol by horseradish peroxidase. J. Biol. Chem. 266:1428814293.
67. Melikian, A. A.,, K. A. Prahalad,, S. Amin, and, S. S. Hecht. 1991. Comparative DNA binding of polynuclear aromatic hydrocarbons and their dihydrodiol and bay region diolepoxide metabolites in newborn mouse lung and liver. Carcinogenesis 12:16651670.
68. Moen, M. A.,, and K. E. Hammel. 1994. Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl. Environ. Microbiol. 60:19561961.
69. Morgan, P.,, S. T. Lewis, and, R. J. Watkinson. 1991. Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds. Appl. Microbiol. Biotechnol. 34:693696.
70. Mori, T.,, and R. Kondo. 2002. Degradation of 2,7-dichlorodibenzo-p-dioxin by wood-rotting fungi, screened for dioxin degrading ability. FEMS Microbiol. Lett. 213:127131.
71. Mori, T.,, and R. Kondo. 2002. Oxidation of chlorinated dibenzo-p-dioxin and dibenzofuran by white-rot fungus, Phlebia lindtneri. FEMS Microbiol. Lett. 216:223227.
72. Mori, T.,, and R. Kondo. 2002. Oxidation of dibenzo-p-dioxin, dibenzofuran, biphenyl and diphenyl ether by white-rot fungus Phlebia lindtneri. Appl. Microbiol. Biotechnol. 60:200205.
73. Muller, M. M.,, R. Kantola, and, V. Kitunen. 1994. Combining sterol and fatty acid profiles for the characterization of fungi. Mycol. Res. 98:593603.
74. Pickard, M. A.,, R. Roman,, R. Tinoco, and, R. Vazquez-Duhalt. 1999. Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl. Environ. Microbiol. 65:38053809.
75. Pointing, S. B. 2001. Feasibility of bioremediation by white rot fungi. Appl. Microbiol. Biotechnol. 57:2033.
76. Radtke, C.,, W. S. Cook, and, A. Anderson. 1994. Factors affecting antagonism of the growth of Phanerochaete chrysosporium by bacteria isolated from soils. Appl. Micro-biol. Biotechnol. 41:274280.
77. Rosenbrock, P.,, R. Martens,, F. Buscot,, F. Zadrazil, and, J. C. Munch. 1997. Enhancing the mineralization of [U-14C] dibenzo-p-dioxin in three different soils by the addition of organic substrate or inoculation with white rot fungus. Appl. Microbiol. Biotechnol. 48:665670.
78. Sack, U.,, T. M. Heinze,, J. Deck,, C. E. Cerniglia,, R. Martens,, F. Zadrazil, and, W. Fritsche. 1997. Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl. Environ. Microbiol. 63:39193925.
79. Sack, U.,, M. Hofrichter, and, W. Fritsche. 1997. Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. FEMS Micro-biol. Lett. 152:227234.
80. Sanglard, D. M.,, S. A. Leisola, and, A. Fiechter. 1986. Role of extracellular ligninases in biodegradation of benzo(a)pyrene by Phanerochaete chrysosporium. Enzyme Microb. Technol. 8:209212.
81. Sato, A.,, T. Watanabe,, Y. Watanabe,, K. Harazono, and, T. Fukatsu. 2002. Screening for basidiomycetous fungi capable of degrading 2,7-dichlorodibenzo-p-dioxin. FEMS Microbiol. Lett. 213:213217.
82. Stahl, P. D.,, and M. J. Klug. 1996. Characterization and differentiation of filamentous fungi based on fatty acid composition. Appl. Environ. Microbiol. 62:41364146.
83. Surhara, H.,, C. Daikoku,, H. Takata,, S. Suzuki,, Y. Matsufuji,, K. Sakai, and, R. Kondo. 2003. Monitoring of white-rot fungus during bioremediation of polychlorinated dioxin-contaminated fly ash. Appl. Microbiol. Biotechnol. 62:601607.
84. Sutherland, J. B.,, F. Rafii,, A. A. Khan, and, C. E. Cerniglia. 1995. Mechanisms of polycyclic aromatic hydrocarbon degradation, p. 296–306. In L. Young and, C. E. Cerniglia (ed.), Microbial Transformation and Degradation of Toxic Organic Chemicals. Wiley-Liss, New York, N.Y.
85. Swanson, S. E.,, C. Rappe,, J. Malmstrom, and, K. P. Kringstad. 1988. Emission of PCDDs and PCDFs from the paper pulp industry. Chemosphere 17:681691.
86. Takada, S.,, M. Nakamura,, T. Matsueda,, R. Kondo, and, K. Sakai. 1996. Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624. Appl. Environ. Microbiol. 62:43234328.
87. Tien, M.,, and T. K. Kirk. 1983. Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol. 161:238249.
88. Valli, K.,, and M. H. Gold. 1991. Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. J. Bacteriol. 173:345352.
89. Valli, K.,, H. Wariishi, and, M. H. Gold. 1992. Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J. Bacteriol. 174:21312137.
90. van Aken, B.,, M. D. Cameron,, J. D. Stahl,, A. Plumat,, H. Naveau,, S. D. Aust, and, S. N. Agathos. 2000. Glutathione-mediated mineralization of 14C-labeled 2-amino-4,6-dinitrotoluene by manganese-dependent peroxidase H5 from the white-rot fungus Phanerochaete chrysosporium. Appl. Microbiol Biotechnol. 54:659664.
91. Vazquez-Duhult, R. D.,, W. S. Westlake, and, P. M. Fedorak. 1994. Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Appl. Environ. Microbiol. 60:459466.
92. Walsh, P.,, C. el Aldouni,, M. J. Mukhopadhyay,, G. Viel,, D. Nadeau, and, G. G. Poirier. 1995. 32P-postlabeling determination of DNA adducts in the earthworm Lumbricus terrestris exposed to PAH-contaminated soils. Bull. Environ. Contam. Toxicol. 54:654661.
93. Wariishi, H.,, K. Valli,, V. Renganathan, and, M. H. Gold. 1989. Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. J. Biol. Chem. 264:1418514191.
94. Wilson, S. C.,, and K. C. Jones. 1993. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ. Pollut. 81:229249.
95. Wittich, R. M. 1998. Degradation of dioxin-like compounds by microorganisms. Appl. Microbiol. Biotechnol. 49:489499.
96. Wolter, M.,, F. Zadrazil,, R. Martens, and, M. Bahadir. 1997. Degradation of eight highly condensed polycyclic aromatic hydrocarbons by Pleurotus sp. Florida in solid wheat straw substrate. Appl. Microbiol. Biotechnol. 48:398404.

Tables

Generic image for table
TABLE 1

Percent decrease in the concentration of selected PCDD and PCDF congeners in fly ash inoculated with live or heat-killed (control) sp. strain MZ-340 after 12 weeks

Citation: Lamar R, White R. 2007. Current Progress in the Application of Mycoremediation to Soil Cleanup, p 1097-1106. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch88
Generic image for table
TABLE 2

Characteristics of PCDD/PCDF-contaminated soils used in reference

Citation: Lamar R, White R. 2007. Current Progress in the Application of Mycoremediation to Soil Cleanup, p 1097-1106. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch88
Generic image for table
TABLE 3

Initial concentrations of HpCDF, HpCDD, and OCDD immediately after treatment application

Citation: Lamar R, White R. 2007. Current Progress in the Application of Mycoremediation to Soil Cleanup, p 1097-1106. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch88
Generic image for table
TABLE 4

Effect of fungal inoculum and control treatments on mean percent decrease of HpCDF, HpCDD, and OCDD after 56 days of treatment

Citation: Lamar R, White R. 2007. Current Progress in the Application of Mycoremediation to Soil Cleanup, p 1097-1106. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch88
Generic image for table
TABLE 5

Risk-based concentrations and IPs of the 16 EPA priority pollutant PAHs

Citation: Lamar R, White R. 2007. Current Progress in the Application of Mycoremediation to Soil Cleanup, p 1097-1106. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch88
Generic image for table
TABLE 6

PAHs, their IPs, and the ability of laccase to oxidize the PAH alone or in the presence of HBT or ABTS

Citation: Lamar R, White R. 2007. Current Progress in the Application of Mycoremediation to Soil Cleanup, p 1097-1106. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch88

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error