Chapter 91 : Methods Useful in Assessing Biological and Chemical Activity of Low-Molecular-Weight Brown Rot Fungal Metabolites

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Methods Useful in Assessing Biological and Chemical Activity of Low-Molecular-Weight Brown Rot Fungal Metabolites, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap91-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap91-2.gif


This chapter provides an overview of selected techniques that are used to detect, quantify, and evaluate the activity of low-molecular-weight metabolites produced by the brown rot fungi. The role of low-molecular-weight fungal metabolites in the brown rot decay process and their potential use in bioremediation and industrial processes are also briefly considered. The chapter also talks about the techniques used in the purification, quantification, and characterization of selected types of low-molecular-weight metabolites produced by brown rot fungi. Detection of hydroxyl radicals is limited by their extremely short half-life and high level of chemical activity. The chapter talks about selected methods that have been used in the characterization of wood or lignocellulose colonized by brown rot fungi or treated with isolated fungal metabolites. These include cellulose chain length determination, X-ray analysis, molecular beam mass spectroscopy (MBMS) and near infrared spectroscopy (NIR) evaluation of complex substrates, and C thermochemolysis characterization of lignin modification. Bioremediation applications are particularly intriguing because of the demonstrated ability of brown rot fungi to ramify through soil and colonize wood and other substrates in the natural environment. The ability to characterize the underlying nonenzymatic microbial processes utilized by the brown rot fungi will contribute to our ability to both control and utilize these unique degradative organisms in a better manner.

Citation: Jellison J, Goodell B, Qian Y. 2007. Methods Useful in Assessing Biological and Chemical Activity of Low-Molecular-Weight Brown Rot Fungal Metabolites, p 1122-1128. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch91

Key Concept Ranking

Fourier Transform Infrared Spectroscopy
Reactive Oxygen Species
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Proposed scheme for the participation of nonenzymatic metabolites in brown rot biodegradation of wood.

Citation: Jellison J, Goodell B, Qian Y. 2007. Methods Useful in Assessing Biological and Chemical Activity of Low-Molecular-Weight Brown Rot Fungal Metabolites, p 1122-1128. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch91
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Akerholm, M.,, B. Hinterstoisser, and, L. Salmen. 2004. Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydr. Res. 339:569578.
2. Andersson, S.,, R. Serimaa,, T. Paakkari,, P. Saranpaa, and, E. Pesonen. 2003. Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J. Wood Sci. 49:531537.
3. Andersson, S.,, H. Wikberg,, E. Pesonen,, S. L. Maunu, and, R. Serimaa. 2004. Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees Struct. Funct. 18:346353.
4. ASTM. 1994. Standard method of accelerated laboratory test of natural decay resistance of woods. Standard D2017-94. 1994 Annu. Book ASTM Stand. 4:218224.
5. Bard, A. J.,, and L. R. Faulkner. 2001. Electrochemical Methods: Fundamentals and Applications, 2nd ed. John Wiley & Sons, New York, N.Y.
6. Cao, Y.,, and H. Tan. 2005. Study of crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb. Technol. 36:314317.
7. Chandhoke, V.,, B. Goodell,, J. Jellison, and, F. A. Fekete. 1992. Oxidation of 2-keto-4-thiomethylbutyric acid (KTBA) by iron-binding compounds produced by the wood-decaying fungus Gloeophyllum trabeum. FEMS Microbiol. Lett. 90:263266.
8. Cohen, R.,, M. R. Suzuki, and, K. E. Hammel. 2004. Differential stress-induced regulation of two quinine reductases in the brown-rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 70:324331.
9. Cohen, R.,, M. R. Suzuki, and, K. E. Hammel. 2005. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 71:24122417.
10. Connolly, J. H.,, H. J. Arnott, and, J. Jellison. 1996. Patterns of calcium oxalate crystal production by three species of wood decay fungi. Scanning Microsc. 10:385400.
11. Connolly, J. H.,, W. C. Shortle, and, J. Jellison. 1999. Translocation and incorporation of strontium carbonate derived strontium into calcium oxalate crystals by the wood decay fungus Resinicium bicolor. Can. J. Bot. 77:179187.
12. Curling, S.,, C. A. Clausen, and, J. E. Winandy. 2001. The effect of hemicellulose degradation on the mechanical properties of wood during brown rot decay. Document IRG/WP 01-20219. International Research Group on Wood Preservation Series, section 2. Test methodology and assessment. IRG, Stockholm, Sweden.
13. Evans, R. J.,, and T. A. Milne. 1987. Molecular characterization of the pyrolysis of biomass. 1. Fundamentals. Energy Fuels 1:123137.
14. Fahr, K.,, H. G. Wetzstein,, R. Grey, and, D. Schlosser. 1999. Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiol. Lett. 175:127132.
15. Fekete, F. A.,, V. Chandhoke, and, J. Jellison. 1989. Iron-binding compounds produced by wood-decaying basidiomycetes. Appl. Environ. Microbiol. 55:27202722.
16. Ferraz, A.,, R. Mendonca,, A. Guerra,, J. Ruiz,, J. Rodriguez,, J. Baeza, and, J. Freer. 2004. Near-infrared spectra and chemical characteristics of Pinus taeda (loblolly pine) wood chips biotreated by the white-rot fungus Ceriporiopsis subvermispora. J. Wood Chem. Technol. 24:99113.
17. Filley, T. R. 2003. Assessment of fungal wood decay by lignin analysis using tetramethylammonium hydroxide (TMAH) and C-13-labeled TMAH thermochemolysis. ACS Symp. Ser. 845:119139.
18. Filley, T. R.,, G. D. Cody,, B. Goodell,, J. Jellison,, C. Noser, and, A. Ostrofsky. 2002. Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org. Chem. 33:111124.
19. Filley, T. R.,, P. G. Hatcher,, W. C. Shortle, and, R. T. Praseuth. 2000. The application of C-13-labeled tetramethylammonium hydroxide (C-13-TMAH) thermochemolysis to the study of fungal degradation of wood. Org. Chem. 31:181198.
20. Flaete, P. O.,, and E. Y. Haartveit. 2004. Non-destructive prediction of decay resistance of Pinus sylvestris heartwood by near-infrared spectroscopy. Scand. J. For. Res. 19:5563.
21. Flournoy, D. S.,, T. K. Kirk, and, T. Highley. 1991. Wood-decay by brown-rot fungi: changes in pore structure and cell wall volume. Holzforschung 45:383388.
22. Goodell, B.,, and J. Jellison. 2003. Oxidation using a nonenzymatic free radical system mediated by redox cycling chelators. U.S. patent application no. 20030186036.
23. Goodell, B.,, Y. Qian,, J. Jellison,, M. Richard, and, W. Qi. 2002. Lignocellulose oxidation by low molecular weight metal-binding compounds isolated from wood degrading fungi: a comparison of brown rot and white rot systems and the potential application of chelator-mediated Fenton reactions, p. 37–48. In L. Viikari and, R. Lantto (ed.), Progress in Biotechnology, vol. 21. Biotechnology in the Pulp and Paper Industry. Elsevier Science, Amsterdam, The Netherlands.
24. Goodell, B.,, J. Jellison,, J. Liu,, G. Daniel,, A. Paszczyuski,, F. Fekete,, S. Krishnamurthy,, L. Jun, and, G. Xu. 1997. Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J. Biotechnol. 53:133162.
25. Goodell, B.,, J. Jellison,, Y. H. Qian, and, M. Richard. 2004. Decolorization and degradation of dyes with mediated Fenton chemistry. Water Environ. Res. 76:27032707.
26. Grayson, M. 1982. Kirk-Othmer Encyclopedia of Chemical Technology, vol. 20. John Wiley, New York, N.Y.
27. Highley, T. L. 1973. Influence of carbon source on cellulase activity of white- and brown-rot fungi. Wood Fiber 5:5058.
28. Highley, T. L. 1982. Is extracellular hydrogen peroxide involved in cellulose degradation of brown-rot fungi? Mater. Org. 17:205214.
29. Highley, T. L. 1987. Effect of carbohydrate and nitrogen on hydrogen peroxide formation by wood decay fungi in solid medium. FEMS Microbiol. Lett. 48:373377.
30. Highley, T. L.,, and L. L. Murmanis. 1985. Determination of hydrogen peroxide production in Coriolus versicolor and Poria placenta during wood degradation. Mater. Org. 20:241252.
31. Humar, M.,, M. Bokan,, S. A. Amartey,, M. Sentjurc,, P. Kalan, and, E. Pohleven. 2004. Fungal bioremediation of copper, chromium and boron treated wood as studied by electron paramagnetic resonance. Int. Biodeterior. Biodegrad. 53:2532.
32. Humar, M.,, M. Petric,, F. Pohleven,, M. Sentjurc, and, P. Kalan. 2002. Changes in EPR spectra of wood impregnated with copper-based preservatives during exposure to several wood-rotting fungi. Holzforschung 56:229238.
33. Jellison, J.,, V. Chandhoke,, B. Goodell, and, F. Fekete. 1991. The isolation and immunology of iron-binding compounds produced by Gloeophyllum trabeum. Appl. Microbiol. Biotechnol. 35:805809.
34. Jensen, K. A.,, C. J. Ryan,, Z. C. Ryan, and, K. E. Hammel. 2001. Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 67:27052711.
35. Juarros, E.,, C. Tortajada,, M. D. Garcia, and, F. Uruburu. 1993. Storage of stock cultures of filamentous fungi at –80 degrees C: effects of different freezing-thawing methods. Microbiologia 9:2833.
36. Kataoka, Y.,, and T. Kondo. 1998. FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules 31:760764.
37. Kavitha, V.,, and K. Palanivelu. 2003. Degradation of 2-chlorophenol by Fenton and Photo-Fenton processes—a comparative study. J. Environ. Sci. Health A38:12151231.
38. Kelley, S. S.,, T. Elder, and, L. H. Groom. 2005. Changes in the chemical composition and spectroscopy of loblolly pine medium density fiberboard furnish as a function of age and refining pressure. Wood Fiber Sci. 37:1422.
39. Kelley, S. S.,, J. Jellison, and, B. Goodell. 2002. Use of NIR and pyrolysis-MBMS coupled with multivariate analysis for detecting the chemical changes associated with brown-rot biodegradation of spruce wood. FEMS Microbiol. Lett. 209:107111.
40. Kelley, S. S.,, T. G. Rials,, R. Snell,, L. H. Groom, and, A. Sluiter. 2004. Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood. Wood Sci. Technol. 38:257276.
41. Kerem, Z.,, K. A. Jensen, and, K. E. Hammel. 1999. Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for the extracellular hydroquinone-driven Fenton reaction. FEBS Lett. 446:4954.
42. Kramer, C.,, G. Kreisel,, K. Fahr,, J. Kabohrer, and, D. Schlosser. 2004. Degradation of 2-fluorophenol by the brown-rot fungus Gloeophyllum striatum: evidence for the involvement of extracellular Fenton chemistry. Appl. Microbiol. Biotechnol. 64:387395.
43. Labbe, N.,, T. G. Rials,, S. S. Kelley,, Z. M. Cheng,, J. Y. Kim, and, Y. Li. 2005. FT-IR imaging and pyrolysis-molecular beam mass spectroscopy: new tools to investigate wood tissues. Wood Sci. Technol. 39:6176.
44. Liu, R.,, B. Goodell,, J. Jellison, and, A. Amirbahman. 2005. Electrochemical study of 2,3-dihydroxybenzoic acid and its interaction with Cu(II) and H2O2 in aqueous solutions: implications for wood decay. Environ. Sci. Technol. 39:175180.
45. Magrini, K. A.,, R. J. Evans,, C. M. Hoover,, C. C. Elam, and, M. F. Davis. 2002. Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results. Environ. Pollut. 116:255268.
46. Nobles, M. K. 1965. Identification of cultures of wood-inhibiting hymenomycetes. Can. J. Bot. 44:10972065.
47. Ostrofsky, A.,, J. Jellison,, K. T. Smith, and, W. C. Shortle. 1997. Changes in cation concentration in red spruce wood decayed by brown rot and white rot fungi. Can. J. Forest Res. 27:567571.
48. Oviedo, C.,, D. Contreras,, J. Freer, and, J. Rodriguez. 2003. A screening method for detecting iron reducing wood-rot fungi. Biotechnol. Lett. 25:891893.
49. Paszczynski, A.,, R. Crawford,, D. Funk, and, B. Goodell. 1999. De novo synthesis of 4,5-dimethoxycatechol and 2,5-dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Appl. Environ. Microbiol. 65:674679.
50. Pracht, J.,, J. Boenigk,, M. Isen-Schröter,, F. Keppler, and, H. F. Schöler. 2001. Abiotic Fe(III) induced mineralization of phenolic substances. Chemosphere 44:613619.
51. Qi, W.,, and J. Jellison. 2004. Induction and catalytic properties of an intracellular NADH-dependent 1,4-benzoquinone reductase from the brown-rot basidiomycete Gloeophyllum trabeum. Int. Biodeterior. Biodegrad. 54:5360.
52. Qian, Y. H.,, B. Goodell, and, C. C. Felix. 2002. The effect of low molecular weight chelators on iron chelation and free radical generation as studied by ESR measurement. Chemosphere 48:2128.
53. Qian, Y.,, B. Goodell,, J. Jellison, and, C. C. Felix. 2004. The effect of hydroxyl radical generation of free-radical activation of TMP fibers. J. Polym. Environ. 12:147155.
54. Ritschkoff, A.-C.,, M. Ratto,, J. Buchert, and, L. Viikari. 1995. Effect of carbon source on the production of oxalic acid and hydrogen peroxide by brown-rot fungus Poria placenta. J. Biotechnol. 40:179186.
55. Rodriguez, J.,, D. Contreras,, C. Parra,, J. Freer,, J. Baeza, and, N. Duran. 1999. Pulp mill effluent treatment by Fenton-type reactions catalyzed by iron complexes. Water Sci. Technol. 40:351355.
56. Rodriguez, J.,, A. Ferraz, and, M. P. de Mello. 2003. Role of metals in wood biodegradation. ACS Symp. Ser. 845:154174.
57. Schilling, J.,, and J. Jellison. 2004. High-performance liquid chromatographic analysis of soluble and total oxalate in Ca- and Mg-amended liquid cultures of three wood decay fungi. Holzforschung 58:682687.
58. Sivonen, H.,, M. Nuopponen,, S. L. Maunu,, F. Sundholm, and, T. Vuorinen. 2003. Carbon-thirteen cross-polarization magic angle spinning nuclear magnetic resonance and Fourier transform infrared studies of thermally modified wood exposed to brown and soft rot fungi. Appl. Spectrosc. 57:266273.
59. Stookey, L. L. 1970. Ferrozine—a new spectrophotometric reagent for iron. Anal. Chem. 42:779782.
60. Sun, X. F.,, F. Xu,, R. C. Sun,, P. Fowler, and, M. S. Baird. 2005. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr. Res. 340:97106.
61. Tornberg, K.,, and S. Olsson. 2002. Detection of hydroxyl radicals produced by wood-decomposing fungi. FEMS Microbiol. Ecol. 40:1320.
62. Tsai, C. H.,, A. Stern,, J. Chiou,, C. Chern, and, T. Liu. 2001. Rapid and specific detection of hydroxyl radical using an ultraweak chemiluminescence analyzer and a low-level chemiluminescence emitter: application to hydroxyl radical-scavenging ability of aqueous extracts of food constituents. J. Agric. Food Chem. 49:21372141.
63. Tsuchikawa, S.,, Y. Hirashima,, Y. Sasaki, and, K. Ando. 2005. Near-infrared spectroscopic study of the physical and mechanical properties of wood with meso- and micro-scale anatomical observation. Appl. Spectrosc. 59:8693.
64. Varela, E.,, and M. Tien. 2003. Effect of pH and oxalate of hydroquinone-derived hydroxyl radical formation during brown-rot wood degradation. Appl. Environ. Microbiol. 69:60256031.
65. Winter, W. T. 2002. Crystallography of galactomannans: an overview. Abstr. Papers Am. Chem. Soc. 219:U262.
66. Winter, W. T.,, and A. J. Stipanovic. 2002. Cellulose nanocrystals: properties and potential applications. Abstr. Papers Am. Chem. Soc. 221:U186.
67. Wood, B. F.,, A. H. Conner, and, C. G. Hill, Jr. 1996. The effect of precipitation of the molecular weight distribution of cellulose tricarbanilate. J. Appl. Polym. Sci. 32:37033712.
68. Xu, G.,, and B. Goodell. 2001. Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J. Biotechnol. 87:4357.
69. Yelle, D.,, B. Goodell,, D. J. Gardner,, A. Amirbahman,, P. Winistorfer, and, S. M. Shaler. 2004. Bonding of wood fiber composites using a synthetic chelator-lignin activation system. For. Prod. J. 54:7378.
70. Zill, G.,, G. Engelhardt, and, P. R. Wallnöfer. 1988. Determination of ergosterol as a measure of fungal growth using Si 60 HPLC. Eur. Food Res. Technol. 187:246249.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error