1887

Chapter 92 : Techniques for Studying Uncultured and Cultured Magnetotactic Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Techniques for Studying Uncultured and Cultured Magnetotactic Bacteria , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap92-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap92-2.gif

Abstract:

Uncultivated magnetotactic bacteria (MTB) can be studied most easily in microcosms set up in the laboratory. In their simplest form, microcosms consist of about one-third sediment together with about two-thirds overlying water and are placed in a flask or aquarium (0.1 to 5 liters) and incubated in dim light at room temperature. Many MTB can easily be detected and collected by taking advantage of their active, directed migration along magnetic field lines. Cell morphology and flagellar patterns of specific MTB can be determined by using negatively stained preparations of cells and transmission electron microscopy. Magnetosomes are electron-dense structures that can be visualized in cells without staining. The high abundance, conspicuous morphology, and magnetic response of the MTB allow for their easy microscopic identification and have made them an attractive subject for the early application of cultivation-independent, rRNA based techniques. Isolated cultures of MTB need to be properly preserved, as both the magnetic polarity and the capability of biomineralizing magnetosomes can be irreversibly lost upon prolonged subcultivation and storage in the lab due to genetic instability. For the establishment of a genetic system for the MTB, the ability to grow cells as colonies on agar plates is a necessity, since colony formation on the surfaces of agar plates is required for clonal selection in genetic analysis.

Citation: Schìler D, Bazylinski D. 2007. Techniques for Studying Uncultured and Cultured Magnetotactic Bacteria , p 1129-1136. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch92

Key Concept Ranking

Denaturing Gradient Gel Electrophoresis
0.4524493
0.4524493
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Vertical distribution of MTB along chemical gradients in a typical freshwater microcosm. Numbers of MTB (gray bars) were determined by viable cell counts, using the hangingdrop assay as described in the text. Error bars indicate standard deviations. Various biochemical parameters (concentrations of oxygen, nitrate, and sulfide) were determined by using microelectrodes (modified as described in reference ).

Citation: Schìler D, Bazylinski D. 2007. Techniques for Studying Uncultured and Cultured Magnetotactic Bacteria , p 1129-1136. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch92
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Scheme for magnetic collection and axenic isolation of uncultivated MTB. Details of the techniques are given in the text.

Citation: Schìler D, Bazylinski D. 2007. Techniques for Studying Uncultured and Cultured Magnetotactic Bacteria , p 1129-1136. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch92
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Phase-contrast light micrographs of MTB in a hanging drop at different time points after application of a magnetic field. Cells swim in random directions in the absence of a magnetic field (0 s). If a magnetic field is applied, MTB immediately align and swim along the magnetic field lines (arrows). After several minutes, large numbers of bacteria accumulate at the “northern” edge of the drop (next to the south pole of a bar magnet).

Citation: Schìler D, Bazylinski D. 2007. Techniques for Studying Uncultured and Cultured Magnetotactic Bacteria , p 1129-1136. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch92
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch92
1. Amann, R.,, R. Rossello-Mora,, C. Flies, and, D. Schüler. 2004. Phylogeny and in situ identification of magnetotactic bacteria, p. 61–74. In E. Baeuerlein (ed.), Biomineralization, 2nd ed. Wiley-VCH, Weinheim, Germany.
2. Bazylinski, D. A.,, and R. P. Blakemore. 1983. Nitrogen fixation (acetylene reduction) in Aquaspirillum magneto-tacticum. Curr. Microbiol. 9:305308.
3. Bazylinski, D. A.,, A. J. Dean,, D. Schüler,, E. J. P. Phillips, and, D. R. Lovley. 2000. N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ. Micro-biol. 2:266273.
4. Bazylinski, D. A.,, A. J. Dean,, T. J. Williams,, L. K. Long,, S. L. Middleton, and, B. L. Dubbels. 2004. Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch. Microbiol. 182:373387.
5. Bazylinski, D. A.,, and R. B. Frankel. 2004. Magneto-some formation in prokaryotes. Nat. Rev. Microbiol. 2:217230.
6. Bazylinski, D. A.,, R. B. Frankel, and, H. W. Jannasch. 1988. Anaerobic magnetite production by a marine magnetotactic bacterium. Nature 334:518519.
7. Bazylinski, D. A.,, A. Garratt-Reed,, A. Abedi, and, R. B. Frankel. 1993. Copper association with iron sulfide magnetosomes in a magnetotactic bacterium. Arch. Microbiol. 160:3542.
8. Bazylinski, D. A.,, A. Garratt-Reed, and, R. B. Frankel. 1994. Electron-microscopic studies of magnetosomes in magnetotactic bacteria. Microsc. Res. Tech. 27:389401.
9. Beudeker, R. F.,, G. C. Cannon,, J. G. Kuenen, and, J. M. Shively. 1980. Relations between d-ribulose-1,5-bisphosphate carboxylase, carboxysomes and CO2 fixing capacity in the obligate chemolithotroph Thiobacillus neapolitanus grown under different limitations in the chemostat. Arch. Microbiol. 124:185189.
10. Blakemore, R. 1975. Magnetotactic bacteria. Science 190:377379.
11. Blakemore, R. 1982. Magnetotactic bacteria. Annu. Rev. Microbiol. 36:217238.
12. Blakemore, R.,, D. Maratea, and, R. S. Wolfe. 1979. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J. Bacteriol. 140:720729.
13. Blakemore, R. P.,, K. A. Short,, D. A. Bazylinski,, C. Rosenblatt, and, R. B. Frankel. 1985. Microaerobic conditions are required for magnetite formation within Aqua-spirillum magnetotacticum. Geomicrobiol. J. 4:5372.
14. Burgess, J. G.,, R. Kawaguchi,, T. Sakaguchi,, R. H. Thornhill, and, T. Matsunaga. 1993. Evolutionary relationships among Magnetospirillum strains inferred from phylogenetic analysis of 16S rRNA sequences. J. Bacteriol. 175:66896694.
15. Buseck, P. R.,, R. E. Dunin-Borkowski,, B. Devouard,, R. B. Frankel,, M. R. McCartney,, P. A. Midgley,, M. Posfai, and, M. Weyland. 2001. Magnetite morphology and life on Mars. Proc. Natl. Acad. Sci. USA 98:1349013495.
16. Clemett, S. J.,, K. L. Thomas-Keprta,, J. Shimmin,, M. Morphew,, J. R. McIntosh,, D. A. Bazylinski,, J. L. Kirschvink,, D. S. McKay,, S. J. Wentworth,, H. Vali,, E. K. Gibson, Jr., and, C. S. Romanek. 2002. Crystal morphology of MV-1 magnetite. Am. Mineral. 87:17271730.
17. DeLong, E. F.,, R. B. Frankel, and, D. A. Bazylinski. 1993. Multiple evolutionary origins of magnetotaxis in bacteria. Science 259:803806.
18. Devouard, B.,, M. Posfai,, X. Hua,, D. A. Bazylinski,, R. B. Frankel, and, P. R. Buseck. 1998. Magnetite from magnetotactic bacteria: size distributions and twinning. Am. Mineral. 83:13871398.
19. Dubbels, B. L.,, A. A. DiSpirito,, J. D. Morton,, J. D. Semrau,, J. N. Neto, and, D. A. Bazylinski. 2004. Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. Microbiology 150:2931-2945.
20. Dunin-Borkowski, R. E.,, M. R. McCartney,, M. Posfai,, R. B. Frankel,, D. A. Bazylinski, and, P. R. Buseck. 2001. Off-axis electron holography of magnetotactic bacteria: magnetic microstructure of strains MV-1 and MS-1. Eur. J. Mineral. 13:671684.
21. Flies, C. 2004. Isolierung und kultivierungsunabhängige Untersuchungen von magnetotaktischen Bakterien aus marinen und limnischen Sedimenten. Ph.D. thesis. Universität Bremen, Bremen, Germany.
22. Flies, C.,, H. Jonkers,, D. deBeer,, K. Bosselmann,, M. Böttcher, and, D. Schüler. 2005. Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS Microbiol. Ecol. 52:185195.
23. Flies, C.,, J. Peplies, and, D. Schüler. 2005. A combined approach for the characterization of uncultivated magnetotactic bacteria from various aquatic environments. Appl. Environ. Microbiol. 71:27232731.
24. Frankel, R. B.,, D. A. Bazylinski,, M. S. Johnson, and, B. L. Taylor. 1997. Magneto-aerotaxis in marine coccoid bacteria. Biophys. J. 73:9941000.
25. Frankel, R. B.,, G. C. Papaefthymiou,, R. P. Blakemore, and, W. O’Brien. 1983. Fe3O4 precipitation in magnetotactic bacteria. Biochim. Biophys. Acta 763:147159.
26. Grünberg, K.,, E. C. Müller,, A. Otto,, R. Reszka,, D. Linder,, M. Kube,, R. Reinhardt, and, D. Schüler. 2004. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 70:10401050.
27. Grünberg, K.,, C. Wawer,, B. M. Tebo, and, D. Schüler. 2001. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl. Environ. Microbiol. 67:45734582.
28. Guerin, W.,, and R. Blakemore. 1992. Redox cycling of iron supports growth and magnetite synthesis by Aquaspirillum magnetotacticum. Appl. Environ. Microbiol. 58:11021109.
29. Heyen, U.,, and D. Schüler. 2003. Growth and magneto-some formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol. 61:536544.
30. Mandernack, K. W.,, D. A. Bazylinski,, W. C. Shanks, and, T. D. Bullen. 1999. Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria. Science 285:18921896.
31. Matsunaga, T.,, Y. Okamura,, Y. Fukuda,, A. T. Wahyudi,, Y. Murase, and, H. Takeyama. 2005. Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res. 12:157166.
32. Moench, T. T.,, and W. A. Konetzka. 1978. A novel method for the isolation and study of a magnetotactic bacterium. Arch. Microbiol. 119:203212.
33. Nelson, D. C.,, and H. W. Jannasch. 1983. Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch. Microbiol. 136:262269.
34. Okamura, Y.,, H. Takeyama,, T. Sekine,, T. Sakaguchi,, A. T. Wahyudi,, R. Sato,, S. Kamiya, and, T. Matsunaga. 2003. Design and application of a new cryptic-plasmid-based shuttle vector for Magnetospirillum magneticum. Appl. Environ. Microbiol. 69:42744277.
35. Paoletti, L. C.,, and R. P. Blakemore. 1988. Iron reduction by Aquaspirillum magnetotacticum. Curr. Microbiol. 17:339342.
36. Sakaguchi, T.,, N. Tsujimura, and, T. Matsunaga. 1996. A novel method for isolation of magnetic bacteria without magnetic collection using magnetotaxis. J. Microbiol. Methods 26:139145.
37. Schübbe, S.,, M. Kube,, A. Scheffel,, C. Wawer,, U. Heyen,, A. Meyerdierks,, M. Madkour,, F. Mayer,, R. Reinhardt, and, D. Schüler. 2003. Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J. Bacteriol. 185:57795790.
38. Schüler, D.,, and E. Baeuerlein. 1998. Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J. Bacteriol. 180:159162.
39. Schüler, D.,, and E. Baeuerlein. 1996. Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch. Microbiol. 166:301307.
40. Schüler, D.,, S. Spring, and, D. A. Bazylinski. 1999. Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization. Syst. Appl. Microbiol. 22:466471.
41. Schüler, D.,, R. Uhl, and, E. Baeuerlein. 1995. A simple light-scattering method to assay magnetism in Magneto-spirillum gryphiswaldense. FEMS Microbiol. Lett. 132:139145.
42. Schultheiss, D.,, R. Handrick,, D. Jendrossek,, M. Hanzlik, and, D. Schüler. 2005. The presumptive magnetosome protein Mms16 is a PHB-granule bound protein (phasin) in Magnetospirillum gryphiswaldense. J. Bacteriol. 187:24162425.
43. Schultheiss, D.,, M. Kube, and, D. Schüler. 2004. Inactivation of the flagellin gene flaA in Magnetospirillum gryphiswaldense results in nonmagnetotactic mutants lacking flagellar filaments. Appl. Environ. Microbiol. 70:36243631.
44. Schultheiss, D.,, and D. Schüler. 2003. Development of a genetic system for Magnetospirillum gryphiswaldense. Arch. Microbiol. 179:8994.
45. Simmons, S. L.,, S. M. Sievert,, R. B. Frankel,, D. A. Bazylinski, and, K. J. Edwards. 2004. Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl. Environ. Microbiol. 70:62306239.
46. Spring, S.,, R. Amann,, W. Ludwig,, K. H. Schleifer, and, N. Petersen. 1992. Phylogenetic diversity and identification of nonculturable magnetotactic bacteria. Syst. Appl. Microbiol. 15:116122.
47. Spring, S.,, R. Amann,, W. Ludwig,, K. H. Schleifer,, H. Van Gemerden, and, N. Petersen. 1993. Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Appl. Environ. Microbiol. 59:23972403.
48. Spring, S.,, and K. H. Schleifer. 1995. Diversity of magnetotactic bacteria. Syst. Appl. Microbiol. 18:147153.
49. Thornhill, R. H.,, J. G. Burgess, and, T. Matsunaga. 1995. PCR for direct detection of indigenous uncultured magnetic cocci in sediment and phylogenetic analysis of amplified 16S ribosomal DNA. Appl. Environ. Microbiol. 61:495500.
50. Ullrich, S.,, M. Kube,, S. Schübbe,, R. Reinhardt, and, D. Schüler. 2005. A hypervariable 130-kb genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island, which undergoes frequent rearrangements during stationary growth. J. Bacteriol. 187:71767184.
51. Wallner, G.,, B. Fuchs,, S. Spring,, W. Beisker, and, R. Amann. 1997. Flow sorting of microorganisms for molecular analysis. Appl. Environ. Microbiol. 63:42234231.
52. Wolfe, R. S.,, R. K. Thauer, and, N. Pfennig. 1987. A capillary racetrack method for isolation of magnetotactic bacteria. FEMS Microbiol. Lett. 45:3136.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error