1887

Chapter 93 : Growth of Electrode-Reducing Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Growth of Electrode-Reducing Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap93-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap93-2.gif

Abstract:

The availability of bacteria that are able to interact with electrodes presents opportunities for conversion of organic compounds into electricity. While the obvious application of this phenomenon involves power generation, it also implies new routes to biological sensing and control of oxidative or reductive biocatalytic reactions. A combination of the standard fuel cell and poised-electrode approaches is the use of potentiostats to perform analyses such as cyclic voltammetry and electrochemical impedance spectroscopy on mature microbial biofilms, which can demonstrate the presence of redox-active proteins or mediator pools on or near electrodes. While devices used for the study of electrode-reducing bacteria are typically custom-constructed to meet the needs of the experiment or organism being studied and procedures are continually evolving to obtain higher current densities or allow voltammetry measurements, some sample experimental protocols that illustrate issues of sterility and anaerobic technique are provided in this chapter. By combining microbial physiology with an understanding of electrical and chemical engineering, an equally rich spectrum of devices that are able to study and control the growth of electrode-reducing bacteria can be imagined and should be explored.

Citation: Bond D. 2007. Growth of Electrode-Reducing Bacteria, p 1137-1146. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch93

Key Concept Ranking

Carbonates and Bicarbonates
0.5497216
Bacterial Growth
0.53799963
Shewanella putrefaciens
0.531462
0.5497216
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Basic schematics of a two-chambered fuel cell (top) and a fuel cell in which electrodes are pressed directly to a membrane (bottom). Naming conventions and direction of electron flow are based on the bacteria colonizing the anode and acting as catalysts for oxidation of an organic electron donor, with oxygen serving as the ultimate electron acceptor.

Citation: Bond D. 2007. Growth of Electrode-Reducing Bacteria, p 1137-1146. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch93
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch93
1. Adler, J.,, and W. Shi. 1988. Galvanotaxis in bacteria. Cold Spring Harbor Symp. Quant. Biol. 53(Pt. 1):2325.
2. Back, J. H.,, M. S. Kim,, H. Cho,, I. S. Chang,, J. Lee,, K. S. Kim,, B. H. Kim,, Y. I. Park, and, Y. S. Han. 2004. Construction of bacterial artificial chromosome library from electrochemical microorganisms. FEMS Microbiol. Lett. 238:6570.
3. Bennetto, H. P. 1990. Electricity production by microorganisms. Biotechnol. Edu. 1:163168.
4. Bond, D. R.,, D. E. Holmes,, L. M. Tender, and, D. R. Lovley. 2002. Electrode-reducing microorganisms harvesting energy from marine sediments. Science 295:483485.
5. Bond, D. R.,, and D. R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69:15481555.
6. Bond, D. R.,, and D. R. Lovley. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71:21862189.
7. Chaudhuri, S. K.,, and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21:12291232.
8. Cheng, S.,, H. Liu, and, B. E. Logan. 2006. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem. Comm. 8:489494.
9. Cheng, S.,, H. Liu, and, B. E. Logan. 2006. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol. 40:24262432.
10. Childers, S. E.,, S. Ciufo, and, D. R. Lovley. 2002. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416:767769.
11. Choi, Y.,, J. Song,, S. Jung, and, S. Kim. 2001. Optimization of the performance of microbial fuel cells containing alkalophilic Bacillus sp. J. Microbiol. Biotechnol. 11:863869.
12. Cohen, B. 1931. The bacterial culture as an electrical half-cell. J. Bacteriol. 21:18.
13. Cooney, M. J.,, E. Roschi,, I. W. Marison,, C. Comninellis, and, U. von Stockar. 1996. Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: evaluation for use in a biofuel cell. Enzyme Microb. Technol. 18:358365.
14. Davis, J. B.,, and H. F. Yarbrough. 1962. Preliminary experiments on a microbial fuel cell. Science 137:615616.
15. Delaney, G. M.,, H. P. Bennetto,, J. R. Mason,, S. D. Roller,, J. L. Stirling, and, C. F. Thurston. 1984. Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediator combinations. J. Chem. Technol. Biotechnol. 34B:1327.
16. Dodge, C. J.,, and A. J. Francis. 2002. Photodegradation of a ternary iron(III)-uranium(VI)-citric acid complex. Environ. Sci. Technol. 36:20942100.
17. Finneran, K. T.,, C. V. Johnsen, and, D. R. Lovley. 2003. Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int. J. Syst. Evol. Microbiol. 53:669673.
18. Gray Young, T.,, L. Hadjipetrou, and, M. D. Lilly. 1966. The theoretical aspects of biochemical fuel cells. Biotechnol. Bioeng. 8:581593.
19. He, Z.,, S. D. Minteer, and, L. T. Angenent. 2005. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol. 39:52625267.
20. Holmes, D. E.,, D. R. Bond, and, D. R. Lovley. 2004. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microb. 70:12341237.
21. Holmes, D. E.,, D. R. Bond,, R. A. O’Neil,, C. E. Reimers,, L. R. Tender, and, D. R. Lovley. 2004. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol. 48:178190.
22. Holmes, D. E.,, J. S. Nicoll,, D. R. Bond, and, D. R. Lovley. 2004. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl. Enviro. Microbiol. 70:60236030.
23. Jang, J. K.,, T. H. Pham,, I. S. Chang,, K. H. Kang,, H. Moon,, K. S. Cho, and, B. H. Kim. 2004. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem. 39:10071012.
24. Katz, E.,, and I. Willner. 2003. A biofuel cell with electro-chemically switchable and tunable power output. J. Am. Chem. Soc. 125:68036813.
25. Kim, B. H.,, H. J. Kim,, M. S. Hyun, and, D. H. Park. 1999. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9:127131.
26. Kim, B. H.,, H. S. Park,, H. J. Kim,, G. T. Kim,, I. S. Chang,, J. Lee, and, N. T. Phung. 2004. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63:672681.
27. Kim, H. J.,, H. S. Park,, M. S. Hyun,, I. S. Chang,, M. Kim, and, B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30:145152.
28. Kim, N.,, Y. Choi,, S. Jung, and, S. Kim. 2000. Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol. Bioeng. 70:109114.
29. Leang, C.,, M. V. Coppi, and, D. R. Lovley. 2003. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J. Bacteriol. 185:20962103.
30. Lee, J. Y.,, N. T. Phung,, I. S. Chang,, B. H. Kim, and, H. C. Sung. 2003. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol. Lett. 223:185191.
31. Lewis, K. 1966. Symposium on bioelectrochemistry of microorganisms. IV. Biochemical fuel cells. Bacteriol. Rev. 30:101113.
32. Liu, H.,, S. Cheng, and, B. E. Logan. 2005. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol. 39:658662.
33. Liu, H.,, and B. E. Logan. 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38:40404046.
34. Liu, H.,, R. Ramnarayanan, and, B. E. Logan. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38:22812285.
35. Logan, B. E.,, C. Murano,, K. Scott,, N. D. Gray, and, I. M. Head. 2005. Electricity generation from cysteine in a microbial fuel cell. Water Res. 39:942952.
36. Lovley, D. R. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 49:219286.
37. Magnuson, T. S.,, A. L. Neal, and, G. G. Geesey. 2004. Combining in situ reverse transcriptase polymerase chain reaction, optical microscopy, and X-ray photoelectron spectroscopy to investigate mineral surface-associated microbial activities. Microb. Ecol. 48:578588.
38. Mano, N.,, F. Mao, and, A. Heller. 2003. Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 125:65886594.
39. Mano, N.,, F. Mao, and, A. Heller. 2004. A miniature membrane-less biofuel cell operating at +0.60 V under physiological conditions. ChemBioChem 5:17031705.
40. Mano, N.,, F. Mao,, W. Shin,, T. Chen, and, A. Heller. 2003. A miniature biofuel cell operating at 0.78 V. Chem. Commun. (Cambridge) 2003(4):518519.
41. Maoyu, Y.,, and Y. Zhang. 1989. Electrode system for determination of microbial cell populations in polluted water. Appl. Environ. Microbiol. 55:20822085.
42. Menicucci, J.,, H. Beyenal,, E. Marsili,, R. A. Veluchamy,, G. Demir, and, Z. Lewandowski. 2006. Procedure for determining maximum sustainable power generated by microbial fuel cells. Environ. Sci. Technol. 40:10621068.
43. Min, B.,, S. Cheng, and, B. E. Logan. 2005. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 39:16751686.
44. Min, B.,, and B. E. Logan. 2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 38:58095814.
45. Mitchell, P. 1967. Proton-translocation phosphorylation in mitochondria, chloroplasts and bacteria: natural fuel cells and solar cells. Fed. Proc. 26:13701379.
46. Morris, J. G. 1983. Anaerobic fermentations—some new possibilities. Biochem. Soc. Symp. 48:147172.
47. Myers, C. R.,, and J. M. Myers. 2003. Cell surface exposure of the outer membrane cytochromes of Shewanella oneidensis MR-1. Lett. Appl. Microbiol. 37:254258.
48. Myers, C. R.,, and J. M. Myers. 1993. Ferric reductase is associated with the membranes of anaerobically grown Shewanella putrefaciens MR-1. FEMS Microbiol. Lett. 108:1522.
49. Myers, C. R.,, and J. M. Myers. 1997. Outer membrane cytochromes of Shewanella putrefaciens MR-1: spectral analysis, and purification of the 83-kDa c-type cyto-chrome. Biochim. Biophys. Acta 1326:307318.
50. Nevin, K. P.,, and D. R. Lovley. 2000. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl. Environ. Microbiol. 66:22482251.
51. Nevin, K. P.,, and D. R. Lovley. 2002. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl. Environ. Microbiol. 68:22942299.
52. Nevin, K. P.,, and D. R. Lovley. 2002. Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol. J. 19:141159.
53. Niessen, J.,, U. Schroder,, M. Rosenbaum, and, F. Scholz. 2004. Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem. Comm. 6:571575.
54. Niessen, J.,, U. Schroder, and, F. Scholz. 2004. Exploiting complex carbohydrates for microbial electricity generation—a bacterial fuel cell operating on starch. Electrochem. Comm. 6:955958.
55. Oh, S.,, B. Min, and, B. E. Logan. 2004. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 38:49004904.
56. Park, D. H.,, M. Laivenieks,, M. V. Guettler,, M. K. Jain, and, J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Micro-biol. 65:29122917.
57. Park, D. H.,, and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66:12921297.
58. Park, D. H.,, and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81:348355.
59. Park, H. S.,, B. H. Kim,, H. S. Kim,, H. J. Kim,, G. T. Kim,, M. Kim,, I. S. Chang,, Y. H. Park, and, H. I. Chang. 2001. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297306.
60. Pham, C. A.,, S. J. Jung,, N. T. Phung,, J. Lee,, I. S. Chang,, B. H. Kim,, H. Yi, and, J. Chun. 2003. A novel electro-chemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol. Lett. 223:129134.
61. Pham, T. H.,, J. K. Jang,, I. S. Chang, and, B. H. Kim. 2004. Improvement of cathode reaction of a mediatorless microbial fuel cell. J. Microbiol. Biotechnol. 14:324329.
62. Pham, T. H.,, J. K. Jang,, H. S. Moon,, I. S. Chang, and, B. H. Kim. 2005. Improved performance of microbial fuel cell using membrane-electrode assembly. J. Microbiol. Biotechnol. 15:438441.
63. Phung, N. T.,, J. Lee,, K. H. Kang,, I. S. Chang,, G. M. Gadd, and, B. H. Kim. 2004. Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol. Lett. 233:7782.
64. Potter, M. C. 1912. Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. London B 84:266276.
65. Rabaey, K.,, N. Boon,, M. Hofte, and, W. Verstraete. 2005. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39:191A192A.
66. Rabaey, K.,, N. Boon,, S. D. Siciliano,, M. Verhaege, and, W. Verstraete. 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70:53735382.
67. Rabaey, K.,, P. Clauwaert,, P. Aelterman, and, W. Verstraete. 2005. Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol. 39:80778082.
68. Rabaey, K.,, G. Lissens,, S. D. Siciliano, and, W. Verstraete. 2003. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 25:15311535.
69. Reguera, G.,, K. D. McCarthy,, T. Mehta,, J. S. Nicoll,, M. T. Tuominen, and, D. R. Lovley. 2005. Extracellular electron transfer via microbial nanowires. Nature 435:10981101.
70. Reimers, C. E.,, L. M. Tender,, S. Fertig, and, W. Wang. 2001. Harvesting energy from the marine sediment—water interface. Environ. Sci. Technol. 35:192195.
71. Roller, S. D.,, H. P. Bennetto,, G. M. Delaney,, J. R. Mason,, J. L. Stirling, and, C. F. Thurston. 1984. Electron-transfer coupling in microbial fuel cells. 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria. J. Chem. Technol. Biotechnol. 34B:312.
72. Sasaki, S.,, and I. Karube. 1999. The development of microfabricated biocatalytic fuel cells. Trends Biotechnol. 17:5052.
73. Scholz, F.,, and U. Schroder. 2003. Bacterial batteries. Nat. Biotechnol. 21:11511152.
74. Schroder, U.,, J. Niessen, and, F. Scholz. 2003. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed. Engl. 42:28802883.
75. Shi, W.,, B. A. Stocker, and, J. Adler. 1996. Effect of the surface composition of motile Escherichia coli and motile Salmonella species on the direction of galvanotaxis. J. Bacteriol. 178:11131119.
76. Shin, S. H.,, Y. J. Choi,, S. H. Na,, S. H. Jung, and, S. Kim. 2006. Development of bipolar plate stack type microbial fuel cells. Bull. Korean Chem. Soc. 27:281285.
77. Sisler, F. D. 1971. Biochemical fuel cells, p. 1–11. In D. J. D. Hochenhull (ed.), Progress in Industrial Microbiology, vol. 9. J. & A. Churchill, London, United Kingdom.
78. Soukharev, V.,, N. Mano, and, A. Heller. 2004. A four-electron O(2)-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V. J. Am. Chem. Soc. 126:83688369.
79. Stirling, J. L.,, H. P. Bennetto,, G. M. Delaney,, J. R. Mason,, S. D. Roller,, K. Tanaka, and, C. F. Thurston. 1983. Microbial fuel cells. Biochem. Soc. Trans. 11:451453.
80. Tender, L. M.,, C. E. Reimers,, H. A. Stecher,, D. E. Holmes,, D. R. Bond,, D. L. Lowy,, K. Pilobello,, S. J. Fertig, and, D. R. Lovley. 2002. Harnessing microbial power generation on the seafloor. Nat. Biotechnol. 20:821825.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error