1887

Chapter 94 : Microbially Mediated Anaerobic Iron(II) Oxidation at Circumneutral pH

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Microbially Mediated Anaerobic Iron(II) Oxidation at Circumneutral pH, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap94-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap94-2.gif

Abstract:

Microbial communities are recognized to mediate iron geochemical cycling in aquatic, terrestrial, and subsurface ecosystems. This chapter discusses the role that anaerobic, Fe(II)-oxidizing microorganisms (FOM) play in iron biogeochemical cycling, identification of the metabolism, and isolation of anaerobic FOM. In the anoxic zone, Fe(III) oxides provide an electron sink and are chemically or biologically reduced. The significance of the phototrophic Fe(II) oxidation processes to contemporary iron biogeochemical cycling is limited to the photic zone as light penetration of soil and particulate matter is only between 8 to 200 μm. At circumneutral pH, light-independent microbially mediated oxidation of Fe(II) and Fe(II) coupled to nitrate reduction has been demonstrated in a variety of freshwater and saline environmental systems. To date the presence of anaerobic, Fe(II)-oxidizing bacteria in paddy soil, pond, wastewater, stream, ditch, brackish lagoon, lake, wetland, aquifer, hydrothermal, subsurface, and deep-sea sediments has been identified using traditional microbiological techniques. Due to the broad phylogenetic diversity of these organisms and a lack of knowledge of the functional genes involved, molecular approaches to population studies and community dynamics of this metabolism are limited.

Citation: Weber K, Coates J. 2007. Microbially Mediated Anaerobic Iron(II) Oxidation at Circumneutral pH, p 1147-1154. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch94

Key Concept Ranking

16s rRNA Sequencing
0.4218416
0.4218416
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Iron biogeochemical cycle at circumneutral pH. Abiotic and biotic iron redox reactions significantly influence iron geochemistry. Potential pathways involving abiotic and microbially mediated iron redox reactions are illustrated with the exception of abiotic iron reduction reactions. The dashed line denotes the division between the oxic and anoxic zones. Thick bold lines denote biologically catalyzed redox reactions. Superscripts: 1, abiotic oxidation of Fe(II) coupled to the reduction of dissolved O; 2, microaerophilic Fe(II) oxidation; 3, abiotic oxidation of Fe(II) coupled to the reduction of Mn(IV) to Mn(II); 4, abiotic oxidation of Fe(II) coupled to the reduction of oxidized nitrogen species, NO and NO , yielding NH and gaseous products; 5, light-dependent photoautotrophic Fe(II) oxidation; 6, nitrate-dependent Fe(II) oxidation, oxidation of aqueous Fe(II) coupled to the reduction NO yielding N and NH ; ClO and ClO can also serve as terminal electron acceptors for Fe(II)-oxidizing metabolisms; 7, nitrate-dependent oxidation of solid-phase Fe(II)-bearing minerals. For detailed discussion, see the text.

Citation: Weber K, Coates J. 2007. Microbially Mediated Anaerobic Iron(II) Oxidation at Circumneutral pH, p 1147-1154. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch94
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch94
1. Beller, H. R. 2005. Anaerobic, nitrate-dependent oxidation of U(iv) oxide minerals by the chemolithoautotrophic bacterium Thiobacillus denitrificans. Appl. Environ. Micro-biol. 71:21702174.
2. Benz, M.,, A. Brune, and, B. Schink. 1998. Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Arch. Microbiol. 169:159165.
3. Bruce, R. A.,, L. A. Achenbach, and, J. D. Coates. 1999. Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environ. Microbiol. 1:319329.
4. Buchholz-Cleven, B. E. E.,, B. Rattunde, and, K. L. Straub. 1997. Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Syst. Appl. Microbiol. 2:301309.
5. Buresh, R. J.,, and J. T. Moraghan. 1976. Chemical reduction of nitrate by ferrous iron. J. Environ. Qual. 5:320325.
6. Caldwell, M. E.,, R. S. Tanner, and, J. M. Suflita. 1999. Microbial metabolism of benzene and the oxidation of ferrous iron under anaerobic conditions: implications for bioremediation. Anaerobe 5:595603.
7. Chaudhuri, S. K.,, J. G. Lack, and, J. D. Coates. 2001. Biogenic magnetite formation through anaerobic biooxidation of Fe(II). Appl. Environ. Microbiol. 67:28442848.
8. Ciani, A.,, K.-U. Gossa, and, R. P. Schwarzenbach. 2005. Light penetration in soil and particulate minerals. Eur. J. Soil Sci. 56:561574.
9. Coates, J. D.,, and L. A. Achenbach. 2004. Microbial perchlorate reduction: rocket-fuelled metabolism. Nat. Rev. Microbiol. 2:569580.
10. Coates, J. D.,, and R. Chakraborty. 2003. Anaerobic bioremediation: an emerging resource for environmental cleanup, p. 227–257. In I. M. Head,, I. Singleton, and, M. G. Milner (ed.), Bioremediation: a Critical Review. Horizon Scientific, Wymondham, United Kingdom.
11. Cornell, R. M.,, and U. Schwertmann. 2003. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed. Wiley-VCH, Weinheim, Germany.
12. Croal, L. R.,, C. M. Johnson,, B. L. Beard, and, D. K. Newman. 2004. Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria. Geochim. Cosmochim. Acta 68:12271242.
13. Davison, W.,, and G. Seed. 1983. The kinetics of the oxidation of ferrous iron in synthetic and natural waters. Geochim. Cosmochim. Acta 47:6779.
14. Edwards, K. J.,, D. R. Rogers,, C. O. Wirsen, and, T. M. McCollom. 2003. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrohic α- and γ-proteobacteria from the deep sea. Appl. Environ. Microbiol. 69:29062913.
15. Ehrenberg, C. G. 1836. Vorlaufige Mitteilungen über das wirkliche vorkommen fossiler Infusorien und ihre grosse Vergreitung. Ann. Phys. Chem. 38.
16. Ehrenreich, A.,, and F. Widdel. 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol. 60:45174526.
17. Einsele, W. 1940. Versuch einer Theorie der Dynamik der Mangan und Eisenschichtung in eutrophen See. Naturwissenschaften 28:257264.
18. Emerson, D.,, and C. L. Moyer. 1997. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl. Environ. Microbiol. 63:47844792.
19. Emerson, D.,, and J. V. Weiss. 2004. Bacterial iron oxidation in circumneutral freshwater habitats: findings from the field and the laboratory. Geomicrobiol. J. 21:405414.
20. Finneran, K. T.,, M. E. Housewright, and, D. R. Lovley. 2002. Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ. Microbiol. 4:510516.
21. Hafenbradl, D.,, M. Keller,, R. Dirmeier,, R. Rachel,, P. Roßnagel,, S. Burggraf,, H. Huber, and, K. O. Stetter. 1996. Ferroglobus placidus gen. nov., sp. nov. a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch. Microbiol. 166:308314.
22. Hansen, H. C. B.,, C. B. Koch,, H. Nancke-Krogh,, O. K. Borggaard, and, J. Srensen. 1996. Abiotic nitrate reduction to ammonium: key role of green rust. Environ. Sci. Technol. 30:20532056.
23. Hauck, S.,, M. Benz,, A. Brune, and, B. Schink. 2001. Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance). FEMS Microbiol. Ecol. 37:127134.
24. Heising, S.,, L. Richter,, W. Ludwig, and, B. Schink. 1999. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes iron in coculture with a “Geospirillum” sp. strain. Arch. Microbiol. 172:116124.
25. Heising, S.,, and B. Schink. 1998. Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain. Microbiology 144:22632269.
26. Jiao, Y. Y. Q.,, A. Kappler,, L. R. Croal, and, D. K. Newman. 2005. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Appl. Environ. Microbiol. 71:44874496.
27. Kappler, A.,, and D. K. Newman. 2004. Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim. Cosmochim. Acta 68:12171226.
28. Kappler, A.,, and K. Straub. 2005. Geomicrobiological cycling of iron, p. 85–108. In J. F. Banfield,, J. Cervini-Silva, and, K. M. Nealson (ed.), Molecular Geomicrobiology, vol. 59. The Mineralogical Society of America, Chantilly, Va.
29. Kluber, H. D.,, and R. Conrad. 1998. Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiol. Ecol. 25:301318.
30. Lack, J. G.,, S. K. Chaudhuri,, R. Chakraborty,, L. A. Achenbach, and, J. D. Coates. 2002. Anaerobic biooxidation of Fe(II) by Dechlorosoma suillum. Microb. Ecol. 43:424431.
31. Lack, J. G.,, S. K. Chaudhuri,, S. D. Kelly,, K. M. Kemner,, S. M. O’Connor, and, J. D. Coates. 2002. Immobilization of radionuclides and heavy metals through anaerobic biooxidation of Fe(II). Appl. Environ. Microbiol. 68:27042710.
32. Lovley, D. R. 1993. Dissimilatory metal reduction. Annu. Rev. Microbiol. 47:263290.
33. Lovley, D. R.,, D. E. Holmes, and, K. P. Nevin. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 49:219286.
34. Madigan, M. T.,, J. M. Martinko, and, J. Parker. 2002. Brock Biology of Microrganisms, 10th ed. Pearson Education, Inc., Upper Saddle River, N.J.
35. Nealson, K. H.,, and D. Saffarini. 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48:311348.
36. Nielsen, J. L.,, and P. H. Nielsen. 1998. Microbial nitrate-dependent oxidation of ferrous iron in activated sludge. Environ. Sci. Technol. 32:35563561.
37. Ottley, C. J.,, W. Davison, and, W. M. Edmunds. 1997. Chemical catalysis of nitrate reduction by iron (II). Geochim. Cosmochim. Acta 61:18191828.
38. Petersen, H. J. S. 1979. Reduction of nitrate by iron(II). Acta Chem. Scand. A 33:795796.
39. Postma, D. 1985. Concentration of Mn and separation from Fe in sediments. I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10C. Geochim. Cosmochim. Acta 49:10231033.
40. Postma, D. 1990. Kinetics of nitrate reduction by detrital Fe(II)-silicates. Geochim. Cosmochim. Acta 54:903908.
41. Ratering, S.,, and S. Schnell. 2001. Nitrate-dependent iron(II) oxidation in paddy soil. Environ. Microbiol. 3:100109.
42. Roden, E. E.,, D. Sobolev,, B. Glazer, and, G. W. Luther. 2004. Potential for microscale bacterial Fe redox cycling at the aerobic-anaerobic interface. Geomicrobiol. J. 21:379391.
43. Senko, J. M.,, T. A. Dewers, and, L. R. Krumholz. 2005. Effect of oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation. Appl. Environ. Microbiol. 71:71727177.
44. Senn, D. B.,, and H. F. Hemond. 2002. Nitrate controls on iron and arsenic in an urban lake. Science 296:23732376.
45. Shelobolina, E. S.,, C. G. VanPraag, and, D. R. Lovley. 2003. Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiol. J. 20:143156.
46. Shelobolina, E.,, S. Pickering, and, D. Lovley. 2005. Fe-cycle bacteria from industrial clays mined in Georgia, USA. Clays Clay Miner 53:580586.
47. Sobolev, D.,, and E. E. Roden. 2004. Characterization of a neutrophilic, chemolithoautotrophic Fe(II)-oxidizing βproteobacterium from freshwater wetland sediments. Geomicrobiol. J. 21:110.
48. Sobolev, D.,, and E. E. Roden. 2002. Evidence for rapid microscale bacterial redox cycling of iron in circumneutral environments. Antonie Leeuwenhoek 81:587597.
49. Sorensen, J.,, and L. Thorling. 1991. Stimulation by Lepidocrocite (γ-FeOOH) of Fe(II)-dependent nitrite reduction. Geochim. Cosmochim. Acta 55:12891294.
50. Straub, K. L.,, M. Benz,, B. Schink, and, F. Widdel. 1996. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol. 62:14581460.
51. Straub, K. L.,, and B. E. E. Buchholz-Cleven. 1998. Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments. Appl. Environ. Microbiol. 64:48464856.
52. Straub, K. L.,, M. Hanzlik, and, B. E. E. Buchholz-Cleven. 1998. The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria. Syst. Appl. Microbiol. 21:442449.
53. Straub, K. L.,, F. A. Rainey, and, F. Widdel. 1999. Rhodovulum iodosum sp. nov, and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. Int. J. Syst. Bacteriol. 49:729735.
54. Straub, K. L.,, W. Schonhuber,, B. Buchholz-Cleven, and, B. Schink. 2004. Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol. J. 21:371378.
55. Stumm, W.,, and J. J. Morgan. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed. John Wiley & Sons, New York, N.Y.
56. Stumm, W.,, and B. Sulzberger. 1992. The cycling of iron in natural environments—considerations based on laboratory studies of heterogeneous redox processes. Geochim. Cosmochim. Acta 56:32333257.
57. Thamdrup, B. 2000. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol. 16:4184.
58. Van Hecke, K.,, O. Van Cleemput, and, L. Baert. 1990. Chemo-denitrification of nitrate-polluted water. Environ. Pollut. 63:261274.
59. Weber, K. A. 2002. Microbial coupling between nitrogen and iron cycles: potential implications for nitrate and iron biogeochemistry and metal mobility in sedimentary environments. Ph.D. dissertation. University of Alabama, Tuscaloosa.
60. Weber, K. A. Unpublished data.
61. Weber, K. A.,, L. A. Achenbach, and, J. D. Coates. 2006. Microbes pumping iron: anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol. 4:752764.
62. Weber, K. A.,, F. W. Picardal, and, E. E. Roden. 2001. Microbially catalyzed nitrate-dependent oxidation of biogenic solid-phase Fe(II) compounds. Environ. Sci. Technol. 35:16441650.
63. Weber, K. A.,, J. Pollock,, K. A. Cole,, S. M. O’Connor,, L. A. Achenbach, and, J. D. Coates. 2006. Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel, lithoautotrophic, betaproteobacterium, strain 2002. Appl. Environ. Microbiol. 72:686694.
64. Weber, K. A.,, M. M. Urrutia,, P. F. Churchill,, R. K. Kukkadapu, and, E. E. Roden. 2006. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environ. Microbiol. 8:100113.
65. Widdel, F.,, S. Schnell,, S. Heising,, A. Ehrenreich,, B. Assmus, and, B. Schink. 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834836.
66. Winogradsky, S. 1922. Eisenbakterien als Anorgoxydanten. Zentbl. Bakteriol. 57:121.
67. Woomer, P. L. 1994. Most probable number counts. In J. M. Bigham (ed.), Methods of Soil Analysis, Part 2. Microbiological and Biochemical Properties. Soil Science Society of America, Madison, Wis.

Tables

Generic image for table
TABLE 1

Abundance of nitrate-dependent FOM in a variety of environments as determined by traditional MPN enumeration

Citation: Weber K, Coates J. 2007. Microbially Mediated Anaerobic Iron(II) Oxidation at Circumneutral pH, p 1147-1154. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch94
Generic image for table
TABLE 2

Biogenic oxyhydroxides and oxides generated under anoxic conditions

Citation: Weber K, Coates J. 2007. Microbially Mediated Anaerobic Iron(II) Oxidation at Circumneutral pH, p 1147-1154. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch94
Generic image for table
TABLE 3

Redox potentials relevant to anaerobic iron bio-oxidation reactions

Citation: Weber K, Coates J. 2007. Microbially Mediated Anaerobic Iron(II) Oxidation at Circumneutral pH, p 1147-1154. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch94
Generic image for table
TABLE 4

Basal medium for cultivation of mesophilic, lithotrophic nitrate-dependent FOM

Citation: Weber K, Coates J. 2007. Microbially Mediated Anaerobic Iron(II) Oxidation at Circumneutral pH, p 1147-1154. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch94

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error