1887

Chapter 95 : Isolation, Enumeration, Growth, and Preservation of Acidophilic Prokaryotes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Isolation, Enumeration, Growth, and Preservation of Acidophilic Prokaryotes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap95-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap95-2.gif

Abstract:

The study of extreme environments and the microorganisms that inhabit these environments, the so-called extremophiles, has become increasingly popular in recent years. One important class of extreme environments is those of low pH, which are inhabited by prokaryotic and eukaryotic microorganisms referred to as acidophiles. The ability of microbes to grow at low pH is a seemingly ancient trait, as acidophiles are widely distributed throughout the two prokaryotic domains. Heterotrophic acidophiles can be enriched for, and cultivated in, liquid media containing a variety of single or complex carbon sources. Iron-oxidizing acidophiles were particularly problematic, with some (e.g., ) being categorized as being incapable of growing on solid media. Recent advances in this area have led to the development of techniques that allow all categorized species of acidophilic prokaryotes to be grown on solid media. Most probable number (MPN) microbial counts of cultures in specified liquid media (e.g., acidic ferrous sulfate medium) and incubated at an appropriate temperature continue to be used to enumerate acidophiles on a physiological basis. More recently, 16S rRNA gene libraries have been prepared from DNA samples obtained at an abandoned pyrite mine at the Iron Mountain site and acidic geothermal sites on the volcanic island of Montserrat.

Citation: Hallberg K, Johnson D. 2007. Isolation, Enumeration, Growth, and Preservation of Acidophilic Prokaryotes, p 1155-1165. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch95

Key Concept Ranking

Denaturing Gradient Gel Electrophoresis
0.44547662
Microbial Ecology
0.4416821
0.44547662
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Distribution of acidophiles among the three kingdoms of living organisms. Those that contain acidophilic organisms are highlighted in bold. Reprinted from ( ) with permission of the publisher.

Citation: Hallberg K, Johnson D. 2007. Isolation, Enumeration, Growth, and Preservation of Acidophilic Prokaryotes, p 1155-1165. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch95
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Hallberg K, Johnson D. 2007. Isolation, Enumeration, Growth, and Preservation of Acidophilic Prokaryotes, p 1155-1165. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch95
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Hallberg K, Johnson D. 2007. Isolation, Enumeration, Growth, and Preservation of Acidophilic Prokaryotes, p 1155-1165. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch95
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Hallberg K, Johnson D. 2007. Isolation, Enumeration, Growth, and Preservation of Acidophilic Prokaryotes, p 1155-1165. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch95
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Roles of acidophiles in the oxidative dissolution of metal sulfides. The iron-oxidizing prokaryotes (FOP) that are attached to the mineral surface or are free-swimming regenerate ferric iron (indicated by broken arrows). The thiosulfate can be oxidized to sulfuric acid by sulfur-oxidizing prokaryotes (SOP) either directly or following oxidation by ferric iron to polythionates or sulfur. Carbon dioxide fixed and excreted as dissolved organic carbon (DOC) by the autotrophic FOP or SOP can be used to drive iron oxidation by heterotrophic iron-oxidizing acidophiles (HFOP). Heterotrophs contribute to metal sulfide oxidation by removing toxic dissolved organic carbon, oxidizing it to CO that the autotrophic FOP/SOP can use. Reprinted from ( ) with permission of the publisher.

Citation: Hallberg K, Johnson D. 2007. Isolation, Enumeration, Growth, and Preservation of Acidophilic Prokaryotes, p 1155-1165. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch95
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Hallberg K, Johnson D. 2007. Isolation, Enumeration, Growth, and Preservation of Acidophilic Prokaryotes, p 1155-1165. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch95
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic diagram of the overlay plate technique used to overcome the toxicity of gelling agents used to make solid media for growth of acidophiles.

Citation: Hallberg K, Johnson D. 2007. Isolation, Enumeration, Growth, and Preservation of Acidophilic Prokaryotes, p 1155-1165. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch95
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch95
1. Alexander, B.,, S. Leach, and, W. J. Ingledew. 1987. The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thio-bacillus ferrooxidans. J. Gen. Microbiol. 133:11711179.
2. Amann, R. I.,, W. Ludwig, and, K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143169.
3. Amaro, A. M.,, K. B. Hallberg,, E. B. Lindström, and, C. A. Jerez. 1994. An immunological assay for detection and enumeration of thermophilic biomining microorganisms. Appl. Environ. Microbiol. 60:34703473.
4. American Public Health Association. 1975. Standard Methods for the Examination of Water and Wastewater, 14th ed. American Public Health Association, Washington, D.C.
5. Apel, W. A.,, P. R. Dugan,, J. A. Filppi, and, M. S. Rheins. 1976. Detection of Thiobacillus ferrooxidans in acid mine environments by indirect fluorescent-antibody staining. Appl. Environ. Microbiol. 32:159165.
6. Arredondo, R.,, A. Garcia, and, C. A. Jerez. 1994. Partial removal of lipopolysaccharide for Thiobacillus ferrooxidans affects its adhesion to solids. Appl. Environ. Microbiol. 60:28462851.
7. Arredondo, R.,, and C. A. Jerez. 1989. Specific dotimmunobinding assay for detection and enumeration of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 55:20252029.
8. Bacelar-Nicolau, P.,, and D. B. Johnson. 1999. Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Appl. Environ. Microbiol. 65:585590.
9. Barron, J. L.,, and D. R. Lueking. 1990. Growth and maintenance of Thiobacillus ferrooxidans cells. Appl. Environ. Microbiol. 56:28012806.
10. Bergamo, R. F.,, M. T. M. Novo,, R. V. Verissimo,, L. C. Paulino,, N. C. Stoppe,, M. I. Z. Sato,, G. P. Manfio,, P. I. Prado,, O. Garcia, and, L. M. M. Ottoboni. 2004. Differentiation of Acidithiobacillus ferrooxidans and A. thiooxidans strains based on 16S-23S rDNA spacer polymorphism analysis. Res. Microbiol. 155:559567.
11. Blake, R. C.,, G. T. Howard, and, S. McGinness. 1994. Enhanced yields of iron-oxidizing bacteria by in situ electrochemical reduction of soluble iron in the growth medium. Appl. Environ. Microbiol. 60:27042710.
12. Bond, P. L.,, and J. F. Banfield. 2001. Design and performance of rRNA targeted oligonucleotide probes for in situ detection and phylogenetic identification of microorganisms inhabiting acid mine drainage environments. Microb. Ecol. 41:149161.
13. Bond, P. L.,, S. P. Smriga, and, J. F. Banfield. 2000. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ. Microbiol. 66:38423849.
14. Burton, N. P.,, and P. R. Norris. 2000. Microbiology of acidic, geothermal springs of Montserrat: environmental rDNA analysis. Extremophiles 4:315320.
15. Cleland, D.,, P. Krader,, C. McCree,, J. Tang, and, D. Emerson. 2004. Glycine betaine as a cryoprotectant for prokaryotes. J. Microbiol. Methods 58:3138.
16. de Bruyn, J. C.,, F. C. Boogerd,, P. Bos, and, J. G. Kuenen. 1990. Floating filters, a novel technique for isolation and enumeration of fastidious, acidophilic, iron-oxidizing, autotrophic bacteria. Appl. Environ. Microbiol. 56:28912894.
17. De Wulf-Durand, P.,, L. J. Bryant, and, L. I. Sly. 1997. PCR-mediated detection of acidophilic, bioleaching-associated bacteria. Appl. Environ. Microbiol. 63:29442948.
18. Druschel, G. K.,, B. J. Baker,, T. M. Gihring, and, J. F. Banfield. 2004. Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem. Trans. 5:1332.
19. Dziurla, M.-A.,, W. Achouak,, B.-T. Lam,, T. Heulin, and, J. Berthelin. 1998. Enzyme-linked immunofiltration assay to estimate attachment of thiobacilli to pyrite. Appl. Environ. Microbiol. 64:29372940.
20. Edwards, K. J.,, P. L. Bond, and, J. F. Banfield. 2000. Characteristics of attachment and growth of Thiobacillus caldus on sulphide minerals: a chemotactic response to sulphur minerals? Environ. Microbiol. 2:324332.
21. Edwards, K. J.,, P. L. Bond,, T. M. Gihring, and, J. F. Banfield. 2000. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:17961799.
22. Escobar, B.,, and I. Godoy. 2001. Enumeration of iron-oxidizing bacteria by the membrane filter technique. World J. Microbiol. Biotechnol. 17:395397.
23. Gemmell, R. T.,, and C. J. Knowles. 2000. Utilisation of aliphatic compounds by acidophilic heterotrophic bacteria. The potential for bioremediation of acidic wastewaters contaminated with toxic organic compounds and heavy metals. FEMS Microbiol. Lett. 192:185190.
24. Germida, J. J. 1985. Modified sulfur-containing media for studying sulfur-oxidizing microorganisms, p. 333–344. In D. E. Caldwell,, J. A. Brierley, and, C. L. Brierley (ed.), Planetary Ecology. Van Nostrand Reinhold, New York, N.Y.
25. Goebel, B. M.,, and E. Stackebrandt. 1994. The biotechnological importance of molecular biodiversity studies for metal bioleaching, p. 259–273. In F. G. Priest,, A. Ramos-Cormenzana, and, B. J. Tindal (ed.), FEMS Symposium No. 75. Bacterial Diversity and Systematics. Plenum Press, New York, N.Y.
26. Goebel, B. M.,, and E. Stackebrandt. 1994. Cultural and phylogenetical analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl. Environ. Microbiol. 60:16141621.
27. Gupta, S. G.,, and A. D. Agate. 1986. Preservation of Thiobacillus ferrooxidans and Thiobacillus thiooxidans with activity check. Antonie Leeuwenhoek J. Microbiol. Serol. 52:121127.
28. Hallberg, K. B.,, K. Coupland,, S. Kimura, and, D. B. Johnson. 2006. Macroscopic streamer growths in acidic, metal-rich mine waters in north Wales consist of novel and remarkably simple bacterial communities. Appl. Environ. Microbiol. 72:20222030.
29. Hallberg, K. B.,, and D. B. Johnson. 2001. Biodiversity of acidophilic microorganisms. Adv. Appl. Microbiol. 49:3784.
30. Hallberg, K. B.,, and D. B. Johnson. 2005. Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine. Sci. Tot. Environ. 338:5366.
31. Hallberg, K. B.,, and D. B. Johnson. 2005. Mine water microbiology. Mine Water Environ. 24:2832.
32. Hallberg, K. B.,, and D. B. Johnson. 2003. Novel acidophiles isolated from moderately acidic mine drainage waters. Hydrometallurgy 71:139148.
33. Hallberg, K. B.,, Å. K. Kolmert,, D. B. Johnson, and, P. A. Williams. 1999. A novel metabolic phenotype among acidophilic bacteria: aromatic degradation and the potential use of these microorganisms for the treatment of waste-water containing organic and inorganic pollutants, p. 719–728. In R. Amils and, A. Ballester (ed.), Biohydrometallurgy and the Environment toward the Mining of the 21st Century, vol. 9A. Elsevier, Amsterdam, The Netherlands.
34. Hallberg, K. B.,, and E. B. Lindström. 1996. Multiple serotypes of the moderate thermophile Thiobacillus caldus, a limitation of immunological assays for biomining micro-organisms. Appl. Environ. Microbiol. 62:42434246.
35. Harrison, A. P., Jr. 1984. The acidophilic Thiobacilli and other acidophilic bacteria that share their habitat. Annu. Rev. Microbiol. 38:265292.
36. Head, I. M.,, J. R. Saunders, and, R. W. Pickup. 1998. Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol. 35:121.
37. Huber, H.,, and K. O. Stetter. 1998. Hyperthermophiles and their possible potential in biotechnology. J. Biotechnol. 64:3952.
38. Hugenholtz, P.,, B. M. Goebel, and, N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180:47654774.
39. Jerez, C. A.,, and R. Arredondo. 1991. A sensitive immunological method to enumerate Leptospirillum ferrooxidans in the presence of Thiobacillus ferrooxidans. FEMS Microbiol. Lett. 78:99102.
40. Johnson, D. B. 2003. Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water Air Soil Pollut. Focus 3:4766.
41. Johnson, D. B. 1995. Selective solid media for isolating and enumerating acidophilic bacteria. J. Microbiol. Methods 23:205218.
42. Johnson, D. B.,, and S. McGinness. 1991. A highly efficient and universal solid medium for growing mesophilic and moderately thermophilic iron-oxidizing acidophilic bacteria. J. Microbiol. Methods 13:113122.
43. Johnson, D. B.,, N. Okibe, and, K. B. Hallberg. 2005. Differentiation and identification of iron-oxidizing acidophilic bacteria using cultivation techniques and amplified ribosomal DNA restriction enzyme analysis (ARDREA). J. Microbiol. Methods 60:299313.
44. Johnson, D. B.,, and F. F. Roberto. 1997. Biodiversity of acidophilic bacteria in mineral leaching and related environments, p. P3.1–P3.10. In IBS Biomine ’97 Conference Proceedings. Australian Mineral Foundation, Glenside, Australia.
45. Karamanev, D. G.,, L. N. Nikolov, and, V. Mamatarkova. 2002. Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions. Miner. Eng. 15:341346.
46. Kelly, D. P.,, L. A. Chambers, and, P. A. Trudinger. 1969. Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal. Chem. 41:898902.
47. Kelly, D. P.,, J. K. Shergill,, W. P. Lu, and, A. P. Wood. 1997. Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Leeuwenhoek 71:95107.
48. Kolmert, Å.,, P. Wikström, and, K. B. Hallberg. 2000. A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J. Microbiol. Methods 41:179184.
49. Koppe, B.,, and H. Harms. 1994. Antigenic determinants and specificity of antisera against acidophilic bacteria. World J. Microbiol. Biotechnol. 10:154158.
50. Lovley, D. R.,, and E. J. P. Phillips. 1987. Rapid assay for microbially reduced ferric iron in aquatic sediments. Appl. Environ. Microbiol. 53:15361540.
51. Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2:317322.
52. Muyzer, G.,, A. C. de Bruyn,, D. J. M. Schmedding,, P. Bos,, P. Westbroek, and, J. G. Kuenen. 1987. A combined immunofluorescence-DNA-fluorescence staining technique for enumeration of Thiobacillus ferrooxidans in a population of acidophilic bacteria. Appl. Environ. Microbiol. 53:660664.
53. Nordstrom, D. K. 2000. Advances in the hydrogeochemistry and microbiology of acid mine waters. Int. Geol. Rev. 42:499515.
54. Norris, P. R.,, and W. J. Ingledew. 1992. Acidophilic bacteria: adaptations and applications, p. 121–131. In R. A. Herbert and, R. J. Sharp (ed.), Molecular Biology and Biotechnology of Extremophiles. Royal Society for Chemistry, Cambridge, United Kingdom.
55. Peccia, J.,, E. A. Marchand,, J. Silverstein, and, M. Hernandez. 2000. Development and application of small-subunit rRNA probes for assessment of selected Thiobacillus species and members of the genus Acidiphilium. Appl. Environ. Microbiol. 66:30653072.
56. Pizarro, J.,, E. Jedlicki,, O. Orellana,, J. Romero, and, R. T. Espejo. 1996. Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation. Appl. Environ. Microbiol. 62:13231328.
57. Rao, G. S.,, and L. R. Berger. 1970. Basis of pyruvate inhibition of Thiobacillus thiooxidans. J. Bacteriol. 102:462466.
58. Rawlings, D. E. 2002. Heavy metal mining using microbes. Annu. Rev. Microbiol. 56:6591.
59. Rawlings, D. E. 1995. Restriction enzyme analysis of 16S rDNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans strains in leaching environments, p. 9–18. In T. Vargas,, C. A. Jerez,, J. V. Wiertz, and, H. Toledo (ed.), Biohydrometallurgical Processing, vol. II. University of Chile, Santiago, Chile.
60. Rawlings, D. E.,, N. J. Coram,, M. N. Gardner, and, S. M. Deane. 1999. Thiobacillus caldus and Leptospirillum ferrooxidans are widely distributed in continuous flow biooxidation tanks used to treat a variety of metal containing ores and concentrates, p. 777–786. In R. Amils and, A. Ballester (ed.), Biohydrometallurgy and the Environment toward the Mining of the 21st Century, vol. 9A. Elsevier, Amsterdam, The Netherlands.
61. Rawlings, D. E.,, D. Dew, and, C. du Plessis. 2003. Biomineralization of metal-containing ores and concentrates. Trends Biotechnol. 21:3844.
62. Schippers, A.,, P. G. Jozsa, and, W. Sand. 1996. Sulfur chemistry in bacterial leaching of pyrite. Appl. Environ. Microbiol. 62:34243431.
63. Schrenk, M. O.,, K. J. Edwards,, R. M. Goodman,, R. J. Hamers, and, J. F. Banfield. 1998. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279:15191522.
64. Sen, A. M.,, and D. B. Johnson. 1999. Acidophilic sulphate-reducing bacteria: candidates for bioremediation of acid mine drainage, p. 709–718. In R. Amils and, A. Ballester (ed.), Biohydrometallurgy and the Environment toward the Mining of the 21st Century, vol. 9A. Elsevier, Amsterdam, The Netherlands.
65. Sorbö, B. 1957. A colorimetric method for the determination of thiosulfate. Biochim. Biophys. Acta 23:412416.
66. Stoner, D. L.,, C. K. Browning,, D. K. Bulmer,, T. E. Ward, and, M. T. MacDonell. 1996. Direct 5S rRNA assay for monitoring mixed-culture bioprocesses. Appl. Environ. Microbiol. 62:19691976.
67. Stumm, W.,, and J. J. Morgan. 1981. Aquatic Chemistry: an Introduction Emphasizing Chemical Equilibria in Natural Waters. Wiley, New York, N.Y.
68. Trüper, H. G.,, and H. G. Schlegel. 1964. Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie Leeuwenhoek 30:225238.
69. Tuovinen, O. H.,, and D. P. Kelly. 1973. Studies on growth of Thiobacillus ferrooxidans. 1. Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison with 14CO2 fixation and iron oxidation as measures of growth. Arch. Microbiol. 88:285298.
70. Viollier, E.,, P. W. Inglett,, K. Hunter,, A. N. Roychoudhury, and, P. Van Cappellen. 2000. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl. Geochem. 15:785790.
71. von Wintzingerode, F.,, U. B. Gobel, and, E. Stacke-brandt. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21:213229.

Tables

Generic image for table
TABLE 1

Examples of acidophilic prokaryotes and their phenotypic characteristics

Citation: Hallberg K, Johnson D. 2007. Isolation, Enumeration, Growth, and Preservation of Acidophilic Prokaryotes, p 1155-1165. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch95
Generic image for table
TABLE 2

Oligonucleotide probes that target the 16S rRNA molecule of acidophiles

Citation: Hallberg K, Johnson D. 2007. Isolation, Enumeration, Growth, and Preservation of Acidophilic Prokaryotes, p 1155-1165. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch95

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error