1887

Chapter 97 : Synchrotron-Based Techniques for Monitoring Metal Transformations

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Synchrotron-Based Techniques for Monitoring Metal Transformations, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap97-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap97-2.gif

Abstract:

X rays are a powerful probe for investigating metal and radionuclide transformations in soils, sediments, and groundwaters. In particular, synchrotron-based X-ray investigations can identify the changes in an element’s valence state and chemical speciation that often result from microbially mediated electron transfer. This chapter describes some of the synchrotron-based X-ray techniques (X-ray absorption spectroscopy, X-ray fluorescence, and X-ray microscopy) that can be used to improve understanding of metal transformations. The X-ray absorption near-edge structure (XANES) technique provides an in situ probe of an element’s oxidation state and clearly can contribute significantly to an understanding of the fate of elements in the environment, in both solid and solution phases. In addition to its utility, XANES is relatively easy to implement and has been perhaps the most commonly used synchrotron-based X-ray technique for monitoring metal transformations in environmental studies. XANES spectroscopy focuses on the energy range near an element's absorption edge, which is related to the element's valence state. Extended X-ray absorption fine-structure (EXAFS) focuses on the energy region well above the absorption edge and yields information on the local chemical environment of the absorbing element. Investigators can initiate the use of synchrotron radiation in their research in a number of ways.

Citation: Kemner K, Kelly S. 2007. Synchrotron-Based Techniques for Monitoring Metal Transformations, p 1183-1194. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch97

Key Concept Ranking

X-Ray Absorption Spectroscopy
0.5365766
Transition Elements
0.40922177
0.5365766
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Untitled
Untitled

Citation: Kemner K, Kelly S. 2007. Synchrotron-Based Techniques for Monitoring Metal Transformations, p 1183-1194. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch97
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1
FIGURE 1

Schematic of a typical XAS experiment.

Citation: Kemner K, Kelly S. 2007. Synchrotron-Based Techniques for Monitoring Metal Transformations, p 1183-1194. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch97
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Kemner K, Kelly S. 2007. Synchrotron-Based Techniques for Monitoring Metal Transformations, p 1183-1194. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch97
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

(A) Incident X-ray intensity as a function of X-ray energy. (B) Transmitted X-ray intensity as a function of X-ray energy, showing the drop in transmission due to an increase in X-ray absorption by U at the L absorption edge (17,166 eV). (C) U L edge X-ray absorption coefficient, obtained as the natural log ratio of the incident (A) to transmitted (B) X-ray intensities. (D) Normalized X-ray absorption U L edge data for a U(IV) standard (open symbols), a U(VI) standard (open triangles), a U(VI) sample without ethanol for bioreduction (U–ETOH, thick gray line), and a U(VI) sample with ethanol for bioreduction (U+ETOH, thin gray line). The energy value of the absorption edge (between the arrows) is related to the average valence state of U. The U+ETOH sample has a major U(IV) component, while the U-ETOH sample is mostly U(VI).

Citation: Kemner K, Kelly S. 2007. Synchrotron-Based Techniques for Monitoring Metal Transformations, p 1183-1194. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch97
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Kemner K, Kelly S. 2007. Synchrotron-Based Techniques for Monitoring Metal Transformations, p 1183-1194. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch97
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Kemner K, Kelly S. 2007. Synchrotron-Based Techniques for Monitoring Metal Transformations, p 1183-1194. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch97
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Kemner K, Kelly S. 2007. Synchrotron-Based Techniques for Monitoring Metal Transformations, p 1183-1194. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch97
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

U L edge EXAFS data from an aqueous uranyl carbonate species. (A) X-ray absorption data (symbol) and background function (line). (B) EXAFS data, x() · obtained as the difference between the X-ray absorption data and the background function shown in panel A, with the backward Fourier transform (line) of the EXAFS data between 1 and 4 Å. The real part (C), the imaginary part (D), and the magnitude (E) of the Fourier transform of the EXAFS data between 2.0 and 10.2 Å are shown.

Citation: Kemner K, Kelly S. 2007. Synchrotron-Based Techniques for Monitoring Metal Transformations, p 1183-1194. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch97
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Schematic of the X-ray absorption process. The hashed circle represents an X-ray-absorbing atom that has emitted a photoelectron that travels as a wave away from the absorbing atom. The concentric circles (solid lines) represent the crests of the photoelectron wave as it propagates away from the absorbing atom. This photoelectron is scattered from the surrounding atoms (black filled circles), creating a scattered photoelectron, represented by the dashed concentric circles. The interference between the photoelectron wave and the scattered photoelectron waves at the absorbing atom modulate the probability of X-ray absorption. As the incident X-ray energy is increased, the wavelength becomes smaller, and the amplitude of the interference of the two waves modulates between a maximum and a minimum. The frequency of the signal is related to the distance ( ) between the absorbing atom and the neighboring atoms. All the atoms at a given radial distance contribute the same signal.

Citation: Kemner K, Kelly S. 2007. Synchrotron-Based Techniques for Monitoring Metal Transformations, p 1183-1194. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch97
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

(Left) Fourier transforms of EXAFS data for bulk uraninite and nanoparticulate uraninite samples having the same local structure. The decrease in amplitude is due to the small particle size of the uraninite produced by green rust. (Right) Fourier transforms of EXAFS data from U(VI) reduced by green rust, processed with three different -weights. The data processed with -weights of 1 and 2 have been normalized to the first-shell O signal of the -weight 3 data. The relative increase in the signal at 3.5 Å, compared to the first-shell O signal, indicates a heavy-atom neighbor (U).

Citation: Kemner K, Kelly S. 2007. Synchrotron-Based Techniques for Monitoring Metal Transformations, p 1183-1194. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch97
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Kemner K, Kelly S. 2007. Synchrotron-Based Techniques for Monitoring Metal Transformations, p 1183-1194. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch97
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Results of XRF microprobe analysis of the spatial distribution of P, Ca, Ni, and Fe on an amorphous lepidocrocite thin film (~1,000 Å thick), depicting MR-1 on the surface. The XRF intensities are correlated to intensities shown in the scale bar.

Citation: Kemner K, Kelly S. 2007. Synchrotron-Based Techniques for Monitoring Metal Transformations, p 1183-1194. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch97
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch97
1. Anderson, S. J.,, C. C. Ainsworth,, P. M. Bertsch,, J. M. Bigham,, W. F. Bleam,, P. R. Bloom,, J. B. Harsh, and, D. G. Schulze. 1990. Synchrotron X-Ray Sources and New Opportunities in the Soil and Environmental Sciences: Workshop Report. Argonne National Laboratory, Argonne, Ill.
2. Bajt, S.,, S. B. Clark,, S. R. Sutton,, M. L. Rivers, and, J. V. Smith. 1993. Synchrotron X-ray microprobe determination of chromate content using X-ray absorption near-edge structure. Anal. Chem. 65:18001804.
3. Beauchemin, S.,, D. Hesterberg, and, M. Beauchemin. 2002. Principal component analysis approach for modeling sulfur K-XANES spectra of humic acids. Soil Sci. Soc. Am. J 66:8391.
4. Bertsch, P. M.,, D. B. Hunter,, S. R. Sutton,, S. Bajt, and, M. L. Rivers. 1994. In situ chemical speciation of uranium in soils and sediments by micro X-ray absorption spectroscopy. Environ. Sci. Technol. 28:980984.
5. Boyanov, M. I.,, S. D. Kelly,, K. M. Kemner,, B. A. Bunker,, J. A. Fein, and, D. A. Fowle. 2003. Adsorption of cadmium to B. subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study. Geochim. Cosmochim. Acta 67:32993311.
6. Brooks, S. C.,, J. K. Fredrickson,, S. L. Carroll,, D. W. Kennedy,, J. M. Zachara,, A. E. Plymale,, S. D. Kelly,, K. M. Kemner, and, S. Fendorf. 2003. Inhibition of bacterial U(VI) reduction in calcium. Environ. Sci. Technol. 37:18501858.
7. Brown, G. E., Jr.,, and G. A. Waychunas. 1988. Synchrotron X-Ray Sources and New Opportunities in the Earth Sciences: Workshop Report. Argonne National Laboratory, Argonne, Ill.
8. Elder, F. R.,, A. M. Gurewitsch,, A. M. Langmuir, and, H. C. Pollock. 1947. Radiation from electrons in a synchrotron. Phys. Rev. 71:829830.
9. Erbil, A.,, G. S. Cargill,, R. Frahm, and, R. F. Boehme. 1988. Total-electron-yield current measurements for near-surface extended x-ray-absorption fine structure. Phys. Rev. B 37:24502464.
10. Hansel, C. M.,, S. G. Benner,, P. Nico, and, S. Fendorf. 2004. Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II). Geochim. Cosmochim. Acta 68:32173229.
11. Hayakawa, S.,, Y. Gohshi,, A. Iida,, S. Aoki, and, K. Sato. 1991. Fluorescence X-ray absorption fine structure measurements using a synchrotron radiation X-ray microprobe. Rev. Sci. Instrum. 62:25452549.
12. Heald, S. M. 1988. Design of an EXAFS experiment, p. 87–118. In D. C. Koningsberger and, R. Prins (ed.), X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES. Wiley, New York, N.Y.
13. Ikeda, Y.,, E. Wada,, M. Harada,, T. Chikazawa,, T. Kikuchi,, H. Mineo,, Y. Morita,, M. Nogami, and, K. Suzuki. 2004. A study on pyrrolidone derivatives as selective precipitant for uranyl ion in HNO3. J. Alloys Compd. 374:420425.
14. Jeon, B. H.,, S. D. Kelly,, K. M. Kemner,, M. O. Barnett,, W. D. Burgos,, B. A. Dempsey, and, E. E. Roden. 2004. Microbial reduction of U(VI) at the solid-water interface. Environ. Sci. Technol. 38:56495655.
15. Kang, H. C.,, J. Maser,, G. B. Stephenson,, C. Lium,, R. Conley,, A. T. Macrander, and, S. Vogt. 2006. Nanometer linear focusing of hard X-rays by a multilayer Laue lens. Phys. Rev. Lett. 96:127401.
16. Kelly, S. D.,, K. M. Kemner,, J. A. Fein,, D. A. Fowle,, M. I. Boyanov,, B. A. Bunker, and, N. Yee. 2002. X-ray absorption fine structure determination of pH-dependent U–bacterial cell wall interactions. Geochim. Cosmochim. Acta 66:38553871.
17. Kemner, K. M.,, A. J. Kropf, and, B. A. Bunker. 1994. A low-temperature total electron yield detector for X-ray absorption fine structure spectra. Rev. Sci. Instrum. 65:36673669.
18. Kemner, K. M.,, W. Yun,, Z. Cai,, B. P. Lai,, H.-R. Lee,, D. G. Legnini,, W. Rodrigues,, J. D. Jastrow,, R. M. Miller,, S. T. Pratt,, M. A. Schneegurt,, C. F. Kulpa, Jr., and, A. J. Smucker. 1998. Using X-ray microprobes for environmental research. Proc. SPIE Int. Soc. Opt. Eng. 3449:4554.
19. Kemner, K. M.,, W. Yun,, Z. Cai,, B. Lai,, H.-R. Lee,, J. Maser,, D. G. Legnini,, W. Rodrigues,, J. Jastrow,, R. M. Miller,, S. T. Pratt,, M. A. Schneegurt, and, C. F. Kulpa. 1999. Using zone plates for X-ray microimaging and micro-spectroscopy in environmental science. J. Synch. Radiat. 6:639641.
20. Kemner, K. M.,, B. Lai,, J. Maser,, M. A. Schneegurt,, Z. Cai,, P. P. Ilinski,, C. F. Kulpa,, D. G. Legnini,, K. H. Nealson,, S. T. Pratt,, W. Rodrigues,, M. L. Tischler, and, W. Yun. 2000. Use of high-energy X-ray microprobe at the Advanced Photon Source to investigate interactions between metals and bacteria, p. 319–322. In W. Meyer-Ilse et al. (ed.), 6th International X-ray Microscopy Conference. American Institute of Physics, College Park, Md.
21. Kemner, K. M.,, S. D. Kelly,, B. Lai,, J. Maser,, E. J. O’Loughlin,, D. Sholto-Douglas,, Z. Cai,, M. A. Schneegurt,, C. F. Kulpa, and, K. H. Nealson. 2004. Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis. Science 306:686687.
22. Kirz, J.,, C. Jacobsen, and, M. Howells. 1995. Soft X-ray microscopes and their biological applications. Q. Rev. Biophys. 28:33130.
23. Kittel, C. 1986. Introduction to Solid State Physics. Wiley, New York, N.Y.
24. Koningsberger, D. C.,, and R. Prins (ed.). 1988. X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. Wiley, New York, N.Y.
25. Kropf, A. J.,, R. J. Finch,, J. A. Fortner,, S. Aase,, C. Daranfil,, C. U. Segre,, J. Terry,, G. Bunker, and, L. D. Chapman. 2003. Bent silicon crystal in the Laue geometry to resolve X-ray fluorescence for X-ray absorption spectroscopy. Rev. Sci. Instrum. 74:46964702.
26. Lack, J. G.,, K. C. Swades,, S. D. Kelly,, K. M. Kemner,, S. M. O’Connor, and, J. D. Coates. 2002. Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(II). Appl. Environ. Microbiol. 68:27042710.
27. Lai, B.,, W. Yun,, D. G. Legnini,, D. Xiao,, J. Chrzas,, P. J. Viccaro,, V. White,, S. Bajikar,, D. Denton, and, F. Cerrina. 1992. Hard X-ray phase zone plate fabricated by lithographic techniques. Appl. Phys. Lett. 61:18771879.
28. Lytle, F. W.,, R. B. Greegor,, D. R. Sandstrom,, E. C. Marques,, J. Wong,, C. L. Spiro,, G. P. Huffman, and, F. E. Huggins. 1984. Measurement of soft X-ray absorption spectra with a fluorescent ion chamber detector. Nucl. Instrum. Methods 226:542548.
29. Mattigod, S. V.,, M. L. Rivers, and, S. R. Sutton. 1990. X-Ray Fluorescence Microprobe and Microtomography: Synchrotron X-ray Sources and New Opportunities in the Soil and Environmental Sciences. Argonne National Laboratory, Argonne, Ill.
30. Myneni, S. C. B.,, T. Tokunaga, and, G. E. Brown, Jr. 1997. Abiotic selenium redox transformations in the presence of Fe(II,III) hydroxides. Science 278:11061109.
31. O’Loughlin, E. J.,, S. D. Kelly,, R. E. Cook,, R. Csencsits, and, K. M. Kemner. 2003. Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO2 nanoparticles. Environ. Sci. Technol. 37:721727.
32. Panfili, F. R.,, A. Manceau,, G. Sarret,, L. Spandini,, T. Kirpichtchikova,, V. Bert,, A. Laboudigue,, M. A. Marcus,, N. Ahamdach, and, M. F. Libert. 2005. The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray fluorescence, EXAFS spectroscopy, and principal component analysis. Geochim. Cosmochim. Acta 69:22652284.
33. Rehr, J. J.,, J. Mustre de Leon,, S. I. Zabinsky, and, R. C. Albers. 1991. Theoretical X-ray absorption fine structure standards. J. Am. Chem. Soc. 113:51355140.
34. Ressler, T.,, J. Wong,, J. Roos, and, I. L. Smith. 2000. Quantitative speciation of Mn-bearing particulates emitted from autos burning (methylcyclopentadienyl) manganese tricarbonyl-added gasolines using XANES spectroscopy. Environ. Sci. Technol. 34:950958.
35. Rose, M. E.,, and M. M. Shapiro. 1948. Statistical error in absorption experiments. Phys. Rev. 74:18531864.
36. Sayers, D. E.,, E. A. Stern, and, F. W. Lytle. 1971. New technique for investigating noncrystalline structures: Fourier analysis of the extended x-ray-absorptive fine structure. Phys. Rev. Lett. 27:12041207.
37. Schulze, D. G.,, and P. M. Bertsch. 1995. Synchrotron X-ray techniques in soil, plant, and environmental research. Adv. Agron. 55:167.
38. Schulze, D. G.,, T. McCay-Buis,, S. R. Sutton, and, D. M. Huber. 1995. Manganese oxidation states in Gaeuman-nomyces-infested wheat rhizospheres probed by micro-XANES spectroscopy. Phytopathology 85:990994.
39. Stern, E. A.,, and S. M. Heald. 1979. X-ray filter assembly for fluorescence measurements of X-ray absorption fine-structure. Rev. Sci. Instrum. 50:15791583.
40. Stöhr, J. 1992. NEXAFS Spectroscopy. Springer-Verlag, Berlin, Germany.
41. Sutton, S. R.,, K. W. Jones,, B. Gordon,, M. L. Rivers,, S. Bajt, and, J. V. Smith. 1993. Reduced chromium in olivine grains from lunar basalt 15555: X-ray absorption near edge structure (XANES). Geochim. Cosmochim. Acta 57:461468.
42. Sutton, S. R.,, M. L. Rivers,, S. Bajt, and, K. W. Jones. 1993. Synchrotron X-ray fluorescence microprobe analysis with bending magnets and insertion devices. Nucl. Instrum. Methods B 75:553558.
43. Suzuki, Y.,, S. D. Kelly,, K. M. Kemner, and, J. F. Banfield. 2002. Nanometre-size products of uranium bioreduction. Nature 419:134.
44. Suzuki, Y.,, S. D. Kelly,, K. M. Kemner, and, J. F. Banfield. 2003. Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediment. Appl. Environ. Microbiol. 69:13371346.
45. Suzuki, Y.,, S. D. Kelly,, K. M. Kemner, and, J. F. Banfield. 2004. Enzymatic U(VI) reduction by Desulfosporosinus species. Radiochim. Acta 92:1116.
46. Tokunaga, T.,, S. R. Sutton,, S. Bajt,, S. B. Clark,, S. R. Sutton,, M. L. Rivers, and, J. V. Smith. 1994. Mapping of selenium concentrations in soil aggregates with synchrotron X-ray fluorescence microprobe. Soil Sci. 158:421433.
47. Wasserman, S. R. 1997. The analysis of mixtures: application of principal component analysis to XAS spectra. J. Phys. IV 7:C2203C2208.
48. Winick, H. (ed.). 1994. Radiation Sources—a Primer. World Scientific, Singapore, Republic of Singapore.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error