1887

Chapter 98 : Techniques for Studying Microbial Transformations of Metals and Radionuclides

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Techniques for Studying Microbial Transformations of Metals and Radionuclides, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap98-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap98-2.gif

Abstract:

This chapter provides an overview of the range of techniques that are available to help characterize the critical microbiological and geological factors underpinning metal-microbe interactions. These include techniques to study microbial cells, the mineral substrates that they live on, and the surrounding geochemical environment that together control the rate and extent of metal biotransformations. The chapter focuses on examining current techniques used in understanding the transformations of long-lived, redox-active radionuclides, such as uranium (U), technetium (Tc), neptunium (Np), and plutonium (Pu), in pure culture and laboratory simulation experiments and highlights the safe handling and measurement of these radionuclides. It highlights how the real need to understand the transformation behavior of radionuclides is balanced against the safe handling requirements for working with radiation. In summary, specialist radiochemistry laboratories are needed for handling all of the radionuclides mentioned above, with the possible exception of uranium. The long-lived radionuclides U, Tc, Np, and Pu are redox active, and all of these radionuclides have the potential to form less soluble species as reducing conditions develop. The chapter discusses two forms of microscopy based on conventional light and electron beams to study the fate of metals in geomicrobiological experiments. The focus here is on visualizing the interactions between “microbiological structures” and metals, while in a later section more general methods to assess mineralogical substrates, using a range of techniques, including microscopy are discussed.

Citation: Lloyd J, Beveridge T, Morris K, Polya D, Vaughan D. 2007. Techniques for Studying Microbial Transformations of Metals and Radionuclides, p 1195-1213. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch98

Key Concept Ranking

Nuclear Magnetic Resonance Spectroscopy
0.5039044
Confocal Laser Scanning Microscopy
0.42572647
X-Ray Absorption Spectroscopy
0.4131802
Scanning Probe Microscopy
0.40009317
0.5039044
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Environmental scanning electron micrograph showing cells of growing attached to an iron oxide substrate (M. J. Wilkins, P. Wincott, J. R. Lloyd, and D. J. Vaughan, unpublished data).

Citation: Lloyd J, Beveridge T, Morris K, Polya D, Vaughan D. 2007. Techniques for Studying Microbial Transformations of Metals and Radionuclides, p 1195-1213. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch98
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Transmission electron micrograph of a thin section of incubated with 1 mM LaCl for 15 min at room temperature. The image shows that the bacterial surfaces have reacted strongly with the La+ metal ions.

Citation: Lloyd J, Beveridge T, Morris K, Polya D, Vaughan D. 2007. Techniques for Studying Microbial Transformations of Metals and Radionuclides, p 1195-1213. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch98
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Unstained whole mount of CN32 showing extracellular iron minerals, secondary Fe minerals associated with the cell surface, and internal nanoscale Fe deposits.

Citation: Lloyd J, Beveridge T, Morris K, Polya D, Vaughan D. 2007. Techniques for Studying Microbial Transformations of Metals and Radionuclides, p 1195-1213. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch98
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

(A) Cell envelope of frozen hydrated cryo-sectioned K-12 viewed by TEM. The lipid asymmetry of the outer membrane (OM) is clearly visible, as are both bilayer faces of the periplasm (PM). (B) A micrograph of a thin section of freeze-substituted is included for comparison, showing metal decoration of reactive sites.

Citation: Lloyd J, Beveridge T, Morris K, Polya D, Vaughan D. 2007. Techniques for Studying Microbial Transformations of Metals and Radionuclides, p 1195-1213. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch98
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Diagram showing energy-dispersive X-ray powder diffraction data acquired using a synchrotron radiation source. A fine-particle precipitate of CuS formed by reacting copper and sulfide in aqueous solutions is seen to change over time (0 to 500 min) as the initially nearly amorphous sulfide precipitate becomes more crystalline. Diffraction peaks related to different parts of (or planes within) the structure are seen to emerge with time (L. N. Moyes, J. M. Charnock, R. A. D. Pattrick, and D. J. Vaughan, unpublished data).

Citation: Lloyd J, Beveridge T, Morris K, Polya D, Vaughan D. 2007. Techniques for Studying Microbial Transformations of Metals and Radionuclides, p 1195-1213. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch98
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Mössbauer spectrum (iron) acquired at room temperature for a fine-particle tidal flat sediment sample from the Wash area, England. Fitting of this spectrum confirmed that ferrous iron occurs in detrital clay minerals (doublet with large separation) and in pyrite (FeS) (doublet with small separation) and that both ferrous and ferric iron occur in the magnetic sulfide greigite (FeS) (small features at very high and very low velocities). There is also a substantial amount of ferric iron from clays and related phases (seen as another doublet with small separation). The sulfides have formed by reaction of bacterially generated sulfide (reduction of seawater sulfate) with iron released from detrital minerals. From the areas under the peaks, the relative percentages of the different types of iron can be determined. (Modified from reference .)

Citation: Lloyd J, Beveridge T, Morris K, Polya D, Vaughan D. 2007. Techniques for Studying Microbial Transformations of Metals and Radionuclides, p 1195-1213. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch98
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

STM data showing a 200-Å-by-200-Å image of the surface of magnetite at atomic resolution which has been exposed to pyridine ( ) (top) and a scan along the line indicated in the top figure which shows that the large bright features in the image are individual pyridine molecules (bottom). (Modified from reference .)

Citation: Lloyd J, Beveridge T, Morris K, Polya D, Vaughan D. 2007. Techniques for Studying Microbial Transformations of Metals and Radionuclides, p 1195-1213. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch98
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

AFM image showing on a stepped surface of goethite (Wilkins et al., unpublished data).

Citation: Lloyd J, Beveridge T, Morris K, Polya D, Vaughan D. 2007. Techniques for Studying Microbial Transformations of Metals and Radionuclides, p 1195-1213. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch98
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Schematic diagram showing the principles of XPS, AES, and X-ray emission spectroscopy (XES), which is also the basis of EPMA. (Redrawn from reference .)

Citation: Lloyd J, Beveridge T, Morris K, Polya D, Vaughan D. 2007. Techniques for Studying Microbial Transformations of Metals and Radionuclides, p 1195-1213. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch98
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815882.ch98
1. Addleman, R. S.,, M. Carrott,, C. M. Wai,, T. E. Carleson, and, B. W. Wenclawiak. 2001. On-line speciation of uranyl chelates in supercritical CO2 by time-resolved laser-induced fluorescence spectroscopy. Anal. Chem. 73:11121119.
2. Anderson, R. T.,, H. A. Vrionis,, I. Ortiz-Bernad,, C. T. Resch,, P. E. Long,, R. Dayvault,, K. Karp,, S. Marutzky,, D. R. Metzler,, A. Peacock,, D. C. White,, M. Lowe, and, D. R. Lovley. 2003. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol. 69:58845891.
3. Ariza, J. L. G.,, E. Morales,, D. Sanchez-Rodas, and, I. Giraldez. 2000. Stability of chemical species in environmental matrices. Trends Anal. Chem. 19:200209.
4. Bailey, E. H.,, J. F. W. Mosselmans, and, P. F. Schofield. 2004. Uranyl acetate speciation in aqueous solutions—an XAS study between 25°C and 250°C. Geochim. Cosmochim. Acta 68:17111722.
5. Bancon-Montigny, C.,, G. Lespes, and, M. Potin-Gautier. 2001. Optimisation of the storage of natural freshwaters before organotin speciation. Water Res. 35:224232.
6. Batley, G. E.,, S. C. Apte, and, J. L. Stauber. 2004. Speciation and bioavailability of trace metals in water: progress since 1982. Aust. J. Chem. 57:903919.
7. Baun, D. L.,, and T. H. Christensen. 2004. Speciation of heavy metals in landfill leachate: a review. Waste Manage. Res. 22:323.
8. Bednar, A. J.,, J. R. Garbarino, and, J. F. Ranville. 2002. Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples. Environ. Sci. Technol. 36:22132218.
9. Beveridge, T. J. Cryotransmission electron microscopy is enabling investigators to examine native, hydrated structures in bacteria and biofilms. Microbe, in press.
10. Beveridge, T. J. 1999. Structures of gramnegative cell walls and their derived membrane vesicles. J. Bacteriol. 181:47254733.
11. Beveridge, T. J.,, and L. L. Graham. 1991. Surface layers of bacteria. Microbiol. Mol. Biol. Rev. 55:684705.
12. Beveridge, T. J.,, M. N. Hughes,, H. Lee,, K. T. Leung,, R. K. Poole,, I. Savvaidis,, S. Silver, and, J. T. Trevors. 1997. Metal-microbe interactions: contemporary approaches. Adv. Microb. Physiol. 38:177243.
13. Beveridge, T. J.,, D. Moyles, and, B. Harris. Electron microscopy. In C. A. Reddy,, T. J. Beveridge,, J. A. Breznak,, L. Snyder,, T. M. Schmidt, and, G. A. Marzluf (ed.), Methods for General and Molecular Microbiology, in press. ASM Press, Washington, D.C.
14. Bondietti, E. A.,, and C. W. Francis. 1979. Geologic migration potentials of technetium-99 and neptunium-237. Science 203:13371340.
15. Brina, R.,, and A. G. Miller. 1992. Direct detection of trace levels of uranium by laser-induced phosphorimetry. Anal. Chem. 64:14131418.
16. Buffle, J.,, and M.-L. Tercier-Waeber. 2005. Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements. Trends Anal. Chem. 24:171191.
17. Burke, I.,, C. Boothman,, J. R. Lloyd,, R. J. G. Mortimer,, F. R. Livens, and, K. Morris. 2005. Technetium solubility during the onset of progressive anoxia. Environ. Sci. Technol. 39:41094116.
18. Cabon, J. Y.,, and N. Cabon. 2000. Determination of arsenic species in seawater from flow injection hydride generation in situ collection followed by graphite furnace atomic absorption spectroscopy—stability of As(III). Anal. Chim. Acta 418:1931.
19. Cabri, L. J.,, and J. L. Campbell. 1998. The proton micro-probe in ore mineralogy (micro-PIXE technique), p. 181–198. In L. J. Cabri and, D. J. Vaughan (ed.), Modern Approaches to Ore and Environmental Mineralogy, vol. 27. Mineralogical Association of Canada Short Course Series. Mineralogical Association of Canada, Ottawa, Ontario, Canada.
20. Clark, D. L.,, D. E. Hobart, and, M. P. Neu. 1995. Actinide carbonate complexes and their importance in actinide environmental chemistry. Chem. Rev. 95:2548.
21. Combes, J. M.,, C. J. Chisholm-Brause,, G. E. Brown,, G. A. Parks,, S. D. Conradson,, P. G. Eller,, I. R. Triay,, D. E. Hobart, and, A. Meijer. 1992. EXAFS spectroscopic study of neptunium(V) sorption at the alpha-FeOOH water interface. Environ. Sci. Technol. 26:376382.
22. Craig, J. R.,, and D. J. Vaughan. 1994. Ore Microscopy and Ore Petrography, 2nd ed. John Wiley & Sons, New York, N.Y.
23. Cullen, W. R.,, and K. J. Reimer. 1989. Arsenic speciation in the environment. Chem. Rev. 89:713764.
24. Cutting, R. S.,, C. A. Muryn,, G. Thornton, and, D. J. Vaughan. Molecular scale reactivity of magnetite with formic acid, pyridine and carbon tetrachloride. Geochim. Cosmochim. Acta, in press.
25. Dahlen, J.,, and S. Karlsson. 1999. Determination of iron(II) in natural waters by capillary zone electrophoresis using on-capillary complexation with 2,4,6-tri(2′-pyridyl)-1,3,5-triazine. J. Chromatogr. A 848:491502.
26. Davison, W.,, and H. Zhang. 1994. In situ speciation measurements of trace components in natural waters using thin-film gels. Nature 367:546548.
27. Delacroix, D.,, J. P. Guerre,, P. Leblanc, and, C. Hickman. 1998. Radionuclide and radiation protection data handbook. Radiat. Prot. Dosimetry 76:1126.
28. Dozol, M.,, and R. Hagemann. 1993. Radionuclide migration in groundwaters: review of the behaviour of actinides. Pure Appl. Chem. 65:10811102.
29. Dubochet, J.,, M. Adrian,, J. J. Chang,, J. C. Homo,, J. Lepault,, A. W. McDowall, and, P. Schultz. 1988. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129228.
30. Dubochet, J.,, A. W. McDowall,, B. Menge,, E. N. Schmid, and, K. G. Lickfeld. 1983. Electron microscopy of frozen-hydrated bacteria. J. Bacteriol. 155:381390.
31. Duff, M. C.,, D. B. Hunter,, I. R. Triay,, P. M. Bertsch,, J. Kitten, and, D. T. Vaniman. 2001. Comparison of two micro-analytical methods for detecting the spatial distribution of sorbed Pu on geologic materials. J. Contam. Hydrol. 47:211218.
32. Duff, M. C.,, D. B. Hunter,, I. R. Triay,, P. M. Bertsch,, D. T. Reed,, S. R. Sutton,, G. Shea-McCarthy,, J. Kitten,, P. Eng,, S. J. Chipera, and, D. T. Vaniman. 1999. Mineral associations and average oxidation states of sorbed Pu on Tuff. Environ. Sci. Technol. 33:21632169.
33. Dufrêne, Y. F. Atomic force microscopy. In C. A. Reddy,, T. J. Beveridge,, J. A. Breznak,, L. Snyder,, T. M. Schmidt, and, G. A. Marzluf (ed.), Methods for General and Molecular Microbiology, in press. ASM Press, Washington, D.C.
34. Dufrêne, Y. F. 2004. Using nanotechniques to explore microbial surfaces. Nat. Rev. Microbiol. 2:451460.
35. Feldmann, J. 2005. What can the different current-detection methods offer for element speciation? Trends Anal. Chem. 24:228242.
36. Feldmann, J.,, K. Haas,, L. Naels, and, S. Wehmeier. 2001. Investigations into biovolatilisation of metal(loids) in the environment by using GC-ICP-TOF-MS. R. Soc. Chem. Spec. Publ. 267:361368.
37. Finneran, K. T.,, R. T. Anderson,, K. P. Nevin, and, D. R. Lovley. 2002. Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. Soil Sed. Contam. 11:339357.
38. Finneran, K. T.,, M. E. Housewright, and, D. R. Lovley. 2002. Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ. Microbiol. 4:510516.
39. Florence, T. M.,, and G. E. Batley. 1980. Chemical speciation in natural waters. Rev. Anal. Chem. 9:219296.
40. Frausto da Silva, J. J. R.,, and R. J. P. Williams. 1993. The Biological Chemistry of the Elements. Clarendon Press, Oxford, United Kingdom.
41. Fredrickson, J. K.,, J. M. Zachara,, D. W. Kennedy,, M. C. Duff,, Y. A. Gorby,, S.-M. W. Li, and, K. M. Krupka. 2000. Reduction of U(VI) in geothite (a-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochim. Cosmochim. Acta 64:30853098.
42. Fredrickson, J. K.,, J. M. Zachara,, D. W. Kennedy,, R. K. Kukkadapu,, J. P. McKinley,, S. M. Heald,, C. Liu, and, A. E. Plymale. 2004. Reduction of TcO4 by sediment-associated biogenic Fe(II). Geochim. Cosmochim. Acta 68:31713187.
43. Gault, A. G.,, L. E. Davidson,, P. R. Lythgoe,, D. A. Polya,, F. R. Abou-Shakra,, H. J. Walker, and, D. Chatterjee. 2003. Iron and arsenic speciation in ground-waters from West Bengal, India by coupled HPLC-ICPMS utilising a hexapole collision cell, p. 112–126. In J. G. Holland and, S. D. Tanner (ed.), Plasma Source Mass Spectrometry: Applications and Emerging Technologies. The Royal Society of Chemistry, Cambridge, United Kingdom.
44. Gault, A. G.,, J. Jana,, S. Chakraborty,, P. Mukherjee,, M. Sarkar,, B. Nath,, D. A. Polya, and, D. Chatterjee. 2005. Preservation strategies for inorganic arsenic species in high iron, low Eh groundwater from West Bengal, India. Anal. Bioanal. Chem. 381:347353.
45. Graham, L. L.,, and T. J. Beveridge. 1994. Structural differentiation of the Bacillus subtilis 168 cell wall. J. Bacteriol. 176:14131421.
46. Greenberg, A. E.,, and A. D. E. Eaton. 1999. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, D.C.
47. Hall, G. E. M.,, J. C. Pelchat, and, G. Gauthier. 1999. Stability of inorganic arsenic(III) and arsenic(V) in water samples. J. Anal. Atom. Spectrosc. 14:205213.
48. Hamilton, E. I. 1981. Alpha particle radioactivity of hot particles from the Esk Estuary. Nature 290:690693.
49. Hawthorne, F. E. 1988. Spectroscopic Methods in Mineralogy and Geology, vol. 18. Mineralogical Society of America, Washington, D.C.
50. Heninger, I.,, M. Potin Gautier,, I. deGregori, and, H. Pinochet. 1997. Storage of aqueous solutions of selenium for speciation at trace level. Fresenius J. Anal. Chem. 357:600610.
51. Hobot, J. A.,, E. Carlemalm,, W. Villiger, and, E. Kellenberger. 1984. Periplasmic gel: new concept resulting from the reinvestigation of bacterial cell envelope ultra-structure by new methods. J. Bacteriol. 160:143152.
52. Holland, G.,, and S. D. Tanner (ed.). 2003. Plasma Source Mass Spectrometry: Applications and Emerging Technologies, vol. 288. The Royal Society of Chemistry, Cambridge, United Kingdom.
53. Hunter, R. C.,, and T. J. Beveridge. 2005. Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 71:25012510.
54. Islam, F.,, A. G. Gault,, C. Boothman,, D. A. Polya,, J. M. Charnock,, D. Chatterjee, and, J. R. Lloyd. 2004. Role of metal-reducing bacteria in arsenic release from Bengal Delta sediments. Nature 430:6871.
55. Istok, J.,, J. Senko,, L. Krumholz,, D. Watson,, M. Bogle,, A. Peacock,, Y. Chang, and, D. White. 2004. In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environ. Sci. Technol. 38:468475.
56. Jericho, M.,, O. Stoica, and, T. J. Beveridge. 2004. Atomic force microscopy of cell growth and division in Staphylococcus aureus. J. Bacteriol. 186:22812287.
57. Johansson, S. A. E.,, J. L. Campbell, and, K. G. Malmqvist. 1995. Particle-Induced X-Ray Emission Spectrometry, vol. 133. John Wiley & Sons, New York, N.Y.
58. Johnson, D. A.,, and T. M. Florence. 1971. Spectrophoto-metric determination of uranium(VI) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Anal. Chim. Acta 53:7379.
59. Keith-Roach, M. J.,, and F. R. Livens. 2002. Interactions of Microorganisms with Radionuclides. Elsevier, Amsterdam, The Netherlands.
60. Keith-Roach, M. J.,, K. Morris, and, H. Dahlgaard. 2003. An investigation into technetium binding in sediments. Mar. Chem. 81:149162.
61. Kerr, P. F. 1977. Optical Mineralogy, 4th ed. McGraw Hill, New York, N.Y.
62. Koval, S. F.,, and T. J. Beveridge. 1999. Electron microscopy, p. 276–287. In J. Lederberg (ed.), Encyclopedia of Microbiology. Academic Press, San Diego, Calif.
63. Krachler, M.,, H. Emons, and, J. Zheng. 2001. Speciation of antimony for the 21st century: promises and pitfalls. Trends Anal. Chem. 20:7990.
64. Kuczewski, B.,, C. M. Marquardt,, A. Seibert,, H. Geckeis,, J. V. Kratz, and, N. Trautmann. 2003. Separation of plutonium and neptunium species by capillary electrophoresis-inductively coupled plasma-mass spec-trometry and application to natural groundwater samples. Anal. Chem. 75:67696774.
65. Lawrence, J. R.,, and T. R. Neu. 2006. Laser scanning microscopy. In C. A. Reddy,, T. J. Beveridge,, J. A. Breznak,, L. Snyder,, T. M. Schmidt, and, G. A. Marzluf (ed.), Methods for General and Molecular Microbiology, in press. ASM Press, Washington, D.C.
66. Le, X. C.,, S. Yalcin, and, M. Ma. 2000. Speciation of submicrogram per litre levels of arsenic in water: on-site species separation integrated with sample collection. Environ. Sci. Technol. 34:23422347.
67. Liang, P.,, and J. Li. 2005. Speciation of chromium with cloud point extraction separation and determination by ICP-OES. Atom. Spectrosc. 26:8993.
68. Lieser, K. H.,, and U. Muhlenweg. 1988. Np in the hydrosphere and in the geosphere. Radiochim. Acta 43:2735.
69. Lloyd, J. R.,, R. T. Anderson, and, L. E. Macaskie. 2005. Bioremediation of metals and radionuclides, p. 293–317. In R. M. Atlas and, J. C. Philp (ed.), Bioremediation: Applied Microbial Solutions for Real-World Environmental Cleanup. ASM Press, Washington, D.C.
70. Lloyd, J. R.,, J. A. Cole, and, L. E. Macaskie. 1997. Reduction and removal of heptavalent technetium from solution by Escherichia coli. J. Bacteriol. 179:20142021.
71. Lloyd, J. R.,, and L. E. Macaskie. 1996. A novel phosphor-imager-based technique for monitoring the microbial reduction of technetium. Appl. Environ. Microbiol. 62:578582.
72. Lloyd, J. R.,, and J. C. Renshaw. 2005. Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field-scale studies. Curr. Opin. Biotechnol. 16:254260.
73. Lloyd, J. R.,, and J. C. Renshaw. 2005. Microbial transformations of radionuclides: fundamental mechanisms and biogeochemical implications. Met. Ions Biol. Syst. 43:205240.
74. Lloyd, J. R.,, V. A. Sole,, C. V. Van Praagh, and, D. R. Lovley. 2000. Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl. Environ. Microbiol. 66:37433749.
75. Lloyd, J. R.,, P. Yong, and, L. E. Macaskie. 2000. Biological reduction and removal of pentavalent Np by the concerted action of two microorganisms. Environ. Sci. Technol. 34:12971301.
76. Loewenschuss, H. 1982. Metal-ferrocyanide complexes for the decontamination of cesium from aqueous radioactive waste. Radioact. Waste Manag. 2:327.
77. Lovley, D. R.,, E. J. P. Phillips,, Y. A. Gorby, and, E. Landa. 1991. Microbial reduction of uranium. Nature 350:413416.
78. Lower, B. H.,, R. Yongsunthon,, F. P. Vellano III, and, S. K. Lower. 2005. Simultaneous force and fluorescence measurements of a protein that forms a bond between a living bacterium and a solid surface. J. Bacteriol. 187:21272137.
79. Lower, S. K.,, C. J. Tadanier, and, M. F. Hochella. 2001. Dynamics of the mineral-microbe interface: use of biological force microscopy in biogeochemistry and geomicrobiology. Geomicrobiol. J. 18:6376.
80. Macrae, N. D. 1995. Secondary ion mass spectrometry and geology. Can. Mineral. 33:219236.
81. Maddock, A. G. 1985. Mossbauer Spectroscopy in Mineral Chemistry, Chemical Bonding and Spectroscopy in Mineral Chemistry. Chapman and Hall, London, United Kingdom.
82. Matias, V. R. F.,, A. Al-Amoudi,, J. Dubochet, and, T. J. Beveridge. 2003. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudo-monas aeruginosa. J. Bacteriol. 185:61126118.
83. Matias, V. R. F.,, and T. J. Beveridge. 2005. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol. Microbiol. 56:240251.
84. Matias, V. R. F.,, and T. J. Beveridge. 2006. Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J. Bacteriol. 188:10111021.
85. McLaren, A. C. 1991. Transmission Electron Microscopy of Minerals and Rocks. Cambridge University Press, Cambridge, United Kingdom.
86. McMahon, G.,, and L. J. Cabri. 1998. The SIMS technique in ore mineralogy, p. 199–240. In L. J. Cabri and, D. J. Vaughan (ed.), Mineralogical Association of Canada Short Course Series, vol. 27. Modern Approaches to Ore and Environmental Mineralogy. Mineralogical Association of Canada, Ottawa, Ontario, Canada.
87. Morris, K.,, J. C. Butterworth, and, F. R. Livens. 2000. Evidence for the remobilization of Sellafield waste radionuclides in an intertidal salt marsh, West Cumbria, U.K. Estuar. Coast. Shelf Sci. 51:613625.
88. Moyes, L. N.,, M. J. Jones,, W. A. Reed,, F. R. Livens,, J. M. Charnock,, J. F. W. Mosselmans,, C. Hennig,, D. J. Vaughan, and, R. A. D. Pattrick. 2002. An X-ray absorption spectroscopy study of neptunium(V) reactions with mackinawite. Environ. Sci. Technol. 36:179183.
89. Nelson, D. M.,, and M. B. Lovett. 1978. Oxidation state of plutonium in the Irish Sea. Nature 276:599601.
90. Nordstrom, D. K. 1996. Trace metal speciation in natural waters: computational vs analytical. Water Air Soil Pollut. 90:257267.
91. Panak, P. J.,, C. H. Booth,, D. L. Caulder,, J. J. Bucher,, D. K. Shuh, and, H. Nitsche. 2002. X-ray absorption fine structure spectroscopy of plutonium complexes with Bacillus sphaericus. Radiochim. Acta 90:315321.
92. Parker, J. L.,, and N. S. Bloom. 2005. Preservation and storage techniques for low-level aqueous mercury speciation. Sci. Total Environ. 337:253263.
93. Pasilis, S. P.,, and J. E. Pemberton. 2003. Speciation and coordination chemistry of uranyl(VI)-citrate complexes in aqueous solution. Inorg. Chem. 42:67936800.
94. Phoenix, V.,, A. A. Korenevsky,, V. R. F. Matias, and, T. J. Beveridge. 2006. Cell wall structure and physico-chemistry provide new insights into metal ion nucleation and mineral development in bacteria, p. 85–108. In G. M. Gadd (ed.), Advances in Geomicrobiology, vol. 65. Micro-organisms and Earth Systems. Cambridge University Press, Cambridge, United Kingdom.
95. Pitzer, K. S. (ed.). 1991. Activity Coefficients in Electrolyte Solutions, 2nd ed. CRC Press, Boca Raton, Fla.
96. Polya, D. A.,, P. R. Lythgoe,, F. Abou-Shakra,, A. G. Gault,, J. R. Brydie,, J. G. Webster,, K. L. Brown,, M. K. Nimfopoulos, and, K. M. Michailidis. 2003. IC-ICP-MS and IC-ICP-HEX-MS determination of arsenic speciation in surface and groundwaters: preservation and analytical issues. Mineral. Mag. 67:247261.
97. Polya, D. A.,, E. M. Woolley,, J. M. Simonson, and, R. E. Mesmer. 2000. The enthalpy of dilution and thermodynamics of Na2CO3(aq) and NaHCO3(aq) from T = 298 K to T = 523.15 K and pressure of 40 MPa. J. Chem. Thermodyn. 33:205243.
98. Powell, B. A.,, R. A. Fjeld,, D. I. Kaplan,, J. T. Coates, and, S. M. Serkiz. 2005. Pu(V)O2+ adsorption and reduction by synthetic hematite and goethite. Environ. Sci. Technol. 39:21072114.
99. Rai, D.,, M. Yui, and, D. A. Moore. 2003. Solubility and solubility product at 22°C of UO2 (c) precipitated from aqueous U(IV) solutions. J. Solut. Chem. 32:117.
100. Reddy, C. A.,, T. J. Beveridge,, J. A. Breznak,, L. Snyder,, T. M. Schmidt, and, G. A. Marzluf (ed.). Methods for General and Molecular Microbiology, in press. American Society for Microbiology, Washington, D.C.
101. Reed, S. J. B. 1997. Electron Probe Microanalysis, 2nd ed. Cambridge University Press, Cambridge, United Kingdom.
102. Renshaw, J. C.,, L. J. C. Butchins,, F. R. Livens,, I. May,, J. M. Charnock, and, J. R. Lloyd. 2005. Bioreduction of uranium: environmental implications of a pentavalent intermediate. Environ. Sci. Technol. 39:56575660.
103. Rittmann, B. E.,, J. E. Banaszak, and, D. T. Reed. 2002. Reduction of Np(V) and precipitation of Np(IV) by an anaerobic microbial consortium. Biodegradation 13:329342.
104. Robinson, B. W.,, N. G. Ware, and, D. G. W. Smith. 1998. Modern electron microprobe trace element analysis in mineralogy, p. 153–180. In L. J. Cabri and, D. J. Vaughan (ed.), Mineralogical Association of Canada Short Course Series, vol. 27. Modern Approaches to Ore and Environmental Mineralogy. Mineralogical Association of Canada, Ottawa, Ontario, Canada.
105. Rossberg, A.,, T. Reich, and, G. Bernhard. 2003. Complexation of uranium(VI) with protocatechuic acid—application of iterative transformation factor analysis to EXAFS spectroscopy. Anal. Bioanal. Chem. 376:631638.
106. Rusin, P. A.,, L. Quintana,, J. R. Brainard,, B. A. Strietelmeier,, C. D. Tait,, S. A. Ekberg,, P. D. Palmer,, T. W. Newton, and, D. L. Clark. 1994. Solubilization of plutonium hydrous oxide by iron reducing bacteria. Environ. Sci. Technol. 28:16861690.
107. Senko, J. M.,, J. D. Istok,, J. M. Suflita, and, L. R. Krumholz. 2002. In-situ evidence for uranium immobilization and remobilization. Environ. Sci. Technol. 35:14911496.
108. Shaughnessy, D.,, H. Nitsche,, C. Booth,, D. Shuh,, G. Waychunas,, R. Wilson,, H. Gill,, K. Cantrell, and, R. Serne. 2003. Molecular interfacial reactions between Pu(VI) and manganese oxide minerals manganite and hausmannite. Environ. Sci. Technol. 37:33673374.
109. Sokolov, I.,, D. S. Smith,, G. S. Henderson,, Y. A. Gorby, and, F. G. Ferris. 2001. Cell surface electrochemical heterogeneity of the Fe(III)-reducing bacteria Shewanella putrefaciens. Environ. Sci. Technol. 35:341347.
110. Standring, W. J. F.,, D. H. Oughton, and, B. Salbu. 2002. Potential remobilization of 137Cs, 60Co, 99Tc, and 90Sr from contaminated Mayak sediments in river and estuary environments. Environ. Sci. Technol. 36:22302337.
111. Suttill, R. J.,, P. Turner, and, D. J. Vaughan. 1982. The geochemistry of iron in recent tidal-flat sediments of the Wash area, England: a mineralogical, Mossbauer, and magnetic study. Geochim. Cosmochim. Acta 46:205217.
112. Suzuki, Y.,, S. D. Kelly,, K. A. Kemner, and, J. F. Banfield. 2003. Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediment. Appl. Environ. Microbiol. 69:13371346.
113. Tanner, S. D.,, and V. I. Baranov. 1999. Theory, design and operation of a dynamic reaction cell for ICP-MS. Atom. Spectrosc. 20:4552.
114. Templeton, D. M. 2003. The importance of trace element speciation in biomedical science. Anal. Bioanal. Chem. 375:10621066.
115. Templeton, D. M.,, F. Ariese,, R. Cornelis,, L.-G. Danielsson,, H. Muntau,, H. P. van Leeuwen, and, R. Lobinski. 2000. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects and methodological approaches (IUPAC Recommendations 2000). Pure Appl. Chem. 72:14531470.
116. Toner, B.,, S. Fakra,, M. Villalobos,, T. Warwick, and, G. Sposito. 2005. Spatially resolved characterization of biogenic manganese oxide production within a bacterial biofilm. Appl. Environ. Microbiol. 71:13001310.
117. Umeda, A.,, Y. Ueki, and, K. Amako. 1987. Structure of the Staphylococcus aureus cell wall determined by the freeze-substitution method. J. Bacteriol. 169:24822487.
118. Urch, D. S. 1971. X-ray emission spectroscopy. Q. Rev. 25:343.
119. U.S. Environmental Protection Agency. 2001. Method 1632: Chemical Speciation of Arsenic in Water and Tissue by Hydride Generation Quartz Furnace Atomic Absorption Spectrometry. USEPA Report EPA-821-R-01-006, revision A. U.S. Environmental Protection Agency, Washington, D.C.
120. U.S. Geological Survey. 2005. Review of the Transport of Selected Radionuclides in the Interim Risk Assessment for the Radioactive Waste Management Complex, Waste Area Group 7 Operable Unit 7-13/14, Idaho National Engineering and Environmental Laboratory, Idaho. USGS Scientific Investigations Report 2005-5026, vol. I. U.S. Geological Survey, Reston, Va.
121. Wade, R., Jr.,, and T. J. DiChristina. 2000. Isolation of U(VI) reduction-deficient mutants of Shewanella putrefaciens. FEMS Microbiol. Lett. 184:143148.
122. White, J. C. (ed.). 1985. Mineralogical Association of Canada Short Course Series, vol. 11. Application of Electron Microscopy in the Earth Sciences. Mineralogical Association of Canada, Ottawa, Ontario, Canada.
123. Yao, X.,, M. Jericho,, D. Pink, and, T. Beveridge. 1999. Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy. J. Bacteriol. 181:68656875.
124. Zanonato, P.,, P. Di Bernardo,, A. Bismondo,, G. K. Liu,, X. Y. Chen, and, L. F. Rao. 2004. Hydrolysis of uranium(VI) at variable temperatures (10–85 degrees C). J. Am. Chem. Soc. 126:55155522.
125. Zussman, J. 1977. X-ray diffraction. In J. Zussman (ed.), Physical Methods in Determinative Mineralogy. Academic Press, New York, N.Y.

Tables

Generic image for table
TABLE 1

Concentrations of Tc, U, Np, and Pu used in geomicrobiological experiments and their corresponding ALIs

Citation: Lloyd J, Beveridge T, Morris K, Polya D, Vaughan D. 2007. Techniques for Studying Microbial Transformations of Metals and Radionuclides, p 1195-1213. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch98
Generic image for table
TABLE 2

Half-lives, decay modes, and predominant oxidation states of various isotopes of Tc, U, Np, and Pu

Citation: Lloyd J, Beveridge T, Morris K, Polya D, Vaughan D. 2007. Techniques for Studying Microbial Transformations of Metals and Radionuclides, p 1195-1213. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch98

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error