Chapter 4 : Genomics and Chip Technology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Genomics and Chip Technology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap04-2.gif


In a short period, the genomics age has shifted a substantial proportion of study to the search for patterns or profiles of expression or genetic variants in specific diseases. Microarray analysis interrogates total RNA or mRNA purified from cell or tissue sources. Harvest of total RNA or mRNA is critical; technical problems or degradation fatally undermines the interpretation of expression data. Naturally, the quality control steps for ensuring that RNA is not degraded must be established, and in circumstances in which insufficient RNA is available, careful amplification of RNA can be performed during the generation of cDNA. Currently, most studies have used cDNA or oligonucleotide-based arrays to identify regions of loss of heterozygosity or gene amplifications. Chip technology was initially applied to single-base pair mutation detection, using a similar hybridization technology but with genomic DNA as a template. Currently, there are four commercial technologies available for large-scale, high-throughput genotype analysis: Affymetrix, ParAllele, Illumina, and Perlegen. The new technologies for single-nucleotide polymorphism (SNP) detection will enable studies to look at genetic variation across all genes of a pathway or biological process as well as across the entire genome. Similar to the analytical challenges of the microarray expression studies, analytical approaches will continue to evolve in SNP research. One of the major goals of the coming decade is the development of high-throughput sequence technologies.

Citation: Chanock S. 2006. Genomics and Chip Technology, p 22-25. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch4

Key Concept Ranking

Restriction Fragment Length Polymorphism
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Alizadeh, A. A.,, M. B. Eisen,, R. E. Davis,, C. Ma,, I. S. Lossos,, A. Rosenwald,, J. C. Boldrick,, H. Sabet,, T. Tran,, X. Yu,, J. I. Powell,, L. Yang,, G. E. Marti,, T. Moore,, J. Hudson, Jr.,, L. Lu,, D. B. Lewis,, R. Tibshirani,, G. Sherlock,, W. C. Chan,, T. C. Greiner,, D. D. Weisenburger,, J. O. Armitage,, R. Warnke,, R. Levy,, W. Wilson,, M. R. Grever,, J. C. Byrd,, D. Botstein,, P. O. Brown, and , L. M. Staudt. 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503511.
2. Barrett, M. T.,, A. Scheffer,, A. Ben-Dor,, N. Sampas,, D. Lipson,, R. Kincaid,, P. Tsang,, B. Curry,, K. Baird,, P. S. Meltzer,, Z. Yakhini,, L. Bruhn, and , S. Laderman. 2004. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc. Natl. Acad. Sci. USA 101:1776517770.
3. Bishop, C. M. 1995. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, United Kingdom.
4. Botstein, D., and , N. Risch. 2003. Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nat. Genet. 33:228237.
5. Chanock, S., and , S. Wacholder. 2002. One gene and one outcome? No way. Trends Mol. Med. 8:266269.
6. Chen, Q. R.,, S. Bilke,, J. S. Wei,, C. C. Whiteford,, N. Cenacchi,, A. L. Krasnoselsky,, B. T. Greer,, C. G. Son,, F. Westermann,, F. Berthold,, M. Schwab,, D. Catchpoole, and , J. Khan. 2004. cDNA array-CGH profiling identifies genomic alterations specific to stage and MYCN-amplification in neuroblastoma. BMC Genomics 5:70.
7. Collins, E. S.,, E. D. Green,, A. E. Guttmacher,, M. S. Guyer, and the U.S. National Human Genome Research Institute. 2003. A vision for the future of genomics research. Nature 422:835847.
8. Dave, S. S.,, G. Wright,, B. Tan,, A. Rosenwald,, R. D. Gascoyne,, W. C. Chan,, R. I. Fisher,, R. M. Braziel,, L. M. Rimsza,, T. M. Grogan,, T. P. Miller,, M. LeBlanc,, T. C. Greiner,, D. D. Weisenburger,, J. C. Lynch,, J. Vose,, J. O. Armitage,, E. B. Smeland,, S. Kvaloy,, H. Holte,, J. Delabie,, J. M. Connors,, P. M. Lansdorp,, Q. Ouyang,, T. A. Lister,, A. J. Davies,, A. J. Norton,, H. K. Muller-Hermelink,, G. Ott,, E. Campo,, E. Montserrat,, W. H. Wilson,, E. S. Jaffe,, R. Simon,, L. Yang,, J. Powell,, H. Zhao,, N. Goldschmidt,, M. Chiorazzi, and , L. M. Staudt. 2004. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N. Engl. J. Med. 351:21592169.
9. Evans, W. E., and , M. V. Relling. 2004. Moving towards individualized medicine with pharmacogenomics. Nature 429:464468.
10. Gabriel, S. B.,, S. F. Schaffner,, H. Nguyen,, J. M. Moore,, J. Roy,, B. Blumenstiel,, J. Higgins,, M. DeFelice,, A. Lochner,, M. Faggart,, S. N. Liu-Cordero,, C. Rotimi,, A. Adeyemo,, R. Cooper,, R. Ward,, E. S. Lander,, M. J. Daly, and , D. Altshuler. 2002. The structure of haplotype blocks in the human genome. Science 296:22252229.
11. Gilles, P. N.,, D. J. Wu,, C. B. Foster,, P. J. Dillon, and , S. J. Chanock. 1999. Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips. Nat. Biotechnol. 17:365370.
12. Golub, T. R.,, D. K. Slonim,, P. Tamayo,, C. Huard,, M. Gaasenbeek,, J. P. Mesirov,, H. Coller,, M. L. Loh,, J. R. Downing,, M. A. Caligiuri,, C. D. Bloomfield, and , E. S. Lander. 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531537.
13. International HapMap Consortium. 2003. The International HapMap project. Nature 426:789796.
14. Khan, J.,, J. S. Wei,, M. Ringner,, L. H. Saal,, M. Ladanyi,, F. Westermann,, F. Berthold,, M. Schwab,, C. R. Antonescu,, C. Peterson, and , P. S. Meltzer. 2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7:673679.
15. Lipshutz, R. J.,, S. P. Fodor,, T. R. Gingeras, and , D. J. Lockhart. 1999. High density synthetic oligonucleotide arrays. Nat. Genet. 21:2024.
16. Lynch, T. J.,, D. W. Bell,, R. Sordella,, S. Gurubhagavatula,, R. A. Okimoto,, B. W. Brannigan,, P. L. Harris,, S. M. Haserlat,, J. G. Supko,, F. G. Haluska,, D. N. Louis,, D. C. Christiani,, J. Settleman, and , D. A. Haber. 2004. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350:21292139.
17. Marth, G.,, R. Yeh,, M. Minton,, R. Donaldson,, Q. Li,, S. Duan,, R. Davenport,, R. D. Miller, and , P. Y. Kwok. 2001. Single-nucleotide polymorphisms in the public domain: how useful are they? Nat. Genet. 27:371372.
18. Packer, B. R.,, M. Yeager,, B. Staats,, R. Welch,, A. Crenshaw,, M. Kiley,, A. Eckert,, M. Beerman,, E. Miller,, A. Bergen,, N. Rothman,, R. Strausberg, and , S. J. Chanock. SNP500Cancer: a public resource for sequence validation and assay development for genetic variation in candidate genes. Nucleic Acids Res. 32(Database issue):D528532.
19. Paik, S.,, S. Shak,, G. Tang,, C. Kim,, J. Baker,, M. Cronin,, F. L. Baehner,, M. G. Walker,, D. Watson,, T. Park,, W. Hiller,, E. R. Fisher,, D. L. Wickerham,, J. Bryant, and , N. Wolmark. 2004. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351:28172826.
20. Pritchard, J. K. 2001. Are rare variants responsible for susceptibility to complex diseases? Am. J. Hum. Genet. 69:124137.
21. Sorlie, T.,, R. Tibshirani,, J. Parker,, T. Hastie,, J. S. Marron,, A. Nobel,, S. Deng,, H. Johnsen,, R. Pesich,, S. Geisler,, J. Demeter,, C. M. Perou,, P. E. Lonning,, P. O. Brown,, A. L. Borresen-Dale, and , D. Botstein. 2003. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA 100:84188423.
22. Usary, J.,, V. Llaca,, G. Karaca,, S. Presswala,, M. Karaca,, X. He,, A. Langerod,, R. Karesen,, D. S. Oh,, L. G. Dressler,, P. E. Lonning,, R. L. Strausberg,, S. Chanock,, A. L. Borresen-Dale, and , C. M. Perou. 2004. Mutation of GATA3 in human breast tumors. Oncogene 23:76697678.
23. Wacholder, S.,, S. J. Chanock,, M. Garcia-Closas,, L. El Ghormli, and , N. Rothman. 2004. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J. Natl. Cancer Inst. 96:434442.
24. Wang, E.,, L. D. Miller,, G. A. Ohnmacht,, E. T. Liu, and , E. M. Marincola. 2000. High-fidelity mRNA amplification for gene profiling. Nat. Biotechnol. 18:457459.


Generic image for table

Current high-throughput genotype technologies

Citation: Chanock S. 2006. Genomics and Chip Technology, p 22-25. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error