Chapter 22 : Phenotypic Correlates of Genetic Abnormalities in Acute and Chronic Leukemias

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Phenotypic Correlates of Genetic Abnormalities in Acute and Chronic Leukemias, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap22-2.gif


The first classification of the acute leukemias in 1976 relied exclusively on the evaluation of cell size, granularity, nuclear shape, cytoplasmic appearance, cytochemical reactions, and dysplastic features of cells surrounding the “leukemic blast.” In selected cases, researchers have even succeeded in not only elucidating but also reversing the oncogenic mechanism, such as in acute promyelocytic leukemia (APL). APL has become the paradigm for the ultimate goal of leukemia diagnosis: to be able to tell an oncologist what targeted therapy a patient is a candidate for, based on the detection of a specific genotype. Some antibodies invariably stain all cells from a given lineage but vary markedly in their intensity of staining between normal and malignant cells, suggesting variable antigen densities (e.g., those of CD20 and CD22 on normal versus chronic lymphocytic leukemia [CLL] B lymphocytes); for other antigens, the fraction of cells binding the antibody will contain the diagnostic information (e.g., the percentage of CD34 or CD117 cells in any acute leukemia). Acute myeloid leukemia (AML), acute lymphoid leukemia (ALL), or chronic myelogenous leukemia (CML) tissues should be cultured for 24 h without mitogens before processing. Samples from CLL require stimulation by B-cell mitogens (B-cell CLL) or T-cell mitogens (T-cell CLL) for cell division to occur. The principle of targeted therapy, as attractive and promising as it is, requires much more understanding of transforming molecular events and perturbed signaling pathways than the simple administration of indiscriminately cytotoxic chemotherapy.

Citation: Paietta E. 2006. Phenotypic Correlates of Genetic Abnormalities in Acute and Chronic Leukemias, p 201-214. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch22

Key Concept Ranking

Multiparameter Flow Cytometry
Programmed Cell Death
Acute Myeloid Leukemia
Acute Promyelocytic Leukemia
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Typical antigen profile of -positive APL (for all L- and V-form and many S-form cases and for all M3 and some M3v morphologies). The scattergram in the left upper corner characterizes all cells present by size (forward scatter [FSC]) and granularity (side scatter [SSC]). A gate is set around all cells of interest. In the contour plot to the right, the leukemic promyelocytes are gated on the basis of CD117 expression (R2), whereby cells are stained with CD117 conjugated to phycoerythrin-cyanin 5 (PE CY5); this CD117-PE CY5 antibody is added to every antibody combination so that gating can be limited to leukemic cells. All subsequent contour plots show antigen expression only on gated leukemic promyelocytes. Such or similar gating strategy should always be applied in order to eliminate the inclusion of normal cells in the evaluation of antigen expression patterns. In all contour plots, data along the axes reflect cells stained with antibodies conjugated to fluorescein isothiocyanate (FITC). Along the axes are data for cells stained with antibodies conjugated to phycoerythrin (PE). Any blasts, which bind both FITC- and PE-antibodies in a given combination, appear in the right upper quadrant of the contour plot. For each contour plot, single or double antibodies tested (in addition to CD117) are indicated; CD clusters for all antibodies tested are written into the contour plots. Fluorescence intensity, a measure of antigen density, is usually expressed by the mean fluorescence channel of the cell population stained with the specific antibody of interest (along the or axis) divided by the mean fluorescence channel of the negative isotype control (mean fluorescence intensity or mean fluorescence intensity ratio).

Citation: Paietta E. 2006. Phenotypic Correlates of Genetic Abnormalities in Acute and Chronic Leukemias, p 201-214. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Differential antigen expression profiles of differentiated AMLs dependent upon the presence of the / fusion gene. The first panel demonstrates antigen expression in a case of differentiated AML with a normal karyotype (AML-M2), negative for /. A small percentage of blast cells was gated by CD117 staining (R2) and analyzed. In comparison, the second panel demonstrates a typical surrogate marker profile for /-positive AML. While this case represents a differentiated AML with FAB M2 morphology, many cases with / present with a rather undifferentiated phenotype, occasionally CD33 negative. Note the high expression of CD34, which is typical for this AML subtype, the absence of CD11a, the partial expression of CD56, and the weak albeit definite presence of CD19. One more observation of importance is that /-positive AML does not involve expression of CD7 on the leukemic myeloblasts. SSC, side scatter; FSC, forward scatter; R1, gating of all white cells excluding debris; R2, gating on CD117 leukemic myeloblasts within R1. TC, third color; PE, phycoerythrin; FITC, fluorescein isothiocyanate; PerCP, peridinin chlorophyll protein. Antibody combinations are written as CDs into the contour plots.

Citation: Paietta E. 2006. Phenotypic Correlates of Genetic Abnormalities in Acute and Chronic Leukemias, p 201-214. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adriaansen, H. J.,, P. A. W. te Boekhorst,, A. M. Hagemeijer,, C. E. van der Schoot,, H. R. Delwel, and , J. J. M. van Dongen. 1993. Acute myeloid leukemia M4 with bone marrow eosinophilia (M4Eo) and inv(16)(p13q22) exhibits a specific immunophenotype with CD2 expression. Blood 81:30433051.
2. Arber, D. A.,, C. Glackin,, G. Lowe,, L. J. Medeiros, and , M. L. Slovak. 1997. Presence of t(8;21)(q22;q22) in myeloperoxidase-positive, myeloid surface antigen-negative acute myeloid leukemia. Am. J. Clin. Pathol. 107:6873.
3. Armstrong, S. A.,, A. L. Kung,, M. E. Mabon,, L. B. Silverman,, R. W. Stam,, M. L. Den Boer,, R. Pieters,, J. H. Kersey,, S. E. Sallan,, J. A. Fletcher,, T. R. Golub,, J. D. Griffin, and , S. J. Korsmeyer. 2003. Inhibition of FLT3 in MLL: validation of a therapeutic target identified by gene expression based classification. Cancer Cell 3:173183.
4. Asnafi, V.,, K. Beldjord,, E. Boulanger,, B. Comba,, P. Le Tutour,, M.-H. Estienne,, F. Davi,, J. Landman-Parker,, P. Quartier,, A. Buzyn,, E. Delabesse,, F. Valensi, and , E. Macintyre. 2003. Analysis of TCR, pTα, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment. Blood 101:26932703.
5. Bain, B. J. 2003. Leukaemia Diagnosis: a Guide to the FAB Classification. Blackwell Scientific Publications Ltd., Oxford, United Kingdom.
6. Bäsecke, J.,, F. Griesinger,, L. Trümper, and , G. Brittinger. 2002. Leukemia- and lymphoma-associated genetic aberrations in healthy individuals. Ann. Hematol. 81:6475.
7. Bettelheim, P.,, E. Paietta,, O. Majdic,, H. Gadner,, J. D. Schwarzmeier, and , W. Knapp. 1982. Expression of a myeloid marker on TdT-positive acute lymphocytic leukemic cells: evidence by double-fluorescence staining. Blood 60:13921396.
8. Bullinger, L.,, K. Döhner,, E. Bair,, S. Fröhling,, R. F. Schlenk,, R. Tibshirani,, H. Döhner, and , J. R. Pollack. 2004. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N. Engl. J. Med. 350:16051616.
9. Bumm, T.,, C. Müller,, H.-K. Al-Ali,, K. Krohn,, P. Shepherd,, E. Schmidt,, S. Leiblein,, C. Franke,, E. Hennig,, T. Friedrich,, R. Krahl,, D. Niederwieser, and , M. W. N. Deininger. 2003. Emergence of clonal cytogenetic abnormalities in Ph- cells in some CML patients in cytogenetic remission to imatinib but restoration of polyclonal hematopoiesis in the majority. Blood 101:19411949.
10. Chiaretti, S.,, X. Li,, R. Gentleman,, A. Vitale,, M. Vignetti,, F. Mandelli,, J. Ritz, and , R. Foa. 2004. Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood 103:27712778.
11. Costello, R.,, D. Sainty,, P. Lecine,, A. Cusenier,, M.-J. Mozziconacci,, C. Arnoulet,, D. Maraninchi,, J.-A. Gastaut,, J. Imbert,, M. Lafage-Pochitaloff, and , J. Gabert. 1997. Detection of CBFβ/MYH11 fusion transcripts in acute myeloid leukemia: heterogeneity of cytological and molecular characteristics. Leukemia 11:644650.
12. Degos, L. 2003. The history of acute promyelocytic leukemia. Br. J. Haematol. 122:539553.
13. Deininger, M.,, E. Buchdunger, and , B. J. Druker. 2005. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105:26402653.
14. Dewald, G. W. 2002. Interphase FISH studies for chronic myeloid leukemia, p. 311342. In Y. S. Fan (ed.), Methods in Molecular Biology, vol. 204. Molecular Cytogenetics: Protocols and Applications. Humana Press, Totowa, N.J.
15. Dewald, G. W.,, S. R. Brockman, and , S. F. Paternoster. 2004. Molecular cytogenetic studies for hematological malignancies, p. 69112. In W. G. Finn and , L. C. Peterson (ed.), Hematopathology in Oncology. Kluwer Academic Publications, Dordrecht, The Netherlands.
16. Döhner, H.,, S. Stilgenbauer,, A. Benner,, E. Leupolt,, A. Kröber,, L. Bullinger,, K. Döhner,, M. Bentz, and , P. Lichter. 2000. Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med. 343:19101916.
17. Dombret, H.,, M. L. Scrobohaci,, M. T. Daniel,, J. M. Miclea,, S. Castaigne,, C. Chomienne,, P. Fenaux, and , L. Degos. 1995. In vivo thrombin and plasmin activities in patients with acute promyelocytic leukemia (APL): effect of all-trans retinoic acid (ATRA) therapy. Leukemia 9:1924.
18. Ferrando, A. A.,, D. S. Neuberg,, J. Staunton,, M. L. Loh,, C. Huard,, S. C. Raimondi,, F. G. Behm,, C. H. Pui,, R. Downing,, D. G. Gilliland,, E. S. Lander,, T. R. Golub, and , A. T. Look. 2002. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1:7587.
19. Ferrando, A. A.,, D. S. Neuberg,, R. K. Dodge,, E. Paietta,, R. A. Larson,, P. H. Wiernik,, J. M. Rowe,, M. A. Caligiuri,, C. D. Bloomfield, and , A. T. Look. 2004. Prognostic importance of HOX11 oncogene expression in adults with T-cell acute lymphoblastic leukemia. Lancet 363:535536.
20. Ferrara, F., and , L. Del Vecchio. 2002. Acute myeloid leukemia with t(8;21)/AML1/ETO: a distinct biological and clinical entity. Haematologica 87:306319.
21. Fine, B. M.,, M. Stanulla,, M. Schrappe,, M. Ho,, S. Viehmann,, J. Harbott, and , L. M. Boxer. 2004. Gene expression patterns associated with recurrent chromosomal translocations in acute lymphoblastic leukemia. Blood 103:10431049.
22. Gersen, S. L., and , M. B. Keagle. 2005. The Principles of Clinical Cytogenetics. Humana Press, Totowa, N.J.
23. Gilliland, D. G., and , M. S. Tallman. 2002. Focus on acute leukemias. Cancer Cell 1:417420.
24. Gökbuget, N., and , D. Hoelzer. 2004. Treatment with monoclonal antibodies in acute lymphoblastic leukemia: current knowledge and future prospects. Ann. Hematol. 83:201205.
25. Gozzetti, A., and , M. M. Le Beau. 2000. Fluorescence in situ hybridization: uses and limitations. Semin. Hematol. 37:320333.
26. Grimwade, D.,, S. V. Outram,, R. Flora,, S. J. Ings,, A. R. Pizzey,, R. Morilla,, C. F. Craddock,, D. C. Linch, and , E. Solomon. 2002. The T-lineage-affiliated CD2 gene lies within an open chromatin environment in acute promyelocytic leukemia cells. Cancer Res. 62:47304735.
27. Hölzer, D., and , N. Gökbuget. 2003. Diagnosis and treatment of adult acute lymphoblastic leukemia, p. 273305. In P. Wiernik,, J. Dutcher,, J. Goldman, and , R. Kyle (ed.), Neoplastic Diseases of the Blood, 4th ed. Cambridge University Press, Cambridge, United Kingdom.
28. Hrušak, O., and , A. Porwit-MacDonald. 2002. Antigen expression patterns reflecting genotypes of acute leukemias. Leukemia 16:12331258.
29. Hubank, M. 2004. Gene expression profiling and its application in studies of hematological malignancy. Br. J. Haematol. 124:577594.
30. Huntly, B. J. P.,, A. Bench, and , A. R. Green. 2003. Double jeopardy from a single translocation: deletions of the derivative chromosome 9 in chronic myeloid leukemia. Blood 102:11601168.
31. Jaffe, E. S.,, N. L. Harris,, H. Stein, and , J. W. Vardiman. 2001. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press, Lyon, France.
32. Jedema, I.,, R. M. Y. Barge,, V. H. J. van der Velden,, B. A. Nijmeijer,, J. J. M. van Dongen,, R. Willemze, and , J. H. F. Falkenburg. 2004. Internalization and cell cycle-dependent killing of leukemic cells by Gemtuzumab Ozogamicin: rationale for efficacy in CD33-negative malignancies and endocytic capacity. Leukemia 18:316325.
33. Johnson, R W. M., and , M. J. Glennie. 2001. Rituximab: mechanisms and applications. Br. J. Cancer 85:16191623.
34. Kelly, L. M.,, J. L. Kutok,, I. R. Williams,, C. L. Boulton,, S. M. Amaral,, D. P. Curley,, T. J. Ley, and , D. G. Gilliland. 2002. PML/RARα and FLT3-ITD induce an APL-like disease in a mouse model. Proc. Natl. Acad. Sci. USA 99:82838288.
35. Kottaridis, P. D.,, R. E. Gale, and , D. C. Linch. 2003. FLT3 mutations and leukemia. Br. J. Haematol. 122:523538.
36. Kurzrock, R.,, H. M. Kantarjian,, B. J. Druker, and , M. Talpaz. 2003. Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. Ann. Intern. Med. 138:819830.
37. Kussick, S.,, D. L. Stirewalt,, H. S. Yi,, K. M. Sheets,, E. Pogosova-Agadjanyan,, S. Braswell,, T. H. Norwood,, J. P. Radich, and , B. L. Wood. 2004. A distinctive nuclear morphology in acute myeloid leukemia is strongly associated with loss of HLA-DR expression and FLT3 internal tandem duplication. Leukemia 18:15911598.
38. Larson, R. A.,, G. Q. Daley,, C. A. Schiffer,, P. Porcu,, C.-H. Pui,, J.-P. Marie,, L. S. Steelman,, F. E. Bertrand, and , J. A. McCubrey. 2003. Treatment by design in leukemia, a meeting report, Philadelphia, Pennsylvania, December 2002. Leukemia 17:23582382.
39. Laurent, E.,, M. Talpaz,, H. Kantarjian, and , R. Kurzrock. 2001. The BCR gene and Philadelphia chromosome-positive leukemogenesis. Cancer Res. 61:23432355.
40. Licht, J. D. 2001. AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene 20:56605679.
41. Lyman, S. D., and , S. E. W. Jacobsen. 1988. C-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 91:11011134.
42. Mahadevan, D., and , A. F. List. 2004. Targeting the multidrug resistance-1 transporter in AML: molecular regulation and therapeutic strategies. Blood 104:19401951.
43. Mason, D.,, P. André,, A. Bensussan,, C. Buckley,, C. Civin,, E. Clark,, M. de Haas,, S. Goyert,, M. Hadam,, D. Hart,, V. Hořejši,, Y. Jones,, S. Meuer,, J. Morrissey,, R. Schwartz-Albiez,, S. Shaw,, D. Simmons,, L. Turni,, M. Uguccioni,, E. van der Schoot,, E. Vivier, and , H. Zola. 2001. Leucocyte Typing VIII. Oxford University Press, New York, N.Y.
44. Mavromatis, B., and , B. D. Cheson. 2003. Monoclonal antibody therapy in chronic lymphocytic leukemia. J. Clin. Oncol. 21:18741881.
45. Paietta, E. 2002. Assessing minimal residual disease (MRD) in leukemia: a changing definition and concept? Bone Marrow Transplant. 29:459465.
46. Paietta, E. 2003. Expression of cell surface antigens in APL, p. 369385. In M. S. Tallman (ed.), Bailliere’s Best Practice and Research: Clinical Haematology, vol. 16, no. 3. Acute Promyelocytic Leukemia. Harcourt Publishers Ltd., London, United Kingdom.
47. Paietta, E. 2003. How to optimize multiparameter flow cytometry for leukemia/lymphoma diagnosis, p. 671683. In E. Paietta (ed.), Bailliere’s Best Practice and Research: Clinical Haematology, vol. 16, no. 4. Immunophenotyping in Leukemia and Lymphoma. Harcourt Publishers Ltd., London, United Kingdom.
48. Paietta, E. 2003. Immunobiology of acute leukemia, p. 194231. In P. Wiernik,, J. Dutcher,, J. Goldman, and , R. Kyle (ed.), Neoplastic Diseases of the Blood, 4th ed. Cambridge University Press, Cambridge, United Kingdom.
49. Paietta, E.,, P. Bettelheim,, J. D. Schwarzmeier,, D. Lutz,, O. Majdic, and , W. Knapp. 1983. Distinct lymphoblastic and myeloblastic populations in TdT positive acute myeloblastic leukemia: evidence by double-fluorescence staining. Leukemia Res. 7:301307.
50. Paietta, E.,, J. Racevskis,, J. M. Bennett, and , P. H. Wiernik. 1993. Differential expression of terminal trans-ferase (TdT) in acute lymphocytic leukemia expressing myeloid antigens and TdT positive acute myeloid leukemia as compared to myeloid antigen negative acute lymphocytic leukemia. Br. J. Haematol. 84:416422.
51. Paietta, E.,, J. Racevskis,, D. Neuberg,, J. M. Rowe,, A. H. Goldstone, and , P. H. Wiernik. 1997. Expression of CD25 (interleukin-2 receptor α chain) in adult acute lymphoblastic leukemia predicts for the presence of BCR/ABL fusion transcripts: results of a preliminary laboratory analysis of ECOG/MRC intergroup study E2993. Leukemia 11:18871890.
52. Paietta, E., and , P. Papenhausen. 2001. Cytogenetic alterations and related molecular consequences in adult leukemia, p. 161190. In P. H. Wiernik (ed.), American Cancer Society Atlas of Clinical Oncology: Adult Leukemias. B. C. Decker Inc., Hamilton, Canada.
53. Paietta, E.,, D. Neuberg,, J. M. Bennett,, G. Dewald,, J. M. Rowe,, P. A. Cassileth,, L. Cripe,, M. S. Tallman, and , P. H. Wiernik. 2003. Low expression of the myeloid differentiation antigen CD65s, a feature of poorly differentiated AML in older adults: study of 711 patients enrolled in ECOG trials. Leukemia 17:15441550.
54. Paietta, E.,, O. Goloubeva,, D. Neuberg,, J. M. Bennett,, R. Gallagher,, J. Racevskis,, G. Dewald,, P. H. Wiernik, and , M. S. Tallman. 2004. A surrogate marker profile for PML/RARα expressing acute promyelocytic leukemia and the association of immunophenotypic markers with morphologic and molecular subtypes. Clin. Cytometry 59B:19.
55. Paietta, E.,, A. A. Ferrando,, D. Neuberg,, J. M. Bennett,, J. Racevskis,, H. Lazarus,, G. Dewald,, J. M. Rowe,, P. H. Wiernik,, M. S. Tallman, and , A. T. Look. 2004. Activating FLT3 mutations in CD117/KIT positive T-cell acute lymphoblastic leukemia. Blood 104:558560.
56. Pardanani, A., and , A. Tefferi. 2004. Imatinib targets other than bcr/abl and their clinical relevance in myeloid disorders. Blood 104:19311939.
57. Pitha-Rowe, I.,, W. J. Petty,, S. Kitareewan, and , E. Dmitrovsky. 2003. Retinoid target genes in acute promyelocytic leukemia. Leukemia 17:17231730.
58. Puig-Kröger, A.,, T. Sánchez-Eisner,, N. Ruiz,, E. J. Andreu,, F. Prosper,, U. B. Jensen,, J. Gil,, P. Erickson,, H. Drabkin,, Y. Groner, and , A. L. Corbi. 2003. RUNX/AML and C/EBP factors regulate CD11a integrin expression in myeloid cells through overlapping regulatory elements. Blood 102:32523261.
59. Ravandi, F.,, M. Talpaz, and , Z. Estrov. 2003. Modulation of cellular signaling pathways: prospects for targeted therapy in hematological malignancies. Clin. Cancer Res. 9:535550.
60. Redner, R. L. 2002. Variations on the theme: the alternate translocations in APL. Leukemia 16:19271932.
61. Redner, R. L., and , J. M. Liu. 2005. Leukemia fusion proteins and co-repressor complexes: changing paradigms. J. Cell. Biochem. 94:864869.
62. Ross, M. E.,, X. Zhou,, G. Song,, S. A. Shurtleff,, K. Girtman,, W. K. Williams,, H.-C. Liu,, R. Mahfouz,, S. C. Raimondi,, N. Lenny,, A. Patel, and , J. R. Downing. 2003. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102:29512959.
63. Sarriera, J. E.,, M. Albitar,, Z. Estrov,, C. Gidel,, R. Aboul-Nasr,, T. Manshouri,, S. Kornblau,, K.-S. Chang,, H. Kantarjian, and , E. Estey. 2001. Comparison of outcome in acute myelogenous leukemia patients with translocation (8;21) found by standard cytogenetic analysis and patients with AML1/ETO fusion transcript found only by PCR testing. Leukemia 15:5761.
64. Schoch, C.,, A. Kohlmann,, S. Schnittger,, B. Brors,, M. Dugas,, S. Mergenthaler,, W. Kern,, W. Hiddemann,, R. Eils, and , T. Haferlach. 2002. Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc. Natl. Acad. Sci. USA 99:1000810013.
65. Sternberg, D. W., and , D. G. Gilliland. 2004. The role of signal transducer and activator of transcription factors in leukemogenesis. J. Clin. Oncol. 22:361371.
66. Tallman, M. S. 2002. Monoclonal antibody therapies in leukemias. Semin. Hematol. 39:1219.
67. Tiacci, E.,, S. Pileri,, A. Orleth,, R. Pacini,, A. Tabarrini,, F. Frenguelli,, A. Liso,, D. Diverio,, F. Lo Coco, and , B. Falini. 2004. PAX5 expression in acute leukemias: higher B-lineage specificity than CD79a and selective association with t(8;21)-acute myelogenous leukemia. Cancer Res. 64:73997404.
68. Tsutsumi, S.,, T. Taketani,, K. Nishimura,, X. Ge,, T. Taki,, K. Sugita,, E. Ishii,, R. Hanada,, M. Ohki,, H. Aburatani, and , Y. Hayashi. 2003. Two distinct gene expression signatures in pediatric acute lymphoblastic leukemia with MLL rearrangements. Cancer Res. 63:48824887.
69. Tuzuner, N. N., and , J. M. Bennett. 2003. Classification of the acute leukemias: cytochemical and morphological considerations, p. 176193. In P. Wiernik,, J. Dutcher,, J. Goldman, and , R. Kyle (ed.), Neoplastic Diseases of the Blood, 4th ed. Cambridge University Press, Cambridge, United Kingdom.
70. Valk, P. J. M.,, R. G. W. Verhaak,, M. A. Beijen,, C. A. J. Erpelinck,, S. Barjesteh van Waalwijk van Doorn-Khosrovani,, J. M. Boer,, H. B. Beverloo,, M. M. Moorhouse,, P. J. van der Spek,, B. Löwenberg, and , R. Delwel. 2004. Prognostically useful gene-expression profiles in acute myeloid leukemia. N. Engl. J. Med. 350:16171628.
71. van der Velden, V. H. J.,, A. Hochhaus,, G. Cazzaniga,, T. Szczepanski,, J. Gabert, and , J. J. M. van Dongen. 2003. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 17:10131034.
72. Wilson, G. A.,, E. A. Vandenberghe,, R. C. Pollitt,, D. C. Rees,, A. C. Goodeve,, I. R. Peake, and , J. T. Reilly. 2000. Are aberrant BCR-ABL transcripts more common than previously thought? Br. J. Haematol. 111:11091111.


Generic image for table

Established surrogate marker profiles for genetic lesions in acute leukemia

Citation: Paietta E. 2006. Phenotypic Correlates of Genetic Abnormalities in Acute and Chronic Leukemias, p 201-214. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch22

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error