1887

Chapter 81 : Rubella Virus

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Rubella Virus, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap81-1.gif /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap81-2.gif

Abstract:

Rubella virus is antigenically stable, and antigenic variation has so far not been an issue for vaccination or serological diagnosis; the significance of the possible emergence of new international subgenotypes of rubella virus is unknown. Reinfection with the virus can occur, but it is almost always asymptomatic and can be detected by a rise in immunoglobulin g (IgG) antibodies. One approach is to demonstrate rubella virus-specific IgM antibody in the infant's serum, which would be diagnostic of congenital rubella. Since the original description of the hemagglutination inhibition (HI) test for rubella, several modifications have been introduced. Commercial enzyme immunoassay (EIAs) are available for testing whole sera for rubella virus-specific IgM. Few laboratories have the techniques or expertise to culture rubella virus, and when virus detection is clinically important, laboratories may want to consider detection of rubella virus RNA by PCR. The challenge viruses most commonly used for rubella virus isolation in AGMK cells are echovirus 11 and coxsackievirus A9. The presence of rubella virus is indicated by little or no cytopathic effects (CPE) in the inoculated tubes and complete destruction of the control cells infected with challenge virus in the absence of rubella virus. An indirect immunofluorescence staining method has also been shown to be specific and sensitive for identifying rubella virus isolates in these cells. The lack of serological responses to rubella virus vaccine in women who do not have detectable antibodies is often due to low levels of neutralizing antibodies.

Citation: Mahony J. 2006. Rubella Virus, p 712-718. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch81

Key Concept Ranking

Rubella virus
0.588977
Single-Stranded RNA Viruses
0.49990475
Echovirus 11
0.4898025
0.588977
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Antibody response after rubella virus infection. FIA, fluorescence immunoassay (FIAX); N, neutralization; NSP, nonstructural protein.

Citation: Mahony J. 2006. Rubella Virus, p 712-718. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch81
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Antibody responses in an infant congenitally infected with rubella virus.

Citation: Mahony J. 2006. Rubella Virus, p 712-718. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch81
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815905.ch81
1. Abbott, G. G.,, J. W. Safford,, R. G. MacDonald,, M. C. Craine, and , R. R. Applegren. 1990. Development of automated immunoassays for immune status screening and serodi-agnosis of rubella virus infection. J. Virol. Methods 27:227240.
2. Banatvala, J. E., and , D. W. G. Brown. 2004. Rubella. Lancet 363:11271137.
3. Best, J.,, S. Palmer,, P. Morgan-Capner, and , J. Hodgson. 1984. A comparison of Rubazyme-M and MACRIA for the detection of rubella-specific IgM. J. Virol. Methods 8:99109.
4. Chernesky, M. A.,, L. Wyman,, J. B. Mahony,, S. Castriciano,, J. T. Unger,, J. W. Safford, and , P. S. Metzel. 1984. Clinical evaluation of the sensitivity and specificity of a commercially available enzyme immunoassay for detection of rubella virus-specific immunoglobulin M. J. Clin. Microbiol. 20:400404.
5. Gupta, J. D., and , J. D. Harley. 1970. Use of formalinized sheep erythrocytes in the rubella hemagglutination-inhibition test. Appl. Microbiol. 20:843844.
6. Gupta, J. D., and , V. J. Peterson. 1971. Use of a new buffer system with formalinized sheep erythrocytes in the rubella hemagglutination-inhibition test. Appl. Microbiol. 21:749750.
7. Jin, L.,, A. Vyse, and , D. W. Brown. 2002. The role of RT-PCR assay or oral fluid for diagnosis and surveillance of measles, mumps, and rubella. Bull. W. H. O. 80:7677.
8. Liebhaber, H. 1970. Measurement of rubella antibody by hemagglutination inhibition. II. Characteristics of an improved HAI test employing a new method for removal of non-immunoglobulin HA inhibitors from serum. J. Immunol. 104:826834.
9. Mace, M.,, D. Cointe,, C. Six,, D. Levy-Bruhl,, I. Parent du Chatelet,, D. Ingrand, and , L. Grangeot-Keros. 2004. Diagnostic value of reverse transcriptase PCR of amniotic fluid for prenatal diagnosis of congenital rubella infection in pregnant women with confirmed primary rubella infection. J. Clin. Microbiol. 42:48184820.
10. Meitsch, K.,, G. Enders,, J. S. Wolinsky,, R. F. Faber, and , B. Pustowoit. 1997. The role of rubella-immunoblot and rubella-peptide-EIA for the diagnosis of the congenital rubella syndrome during the prenatal and newborn periods. J. Med. Virol. 51:280283.
11. Miller, J. M., and , H. T. Holmes. 1999. Specimen collection, transport and storage, p. 3363. In P. R. Murray,, E. J. Baron,, M. A. Pfaller,, F. C. Tenover, and , R. H. Yolken (ed.), Manual of Clinical Microbiology, 7th ed. ASM Press, Washington, D.C.
12. O’Shea, S.,, J. Best, and , J. F. Banatvala. 1992. A lymphocyte transformation assay for the diagnosis of congenital rubella. J. Virol. Methods 37:139148.
13. Pattison, J. R.,, D. S. Dane, and , J. F. Mace. 1975. Persistence of specific IgM after natural infection with rubella virus. Lancet i:185187.
14. Perez, E. E.,, A. Bokszczanin,, D. McDonald-McGinn,, E. H. Zackai, and , K. F. Sullivan. 2003. Safety of live viral vaccines in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Pediatrics 112:e325.
15. Purssell, E. 2004. Exploring the evidence surrounding the debate on MMR and autism. Br. J. Nurs. 13:834838.
16. Revello, M. G.,, F. Baldanti,, A. Sarasini,, M. Zavattoni,, M. Torsellini, and , G. Gerna. 1997. Prenatal diagnosis of rubella virus infection by direct detection and semiquanti-tation of viral RNA in clinical samples by reverse transcrip-tion-PCR. J. Clin. Microbiol. 35:708713.
17. Robertson, S. E.,, D. A. Featherstone,, M. Gacic-Dodo, and , B. S. Hersh. 2003. Rubella and congenital rubella syndrome: global update. Rev. Panam. Salud. Fublica 14:306315.
18. Russell, S. M.,, S. R. Benjamin,, M. Briggs,, M. Jenkins,, P. P. Mortimer, and , S. B. Payne. 1978. Evaluation of the single radial hemolysis (SRH) technique for rubella antibody measurement. J. Clin. Pathol. 31:521526.
19. Schmidt, N. J., and , E. H. Lennette. 1966. Rubella complement fixing antigens derived from the fluid and cellular phases of infected BHK-21 cells: extraction of cell-associated antigen with alkaline buffers. J. Immunol. 97:815821.
20. Sheridan, E.,, C. Aitken,, D. Jeffries,, M. Hird, and , P. Thayalasekaran. 2002. Congenital rubella syndrome: a risk in immigrant populations. Lancet 359:674675.
21. Stewart, G. L.,, P. D. Parkman,, H. F. Hopps,, R. D. Douglas,, J. P. Hamilton, and , H. M. Meyer, Jr. 1967. Rubellavirus hemagglutination-inhibition test. N. Engl. J. Med. 276:554557.
22. Uchida, M.,, S. Katow, and , S. Furukawa. 2003. Congenital rubella syndrome due to infection after maternal antibody conversion with vaccine. Jpn. J. Infect. Dis. 56:6869.
23. U.S. Public Health Service. 1965. Standardized diagnostic complement fixation method and adaptation to Micro Test. U.S. Public Health monograph 74. U.S. Public Health Service, Washington, D.C.
24. Zheng, D. P.,, T. K. Frey,, J. Icenogle,, S. Katow,, E. S. Abernathy,, K.-J. Song,, W.-B. Xu,, V. Yarulin,, R. G. Desjatskova,, Y. Aboudy,, G. Enders, and , M. Croxson. 2003. Global distribution of rubella virus genotypes. Emerg. Infect. Dis. 9:15231530.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error