1887

Chapter 85 : Arboviruses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Arboviruses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap85-1.gif /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap85-2.gif

Abstract:

Although the laboratory diagnosis of arboviral infections still relies chiefly on serology, other approaches that directly detect viral antigen or genomic material and not antibodies are now routine. Assays that detect virus-elicited immunoglobulin M (IgM) are useful because they detect antibodies produced within days of a primary viral infection. IgG enzyme-linked immunosorbent assay (ELISA) has replaced the hemagglutination inhibition (HI) test for the diagnosis of some infections because the procedure is less cumbersome and titration curves for the two procedures are similar. The indirect immunofluorescence (IF) test for antibodies to most arboviruses is as specific as or less specific than the HI test. The major advantage of both the HI and the complement fixation (CF) test is that species-specific positive-control reagents are not necessary. The serum neutralization test is the most virus-specific test for serologic diagnosis and is used to confirm other serologic testing results. A variety of nucleic acid amplification platforms have been successfully utilized for the detection of arboviruses, including standard reverse transcriptase PCR (RT-PCR), real-time RT-PCR using fluorescent probes, and nucleic acid sequence-based amplification (NASBA). Each of these technologies is described; however, several important issues common to each approach are presented first. The isolation and identification of an arbovirus or its antigen or viral genomic sequences in a clinical sample generally are specific evidence of a recent infection. Three of these arboviruses (VEE, EEE, and WEE viruses) have been classified as possible biological threats. This designation has renewed interest in rapid and sensitive diagnosis of alphaviruses.

Citation: Lanciotti R, Roehrig J. 2006. Arboviruses, p 757-765. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch85

Key Concept Ranking

Eastern Equine Encephalitis
0.46221018
Venezuelan Equine Encephalitis
0.46221018
Eastern Equine Encephalitis
0.46221018
Venezuelan Equine Encephalitis
0.46221018
Eastern Equine Encephalitis
0.46221018
Venezuelan Equine Encephalitis
0.46221018
Eastern Equine Encephalitis
0.46221018
Venezuelan Equine Encephalitis
0.46221018
0.46221018
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815905.ch85
1. Beaty, B. J.,, C. H. Calisher, and , R. W. Shope. 1989. Arboviruses, p. 797856. In N. J. Schmidt and , R. W. Emmons (ed.), Diagnostic Procedures for Viral, Rickettsial and Chlamydial Infections, 6th ed. American Public Health Association, Washington, D.C.
2. Burke, D. S.,, A. Nisalak,, M. A. Ussery,, T. Laorakpongse, and , S. Chantavibul. 1985. Kinetics of IgM and IgG responses to Japanese encephalitis virus in human serum and cerebrospinal fluid. J. Infect. Dis. 151:10931099.
3. De Brito, T.,, S. A. Siqueira,, R. T. Santos,, E. S. Nassar,, T. L. Coimbra, and , V. A. Alves. 1992. Human fatal yellow fever. Immunohistochemical detection of viral antigens in the liver, kidney and heart. Pathol. Res. Pract. 188:177181.
4. Hunt, A. R., and , J. T. Roehrig. 1985. Biochemical and biological characteristics of epitopes on the E1 glycoprotein of western equine encephalitis virus. Virology 142:334346.
5. Innis, B. L.,, A. Nisalak,, S. Nimmannitya,, S. Kusalerdchariya,, V. Chongswasdi,, S. Suntayakorn,, P. Puttisri, and , C. H. Hoke. 1989. An enzyme-linked immunosorbent assay to characterize dengue infections where dengue and Japanese encephalitis co-circulate. Am. J. Trop. Med. Hyg. 40:418427.
6. Johnson, A. J.,, D. M. Martin,, N. Karabatsos, and , J. T. Roehrig. 2000. Detection of anti-arboviral IgG by using a monoclonal antibody-based capture ELISA. J. Clin. Microbiol. 38:18271831.
7. Johnson, A. J.,, D. A. Martin,, N. Karabatsos, and , J. T. Roehrig. 2000. Detection of anti-arboviral immunoglo-bulin G by using a monoclonal antibody-based capture enzyme-linked immunosorbent assay. J. Clin. Microbiol. 38:18271831.
8. Karabatsos, N. 1985. International Catalogue of Arboviruses. American Society for Tropical Medicine and Hygiene, San Antonio, Tex.
9. Kuno, G. 1998. Universal diagnostic RT-PCR protocol for arboviruses. J. Virol. Methods 72:2741.
10. Kuno, G.,, C. J. Mitchell,, G. J. Chang, and , G. C. Smith. 1996. Detecting bunyaviruses of the Bunyamwera and California serogroups by a PCR technique. J. Clin. Microbiol. 34:11841188.
11. Lambert, A. J.,, D. A. Martin, and , R. S. Lanciotti. 2003. Detection of North American eastern and western equine encephalitis viruses by nucleic acid amplification assays. J. Clin. Microbiol. 41:379385.
12. Lanciotti, R. S.,, J. T. Roehrig,, V. Deubel,, J. Smith,, M. Parker,, K. Steele,, B. Crise,, K. F. Volpe,, M. B. Crabtree,, J. Scherret,, R. Hall,, J. MacKenzie,, C. B. Cropp,, B. Panigrahy,, F. Ostlund,, B. Schmitt,, M. Malkinson,, C. Banet,, J. Weissman,, N. Komar, and , H. Savage. 1999. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern U.S. Science 286:23332337.
13. Lanciotti, R. S.,, C. H. Calisher,, D. J. Gubler,, G. J. Chang, and , A. V. Vorndam. 1992. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase polymerase chain reaction. J. Clin. Microbiol. 30:545551.
14. Lanciotti, R. S.,, A. J. Kerst,, R. S. Nasci,, M. S. Godsey,, C. J. Mitchell,, H. M. Savage,, N. Komar,, N. A. Panella,, B. C. Allen,, K. F. Volpe,, B. S. Davis, and , J. T. Roehrig. 2000. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J. Clin. Microbiol. 38:40664071.
15. Lanciotti, R. S., and , A. J. Kerst. 2001. Nucleic acid sequence-based amplification assays for rapid detection of West Nile and St. Louis encephalitis viruses. J. Clin. Microbiol. 39:45064513.
16. Laue, T.,, P. Emmerich, and , H. Schmitz. 1999. Detection of dengue virus RNA in patients after primary or secondary dengue infection by using the TaqMan automated amplification system. J. Clin. Microbiol. 37:25432547.
17. Monath, T. P. 1988. Arboviruses: Epidemiology and Ecology, vol. 1. CRC Press, Boca Raton, Fla.
18. Monath, T. P.,, M. F. Ballinger,, B. R. Miller, and , J. J. Salaun. 1989. Detection of yellow fever viral RNA by nucleic acid hybridization and viral antigen by immunocy-tochemistry in fixed human liver. Am. J. Trop. Med. Hyg. 40:663668.
19. Pfeffer, M.,, B. Proebster,, R. M. Kinney, and , O. R. Kaaden. 1997. Genus-specific detection of alphaviruses by a seminested reverse transcription-polymerase chain reaction. Am. J. Trop. Med. Hyg. 57:709718.
20. Roehrig, J. T. 1986. The use of monoclonal antibodies in studies of the structural proteins of alphaviruses and flaviviruses, p. 251278. In S. Schlesinger and , M. J. Schlesinger (ed.), The Viruses: The Togaviridae and Flaviviridae. Plenum Press, New York, N.Y.
21. Roehrig, J. T., and , R. A. Bolin. 1997. Monoclonal antibodies capable of distinguishing epizootic from enzootic varieties of subtype 1 Venezuelan equine encephalitis viruses in a rapid indirect immunofluorescence assay. J. Clin. Microbiol. 35:18871890.
22. Roehrig, J. T.,, T. M. Brown,, A. J. Johnson,, N. Karabatsos,, D. M. Martin,, C. J. Mitchell, and , R. Nasci. 1998. Alphaviruses, p. 718. In J. R. Stephenson and , A. Warnes (ed.), Methods in Molecular Biology: Diagnostic Virology Protocols. Humana Press, Totowa, N.J.
23. Roehrig, J. T.,, A. R. Hunt,, G. J. Chang,, B. Sheik,, R. A. Bolin,, T. F. Tsai, and , D. W. Trent. 1990. Identification of monoclonal antibodies capable of differentiating anti-genic varieties of eastern equine encephalitis viruses. Am. J. Trop. Med. Hyg. 42:394398.
24. Roehrig, J. T.,, J. H. Mathews, and , D. W. Trent. 1983. Identification of epitopes on the E glycoprotein of Saint Louis encephalitis virus using monoclonal antibodies. Virology 128:118126.
25. Scaramozzino, N.,, J.-M. Crance,, A. Jouan,, D. A. DeBriel,, F. Stoll, and , D. Garin. 2001. Comparison of Flavivirus universal primer pairs and development of a rapid, highly sensitive heminested reverse transcription-PCR assay for detection of flaviviruses targeted to a conserved region of the NS5 gene sequences. J. Clin. Microbiol. 39:19221927.
26. Shi, P. Y.,, E. B. Kauffman,, P. Ren,, A. Felton,, J. H. Tai,, A. P. Dupuis II,, S. A. Jones,, A. Ngo,, D. C. Nicholas,, J. Maffei,, G. D. Ebel,, K. A. Bernard, and , L. D. Kramer. 2001. High-throughput detection of West Nile virus RNA. J. Clin. Microbiol. 39:12641271.
27. Tsai, T. E. 1995. Arboviruses, p. 980996. In P. R. Murray,, E. J. Baron,, M. A. Pfaller,, F. C. Tenover, and , R. H. Yolken (ed.), Manual of Clinical Microbiology, 6th ed. American Society for Microbiology, Washington, D.C.
28. Tsai, T. F.,, R. A. Bolin,, M. Montoya,, R. F. Bailey,, D. B. Francy,, M. Jozan, and , J. T. Roehrig. 1987. Detection of St. Louis encephalitis virus antigen in mosquitoes by capture enzyme immunoassay. J. Clin. Microbiol. 25:370376.
29. Wicki, R.,, P. Sauter,, C. Mettler,, A. Natsch,, T. Enzler,, N. Pusterla,, P. Kuhnert,, G. Egli,, M. Bernasconi,, R. Lienhard,, H. Lutz, and , C. M. Leutenegger. 2000. Swiss Army Survey in Switzerland to determine the prevalence of Francisella tularensis, members of the Ehrlichia phagocy-tophila genogroup, Borrelia burgdorferi sensu lato, and tick-borne encephalitis virus in ticks. Eur. J. Clin. Microbiol. Infect. Dis. 19:427432.
30. Wong, S. J.,, R. H. Boyle,, V. L. Demarest,, A. N. Woodmansee,, L. D. Kramer,, H. Li,, M. Drebot,, R. A. Koski,, F. Fikrig,, D. A. Martin, and , P. Y. Shi. 2003. Immunoassay targeting nonstructural protein 5 to differentiate West Nile virus infection from dengue and St. Louis encephalitis virus infection and from flavivirus vaccination. J. Clin. Microbiol. 41:42174223.
31. Wong, S. A.,, V. L. Demarest,, R. H. Boyle,, T. Wang,, M. Ledizet,, K. Kar,, L. D. Kramer,, F. Fikrig, and , R. A. Koski. 2004. Detection of human anti-flavivirus antibodies with a West Nile virus recombinant antigen microsphere immunoassay. J. Clin. Microbiol. 42:6572.
32. Wu, S. J.,, E. M. Lee,, R. Putvatana,, R. N. Shurtliff,, K. R. Porter,, W. Suharyono,, D. M. Watts,, C. C. King,, G. S. Murphy,, C. G. Hayes, and , J. R. Romano. 2001. Detection of dengue viral RNA using a nucleic acid sequence-based amplification assay. J. Clin. Microbiol. 39:27942798.

Tables

Generic image for table
TABLE 1

Characteristics of selected medically important arbovirus disease

Citation: Lanciotti R, Roehrig J. 2006. Arboviruses, p 757-765. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch85
Generic image for table
TABLE 2

Selected arbovirus monoclonal antibodies for serologic and antigen detection assays

Citation: Lanciotti R, Roehrig J. 2006. Arboviruses, p 757-765. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch85

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error