1887

Chapter 99 : Approach to the Diagnosis of Severe Combined Immunodeficiency

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Approach to the Diagnosis of Severe Combined Immunodeficiency, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap99-1.gif /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap99-2.gif

Abstract:

Central to the adaptive immune system, T cells protect the host from intracellular pathogens by mediating cytolytic activity and releasing Th1 cytokines. In addition, through release of soluble mediations such as interleukin 4 (IL-4) and IL-10 and interactions with antigen-presenting cells and B cells, T cells regulate the production of antibody against protein antigens. Nevertheless, a profound selective deficiency in the T-cell lineage such as in CD3δ deficiency is sufficient to produce a full phenotype of severe combined immunodeficiency (SCID) with extreme susceptibility to microbes of even low pathogenicity. Genetic and immunological features of SCID have been discussed in this chapter. However, a significant proportion of SCID patients has normal or near normal number of circulating lymphocytes (Omenn’s syndrome, major histocompatibility complex class II deficiency, and ZAP-70 deficiency). Flow cytometry analysis will help decipher these cases and will aid in pinpointing the molecular defect by providing insight into the number of B cells and NK cells. It is therefore recommended that all infants with a putative diagnosis of SCID have their lymphocyte subsets analyzed. Finally, since the genes responsible for many forms of SCID have already been identified, it is important to perform mutation analysis.

Citation: Roifman C. 2006. Approach to the Diagnosis of Severe Combined Immunodeficiency, p 895-900. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch99

Key Concept Ranking

Adaptive Immune System
0.5243887
Major Histocompatibility Complex Class II
0.46326545
0.5243887
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Simplified scheme of the block in T-cell, NK-cell, and B-cell development caused by aberrations in genes which cause SCID. The symbol “⊥” represents complete block, while the symbol “⊥” represents partial block. Stem cells which originate in the bone marrow mature into putative lymphoid progenitor cells which either populate the thymus gland and become T-lineage precursors or develop into NK or B cells. The TCR complex consists of the α and β or γ and δ variant chains, paired as mutually exclusive heterodimers in association with the invariant chains CD3 γ, δ, ɛ, and ζ. After rearrangements of the δ and then γ genes, some thymocytes develop into a distinct population of γδ TCR+ T cells. Precursors of the αβ T-cell lineage undergo three major stages of maturation, defined by the expression of CD4 and CD8. The earliest precursors are designated double negative, expressing neither CD4 nor CD8. They progress to a stage of dual expression of CD4 and CD8 (double positive) before committing to the expression of either CD4 or CD8 alone (single positive) and leaving the thymus. A rearrangement of TCR(3 occurs at the double-negative stage and precedes the rearrangement of TCRα. Transition from the double-negative stage to CD4 CD8 double positivity requires the surface expression of TCRβ and precursor TCRα (pTα) forming the pre-TCR, whereas the maturation from double-positive to single-positive CD4 or CD8 cells is dependent on the surface expression of the αβ TCR complex.

Citation: Roifman C. 2006. Approach to the Diagnosis of Severe Combined Immunodeficiency, p 895-900. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch99
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Step-by-step laboratory evaluation of patients who present within the first year of life with typical manifestations of SCID (see Table 2 ) and after secondary causes, such as human immunodeficiency virus infection and medications, have been excluded.

Citation: Roifman C. 2006. Approach to the Diagnosis of Severe Combined Immunodeficiency, p 895-900. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch99
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815905.ch99
1. Alarcon, B.,, J. R. Regueiro,, A. Arnaiz-Villena, and , C. Terhorst. 1988. Familial defect in the surface expression of the T-cell receptor-CD3 complex. N. Engl. J. Med. 319:12031208.
2. Arpaia, E.,, M. Shahar,, H. Dadi,, A. Cohen, and , C. M. Roifman. 1994. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking Zap-70 kinase. Cell 76:947958.
3. Benoist, C., and , D. Mathis. 1999. T-lymphocyte differentiation and biology, p. 367409. In W. E. Paul (ed.), Fundamental Immunology, 4th ed. Lippincott-Raven Publishers, Philadelphia, Pa.
4. Castigli, E.,, R. Pahwa,, R. A. Good,, R. S. Geha, and , T. A. Chatila. 1993. Molecular basis of a multiple lympho-kine deficiency in a patient with severe combined immunodeficiency. Proc. Natl. Acad. Sci. USA 90:47284731.
5. Chatila, T.,, E. Castigli,, R. Pahwa,, S. Pahwa,, N. Chirmule,, N. Oyaizu,, R. A. Good, and , R. S. Geha. 1990. Primary combined immunodeficiency resulting from defective transcription of multiple T-cell lymphokine genes. Proc. Natl. Acad. Sci. USA 87:1003310037.
6. Cohen, A.,, D. Doyle,, D. W. Martin, Jr., and , A. J. Ammann. 1976. Abnormal purine metabolism and purine overproduction in a patient deficient in purine nucleoside phosphorylase. N. Engl. J. Med. 295:14491454.
7. Dadi, H. K.,, A. J. Simon, and , C. M. Roifman. 2003. Effect of CD38δ deficiency on maturation of α/β and γ/δ T-cell lineages in severe combined immunodeficiency. N. Engl. J. Med. 349:18211828.
8. de Saint Basile, G.,, F. Geissmann,, E. Flori,, B. Uring-Lambert,, C. Soudais,, M. Cavazzana-Calvo,, A. Durandy,, N. Jabado,, A. Fischer, and , E. Le Deist. 2004. Severe combined immunodeficiency caused by deficiency in either the δ or the ε subunit of CD3. J. Clin. Investig. 114:15121517.
9. de Saint Basile, G.,, E. Le Deist,, J. P. de Villartay,, N. Cerf-Bensussan,, O. Journet,, N. Brousse,, C. Griscelli, and , A. Fischer. 1991. Restricted heterogeneity of T lymphocytes in combined immunodeficiency with hypereosinophilia (Omenn’s syndrome). J. Clin. Investig. 87:13521359.
10. de Vaal, O. M., and , V. Seynhaeve. 1959. Reticular dysge-nesis. Lancet ii:11231124.
11. Ege, M.,, Y. Ma,, B. Manfras,, K. Kalwak,, H. Lu,, M. R. Lieber,, K. Schwarz, and , U. Pannicke. 2005. Omenn syndrome due to ARTEMIS mutations. Blood 105:41794186.
12. Elder, M. E.,, D. Lin,, J. Clever,, A. C. Chan,, T. J. Hope,, A. Weiss, and , T. G. Parslow. 1994. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science 264:15961599.
13. Grunebaum, E.,, J. Zhang, and , C. M. Roifman. 2004. Novel mutations and hot spots in patients with purine nucleoside phosphorylase deficiency. Nucleosides Nucleotides Nucleic Acids 23:14111415.
14. Hershfield, M. S. 2000. Immunodeficiency caused by adenosine deaminase deficiency. Immunol. Allergy Clin. N. Am., T Cell Immunodeficiencies 20:161175.
15. Kung, C.,, J. T. Pingel,, M. Heikinheimo,, T. Klemola,, K. Varkila,, L. I. Yoo,, K. Vuopala,, M. Poyhonen,, M. Uhari,, M. Rogers,, S. H. Speck,, T. Chatila, and , M. L. Thomas. 2000. Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nat. Med. 6:343345.
16. Macchi, P.,, A. Villa,, S. Giliani,, M. G. Sacco,, A. Frattini,, F. Porta,, A. G. Ugazio,, J. A. Johnston,, F. Candotti,, J. J. O’Shea, et al. 1995. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377:6568.
17. Mach, B.,, V. Steimle, and , W. Reith. 1994. MHC class II-deficient combined immunodeficiency: a disease of gene regulation. Immunol. Rev. 138:207221.
18. Masternak, K.,, E. Barras,, M. Zufferey,, B. Conrad,, G. Corthals,, R. Aebersold,, J. C. Sanchez,, D. F. Hochstrasser,, B. Mach, and , W. Reith. 1998. A gene encoding a novel RFX-associated transactivator is mutated in the majority of MHC class II deficiency patients. Nat. Genet. 20:273277.
19. Moshous, D.,, I. Callebaut,, R. de Chasseval,, B. Corneo,, M. Cavazzana-Calvo,, F. Le Deist,, I. Tezcan,, O. Sanal,, Y. Bertrand,, N. Philippe,, A. Fischer, and , J. P. de Villartay. 2001. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105:177186.
20. Noguchi, M.,, H. Yi,, H. M. Rosenblatt,, A. H. Filipovich,, S. Adelstein,, W. S. Modi,, O. W. McBride, and , W. J. Leonard. 1993. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73:147157.
21. Notarangelo, L. D. 2003. T cell immunodeficiencies, p. 99107. In D. Y. M. Leung,, H. A. Sampson,, R. S. Geha, and , S. J. Szefler (ed.), Pediatric Allergy Principles and Practice. Mosby Inc., St. Louis, Mo.
22. Omenn, G. S. 1965. Familial reticuloendotheliosis with eosinophilia. N Engl. J. Med. 27’3:427’-432.
23. O’Shea, J. J.,, L. D. Notarangelo,, J. A. Johnston, and , F. Candotti. 1997. Advances in the understanding of cytokine signal transduction: the role of Jaks and STATs in immunoregulation and the pathogenesis of immunodeficiency. J. Clin. Immunol. 17:431447.
24. Ozsahin, H.,, F. X. Arredondo-Vega,, I. Santisteban,, H. Fuhrer,, P. Tuchschmid,, W. Jochum,, A. Aguzzi,, H. M. Lederman,, A. Fleischman,, J. A. Winkelstein,, R. A. Seger, and , M. S. Hershfield. 1997. Adenosine deaminase deficiency in adults. Blood 89:28492855.
25. Peschon, J. J.,, P. J. Morissey,, K. H. Grabstein,, F. J. Ramsdell,, E. Maraskovsky,, B. C. Gliniak,, L. S. Park,, S. F. Ziegler,, D. E. Williams,, C. B. Ware,, J. D. Meyer, and , B. L. Davison. 1994. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180:19551960.
26. Puck, J. M. 1996. IL2RGbase: a database of 7c-chain defects causing human X-SCID. Immunol. Today 17:507511.
27. Puel, A.,, S. Ziegler,, R. H. Buckley, and , W J. Leonard. 1998. Defective IL7R expression in T — B+NK+severe combined immunodeficiency. Nat. Genet. 20:394397.
28. Ridanpaa, M.,, H. van Eenennaam,, K. Pelin,, R. Chadwick,, C. Johnson,, B. Yuan,, W. vanVenrooij,, G. Pruijn,, R. Salmela,, S. Rockas,, O. Makitie,, I. Kaitila, and , A. de la Chapelle. 2001. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 104:195203.
29. Roifman, C. M. 2000. Human IL-2 receptor alpha chain deficiency. Pediatr. Res. 48:611.
30. Roifman, C. M. 2005. Studies of patients’ thymi aid in the discovery and characterization of immunodeficiency in humans. Immunol. Rev. 203:143155.
31. Roifman, C. M.,, D. Hummel,, H. Martinez-Valdez,, P. Thorner,, P. J. Doherty,, S. Pan,, F. Cohen, and , A. Cohen. 1989. Depletion of CD8+ cells in human thymic medulla results in selective immune deficiency. J. Exp. Med. 170:21772182.
32. Roifman, C. M.,, J. Zhang,, D. Chitayat, and , N. Sharfe. 2000. A partial deficiency of interleukin-7Rα is sufficient to abrogate T-cell development and cause severe combined immunodeficiency. Blood 96:28032807.
33. Russell, S. M.,, J. A. Johnston,, M. Noguchi,, M. Kawamura,, C. M. Bacon,, M. Friedmann,, M. Berg,, D. W McVicar,, B. A. Witthuhn,, O. Silvennoinen, et al. 1994. Interaction of IL-2Rβ and γc chains with Jak1 and Jak3: implications for XSCID and XCID Science 266:10421045.
34. Russell, S. M.,, N. Tayebi,, H. Nakajima,, M. C. Riedy,, J. L. Roberts,, M. J. Aman,, T. S. Migone,, M. Noguchi,, M. L. Markert,, R. H. Buckley,, J. J. O’Shea, and , W. J. Leonard. 1995. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270:797800.
35. Schwarz, K.,, G. H. Gauss,, L. Ludwig,, U. Pannicke,, Z. Li,, D. Lindner,, W. Friedrich,, R. A. Seger,, T. E. Hansen-Hagge,, S. Desiderio,, M. R. Lieber, and , C. R. Bartram. 1996. RAG mutations in human B cell-negative SCID. Science 274:9799.
36. Sharfe, N.,, H. K. Dadi,, M. Shahar, and , C. M. Roifman. 1997. Human immune disorder arising from mutation of the chain of the interleukin-2 receptor. Proc. Natl. Acad. Sci. USA 94:31683171.
37. Somech, R., and , C. M. Roifman. 2005. Mutation analysis should be performed to rule out γc deficiency in children with functional SCID despite apparently normal immunity. J. Pediatr. 147:555557.
38. Steimle, V.,, L. A. Otten,, M. Zufferey, and , B. Mach. 1993. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 75:135146.
39. Tchilian, E. Z.,, D. L. Wallace,, R. S. Wells,, D. R. Flower,, G. Morgan, and , P. C. Beverley. 2001. A deletion in the gene encoding the CD45 antigen in a patient with SCID. J. Immunol. 166:13081313.
40. Villa, A.,, S. Santagata,, F. Bozzi,, S. Giliani,, A. Frattini,, L. Imberti,, L. B. Gatta,, H. D. Ochs,, K. Schwarz,, L. D. Notarangelo,, P. Vezzoni, and , E. Spanopoulou. 1998. Partial V (D)J recombination activity leads to Omenn syndrome. Cell 93:885896.
41. Villa, A.,, C. Sobacchi,, L. D. Notarangelo,, F. Bozzi,, M. Abinun,, T. G. Abrahamsen,, P. D. Arkwright,, M. Baniyash,, E. G. Brooks,, M. E. Conley,, P. Cortes,, M. Duse,, A. Fasth,, A. M. Filipovich,, A. J. Infante,, A. Jones,, E. Mazzolari,, S. M. Muller,, S. Pasic,, G. Rechavi,, M. G. Sacco,, S. Santagata,, M. L. Schroeder,, R. Seger,, D. Strina,, A. Ugazio,, J. Valiaho,, M. Vihinen,, L. B. Vogler,, H. Ochs,, P. Vezzoni,, W. Friedrich, and , K. Schwarz. 2001. V(D)J recombination defects in lymphocytes due to RAG mutations: a severe immunodeficiency with a spectrum of clinical presentations. Blood 97:8188.
42. Villard, J.,, B. Lisowska-Grospierre,, P. van den Elsen,, A. Fischer,, W. Reith, and , B. Mach. 1997. Mutation of RFXAP, a regulator of MHC class II genes, in primary MHC class II deficiency. N Engl. J. Med. 337:748753.
43. Zhang, J.,, L. Quintal,, A. Atkinson,, B. Williams,, E. Grunebaum, and , C. M. Roifman. 2005. Novel RAG1 mutation in a case of severe combined immunodeficiency. Pediatrics 116:445449.

Tables

Generic image for table
TABLE 1

Genetic and immunological features of SCID

Citation: Roifman C. 2006. Approach to the Diagnosis of Severe Combined Immunodeficiency, p 895-900. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch99
Generic image for table
TABLE 2

Clinical presentation of SCID

Citation: Roifman C. 2006. Approach to the Diagnosis of Severe Combined Immunodeficiency, p 895-900. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch99

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error