Chapter 2 : Antimicrobial Resistance

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Antimicrobial Resistance, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap02-2.gif


Antibiotics are used in food production to treat infected animals, prevent infection of potentially exposed animals, and promote growth. Many argue that the widespread use of antibiotics at subtherapeutic levels exacerbates the selective pressure that enriches microbial populations for antibiotic-resistant bacteria and suggest that growth promotion and disease prevention could be achieved through nonantibiotic alternatives and novel management practices. Many food antimicrobials, such as nisin, lysozyme, lactoferrin, essential oils, and organic acids, are derived from natural sources, but even if their source is microbial, they are not classified as antibiotics. Antimicrobial resistance is useful to distinguish among antibiotic resistance, food antimicrobial resistance, and resistance to sanitizers and disinfectants. Human fecal contamination, either on the farm or during food preparation, is the root cause of shigellosis. The infection is classified as a foodborne illness because food is often the vehicle for . An understanding of mechanisms that result in resistance and adaptation can enable food microbiologists to develop effective intervention strategies to improve the overall safety of foods. A mechanistic understanding may also identify opportunities of collateral sensitivity, where the cellular changes resulting in resistance leave the cell more vulnerable to other types of antimicrobial agents. The main preventive measure food microbiologists can take to counter antibiotic-resistant organisms is to continue to develop and implement effective interventions to improve the overall safety of foods.

Citation: McEntire J, Montville T. 2007. Antimicrobial Resistance, p 23-34. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch2

Key Concept Ranking

Antibacterial Agents
Food Microbiology
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 2.1
Figure 2.1

Flow of antibiotic-resistant and susceptible microorganisms from farm to fork.

Citation: McEntire J, Montville T. 2007. Antimicrobial Resistance, p 23-34. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aiello, A. E.,, B. Marshall,, S. B. Levy,, P. Della-Latta,, S. X. Lin, and, E. Larson. 2005. Antibacterial cleaning products and drug resistance. Emerg. Infect. Dis. 11:15651570.
2. Archer, D. L. 1996. Preservation microbiology and safety: evidence that stress enhances virulence and triggers adaptive mutations. Trends Food Sci. Technol. 7:9195.
3. Bacon, R. T.,, J. R. Ransom,, J. N. Sofos,, P. A. Kendall,, K. E. Belk, and, G. C. Smith. 2003. Thermal inactivation of susceptible and multiantimicrobial-resistant Salmonella strains grown in the absence or presence of glucose. Appl. Environ. Microbiol. 69:41234128.
4. Bartoloni, A.,, F. Bartalesi,, A. Mantella,, E. Dell’Amico,, M. Roselli,, M. Strohmeyer,, H. G. Barahona,, V. P. Barron,, F. Paradisi, and, G. M. Rossolini. 2004. High prevalence of acquired antimicrobial resistance unrelated to heavy antimicrobial consumption. J. Infect. Dis. 189:12911294.
5. Barza, M., and, K. Travers. 2002. Excess infections due to antimicrobial resistance: the “attributable fraction”. Clin. Infect. Dis. 34:S126S130.
6. Bilgin, N.,, F. Claesens,, H. Pahverk, and, M. Ehrenberg. 1992. Kinetic properties of Escherichia coli ribosomes with altered forms of S12. J. Mol. Biol. 224:10111027.
7. Bills, S.,, L. Restaino, and, L. M. Lenovich. 1982. Growth response of an osmotolerant sorbate-resistant yeast, Saccharomyces rouxii, at different sucrose and sorbate levels. J. Food Prot. 45:11201124.
8. Burns, J. L.,, P. M. Mendelman,, J. Levy,, T. L. Stull, and, A. L. Smith. 1985. A permeability barrier as a mechanism of chloramphenicol resistance in Haemophilus influenzae. Antimicrob. Agents Chemother. 27:4654.
9. Burns, J. L.,, L. A. Hedin, and, D. M. Lien. 1989. Chloramphenicol resistance in Pseudomonas cepacia because of decreased permeability. Antimicrob. Agents Chemother. 33:136141.
10. Bush, K., and, R. B. Sykes. 1984. Interaction of β-lactam antibiotics with β-lactamases as a cause for resistance, p. 131. In L. E. Bryan (ed.), Antimicrobial Drug Resistance. Academic Press, Orlando, Fla.
11. Centers for Disease Control and Prevention. 2004. National Nosocomial Infection Surveillance (NNIS) System report. Data summary from January 1992–June 2004. Issued October 2004. Am. J. Infect. Control 32:470485.
12. Centers for Disease Control and Prevention. 2005. Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food—10 sites, United States, 2004. Morb. Mortal. Wkly. Rep. 54:352356.
13. Charpentier, E.,, G. Gerbaud,, C. Jacquet,, J. Rocourt, and, P. Courvalin. 1995. Incidence of antibiotic resistance in Listeria species. J. Infect. Dis. 172:277281.
14. Cloete, T. E. 2003. Resistance mechanisms of bacteria to antimicrobial compounds. Int. Biodeterior. Biodegradation 51:277282.
15. Cody, S. H.,, S. L. Abbott,, A. A. Marfin,, B. Schulz,, P. Wagner,, K. Robbins,, J. C. Mohle-Boetani, and, D. J. Vugia. 1999. Two outbreaks of multidrug-resistant Salmonella serotype Typhimurium DT104 infections linked to raw-milk cheese in northern California. JAMA 281:18051810.
16. Cohen, S. P.,, D. C. Hooper,, J. S. Wolfson,, K. S. Souza,, L. M. McMurry, and, S. B. Levy. 1988. Endogenous active efflux of norfloxacin in susceptible Escherichia coli. Antimicrob. Agents Chemother. 32:11871191.
17. Cohen, S. P.,, L. M. McMurry,, D. C. Hooper,, J. S. Wolfson, and, S. B. Levy. 1989. Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob. Agents Chemother. 33:13181325.
18. Crandall, A. D., and, T. J. Montville. 1998. Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl. Environ. Microbiol. 64:231237.
19. Davidson, P. M., and, M. A. Harrison. 2002. Resistance and adaptation to food antimicrobials, sanitizers, and other process controls. Food Technol. 56:6978.
20. Davies, J. 1994. Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375382.
21. Davison, H. C.,, J. C. Low, and, M. E. Woolhouse. 2000. What is antibiotic resistance and how can we measure it? Trends Microbiol. 8:554559.
22. Dever, L. A., and, R. S. Dermody. 1991. Mechanisms of bacterial resistance to antibiotics. Arch. Intern. Med. 151:886895.
23. Food and Drug Administration. 2005. Animal Drugs, Feeds, and Related Products; Enrofloxacin for Poultry; Withdrawal of Approval of New Animal Drug Application, p. 4404844049. Docket no. 2000N-1571, OC 2005194. FR doc. 05-15223. 1 August 2005.
24. Gaskins, H. R.,, C. T. Collier, and, D. B. Anderson. 2002. Antibiotics as growth promotants: mode of action. Anim. Biotechnol. 13:2942.
25. Gillespie, M. T.,, B. R. Lyon, and, R. A. Skurray. 1989. Gentamicin and antiseptic resistance in epidemic methicillin-resistant Staphylococcus aureus. Lancet i:503.
26. Guffanti, A. A.,, S. Clejan,, L. H. Falk,, D. B. Hicks, and, T. A. Krulwich. 1987. Isolation and characterization of uncoupler-resistant mutants of Bacillus subtilis. J. Bacteriol. 169:44694478.
27. Heir, E.,, B. A. Lindstedt,, O. J. Rotterud,, T. Vardund,, G. Kapperud, and, T. Nesbakken. 2004. Molecular epidemiology and disinfectant susceptibility of Listeria monocytogenes from meat processing plants and human infections. Int. J. Food Microbiol. 96:8596.
28. Helms, M.,, P. Vastrup,, P. Gerner-Smidt, and, K. Molbak. 2002. Excess mortality associated with antimicrobial drug-resistant Salmonella typhimurium. Emerg. Infect. Dis. 8:490495.
29. Hooper, D. C.,, J. S. Wolfson,, K. S. Souza,, E. Y. Ng,, G. L. McHugh, and, M. N. Swartz. 1989. Mechanisms of quinolone resistance in Escherichia coli: characterization of nfxB and cfxB, two mutant re sistance loci decreasing norfloxacin accumulation. Antimicrob. Agents Chemother. 33:283290.
30. Hossack, D. J. N.,, M. C. Bird, and, A. A. Fowler. 1983. The effects of nisin on the sensitivity of microorganisms to antibiotics and other chemotherapeutic agents, p. 425433. In M. Woodbine (ed.), Antimicrobials and Agriculture. Butterworth, London, United Kingdom.
31. Institute of Food Technologists. 2001. Analysis and Evaluation of Preventive Control Measures for the Control and Reduction/Elimination of Microbial Hazards on Fresh and Fresh-Cut Produce. Institute of Food Technologists, Chicago, Ill.
32. Institute of Food Technologists. 2006. Antimicrobial resistance: implication for the food system. Comprehensive Rev. Food Sci. Food Safety S(3).
33. John, J. F., Jr., and, N. O. Fishman. 1997. Programmatic role of the infectious diseases physician in controlling antimicrobial costs in the hospital. Clin. Infect. Dis. 24:471485.
34. Lestner, L., and, G. W. Gould. 2002. Multiple Hurdle Technologies. Kluwer Academic, New York, N.Y.
35. Levin, B. R.,, V. Perrot, and, N. Walter. 2000. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 154:985997.
36. Mazzotta, A. S.,, K. Modi,, M. L. Chikindas, and, T. J. Montville. 2000. Inhibition of nisin-resistant (Nisr) Listeria monocytogenes and Nisr Clostridium botulinum by common food preservatives. J. Food Sci. 65:888890.
37. McEntire, J. C. 2003. Relationship between nisin resistance and acid sensitivity of Listeria monocytogenes. Ph.D. dissertation. Rutgers University, New Brunswick, N.J.
38. McEntire, J. C.,, G. M. Carman, and, T. J. Montville. 2004. Increased ATPase activity is responsible for acid sensitivity of nisin-resistant Listeria monocytogenes ATCC 700302. Appl. Environ. Microbiol. 70:27172721.
39. McManus, P. S.,, V. O. Stockwell,, G. W. Sundin, and, A. L. Jones. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40:443465.
40. McMurray, L.,, R. E. Petrucci, Jr., and, S. B. Levy. 1980. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc. Natl. Acad. Sci. USA 77:39743977.
41. Mead, P. S.,, L. Slutsker,, V. Dietz,, L. F. McCaig,, J. S. Bresee,, C. Shapiro,, P. M. Griffin, and, R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5:607625.
42. Ming, X., and, M. Daeschel. 1993. Nisin resistance of food-borne bacteria and the specific resistance responses of Listeria monocytogenes Scott A. J. Food Prot. 56:944948.
43. Modi, K.,, M. L. Chikindas, and, T. J. Montville. 2000. Sensitivity of nisin-resistant Listeria monocytogenes to heat and the synergistic action of heat and nisin. Lett. Appl. Bacteriol. 30:249253.
44. Nikaido, H., and, M. Vaara. 1985. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49:132.
45. Podlesek, Z.,, A. Comino,, B. Herzog-Velikonja, and, M. Grabnar. 2000. The role of the bacitracin ABC transporter in bacitracin resistance and collateral detergent sensitivity. FEMS Microbiol. Lett. 188:103106.
46. Poole, K.,, K. Krebes,, C. McNally, and, S. Neshat. 1993. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J. Bacteriol. 175:73637372.
47. Prazak, M. A.,, E. A. Murano,, I. Mercado, and, G. R. Acuff. 2002. Antimicrobial resistance of Listeria monocytogenes isolated from various cabbage farms and packing sheds in Texas. J. Food Prot. 65:17961799.
48. Rosen, G. D. 2003. Pronutrient antibiotic replacement standard discussed. Feedstuffs 75:1113, 16.
49. Samelis, J., and, J. N. Sofos. 2003. Strategies to control stress-adapted pathogens and provide safe foods, p. 303351. In A. E. Yousef and, V. K. Juneja (ed.), Microbial Adaptation to Stress and Safety of New-Generation Foods. CRC Press, Inc., Boca Raton, Fla.
50. Sanyal, D., and, D. Greenwood. 1993. An electron microscope study of glycopeptide antibiotic-resistant strains of Staphylococcus epidermidis. J. Med. Microbiol. 39:204210.
51. Shaw, K. J.,, P. N. Rather,, R. S. Hare, and, G. H. Miller. 1993. Molecular genetics of aminoglycoside resistance genes and familial relationship of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57:138163.
52. Shryock, T. 2000. Growth promotion and feed antibiotics, p. 735743. In J. F. Prescott,, J. D. Baggot, and, R. D. Walker (ed.), Antimicrobial Therapy in Veterinary Medicine. Iowa State Press, Ames.
53. Song, J. S.,, J. H. Jeon,, J. H. Lee,, S. H. Jeong,, B. C. Jeong,, S.-J. Kim,, J. -H. Lee, and, S. H. Lee. 2005. Molecular characterization of TEM-type β-lactamases identified in cold-seep sediments of Edison Seamount (South of Lihir Island, Papua New Guinea). J. Microbiol. 43:172178.
54. Szybalski, W. 1953. Genetic studies on microbial cross resistance to toxic agents. II. Cross resistance of Micrococcus pyogenes var. aureus to thirty-four antimicrobial agents. Antibiot. Chemother. 3:10951103.
55. Taormina, P. J., and, L. R. Beuchat. 2002. Survival of Listeria monocytogenes in commercial food-processing equipment cleaning solutions and subsequent sensitivity to sanitizers and heat. J. Appl. Microbiol. 92:7180.
56. Villar, R. G.,, M. D. Macek,, S. Simons,, P. S. Hayes,, M. J. Goldoft,, J. H. Lewis,, L. L. Rowan,, D. Hursh,, M. Patnode, and, P. S. Mead. 1999. Investigation of multidrug-resistant Salmonella serotype Typhimurium DT104 infections linked to raw-milk cheese in Washington State. JAMA 281:18111816.
57. Walsh, D.,, J. J. Sheridan,, G. Duffy,, I. S. Blair,, D. A. McDowell, and, D. Harrington. 2001. Thermal resistance of wild-type and antibiotic-resistant Listeria monocytogenes in meat and potato substrates. J. Appl. Microbiol. 90:555560.
58. Warth, A. D. 1988. Effect of benzoic acid on growth yield of yeasts differing in their resistance to preservatives. Appl. Environ. Microbiol. 54:20912095.
59. Wilmes-Riesenberg, M. R.,, B. Bearson,, J. W. Foster, and, R. Curtis III. 1996. Role of the acid tolerance response in virulence of Salmonella typhimurium. Infect. Immun. 64:10851092.


Generic image for table
Table 2.1

Examples of resistance mechanisms

Citation: McEntire J, Montville T. 2007. Antimicrobial Resistance, p 23-34. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error