1887

Chapter 3 : Spores and Their Significance

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Spores and Their Significance, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap03-2.gif

Abstract:

This chapter describes the fundamental basis of sporulation and problems that spores present to the food industry. The first obvious morphological event in sporulation is an unequal cell division. One purpose of the chapter is to highlight the state of knowledge of molecular mechanisms of sporulation, spore resistance and dormancy, and spore germination and outgrowth, and hopefully, provide a counterpoint to more applied aspects of this system. The chapter focuses on molecular mechanisms, most of which have been examined in . The sporulating bacteria discussed in the chapter form heat-resistant endospores that contain dipicolinic acid (DPA) and are refractile or phase bright under phase-contrast microscopy. Most studies on sporulation, spores, and spore germination have been carried out with species of either the aerobic bacilli or the anaerobic clostridia. The discussion of gene expression control mechanisms has been simplified and concentrates on major regulatory gene products. As detailed mechanistic data is available for , the discussion on spore resistance is concentrated on . The most effective way to kill pressure-germinated spores is by heat, and thus pressure treatments are often carried out at elevated temperatures. In the anaerobic growth environment of clostridia, transition metals would be expected to have important roles in the sporulation and resistance properties of spores. The scientific investigation of sporeformers has greatly contributed to the development of microbiology for the enhancement of food safety and quality.

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3

Key Concept Ranking

Cell Wall Components
0.41987994
0.41987994
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 3.1
Figure 3.1

Structure of dipicolinic acid. Note that at physiological pH both carboxyl groups will be ionized.

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.2
Figure 3.2

Morphological, biochemical, and physiological changes during sporulation of a rod-shaped cell. In stage 0, a cell with two nucleoids (N) is shown; in stage IIi the mother cell and forespore are designated MC and FS, respectively. Note that the forespore nucleoid is more condensed than that in the mother cell. Stage IIii is not shown in this scheme, and the forespore nucleoid is not shown after stage III for clarity. The time of some biochemical and physiological events, such as forespore dehydration and acquisition of types of resistance to different chemicals (all lumped together as “chemical resistance”), stretches over a number of stages. The data for this figure are taken from references and .

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.3
Figure 3.3

Some gene products and reactions that affect levels of Spo0A∼P. Spo0E is a phosphatase that acts on Spo0A∼P; RapA and RapB are phosphatases that act on Spo0F∼P ( ).

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.4
Figure 3.4

Regulation of gene expression during sporulation. The effect of Spo0A∼P on repressors is negative; other effects of regulatory molecules on reactions are generally positive, although the effect of signals may be positive or negative. The enclosure of the pro-σ factors and σ factors denotes that at this time these factors are inactive. This figure is adapted from that in reference .

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.5
Figure 3.5

Structure of a dormant spore. The various structures are not drawn precisely to scale, especially the exosporium, whose size varies tremendously between spores of different species. The relative size of the germ cell wall is also generally smaller than that shown. The positions of the inner and outer forespore membranes, between the core and the germ cell wall and between the cortex and coats, respectively, are also noted.

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.6
Figure 3.6

Structures of (A) cyclobutane-type TT dimer and (B) 5-thyminyl-5,6-dihydrothymine adduct (spore photoproduct). The positions of the hydrogens noted by the asterisks are the locations of the glycosylic bond in DNA.

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.7
Figure 3.7

Correlation of spore heat resistance and protoplast (core) water content of lysozyme-sensitive spore types from seven species that vary in thermal adaptation and mineralization. Reprinted from Gerhardt and Marquis ( ) with permission. The numbers refer to spores of various species: 1, ; 2, “”; 3, ; 4, ; 5, ; 6, ; and 7, . The letters denote the sporulation temperature or the mineralization of the spores of various species as described in the original publication.

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.8
Figure 3.8

Spore activation, germination, and outgrowth. The events in activation are not known, hence the question mark. The loss of the spore cortex and the hydration and swelling of the core are shown in the germinated spore. The figure is adapted from Fig. 3 in reference .

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.9
Figure 3.9

Transmission electron micrograph (×50,000) of a longitudinal section through a spore and sporangium of type A, showing the characteristic club-shaped morphology.

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.10
Figure 3.10

Electron micrographs of type B (A) and type E (B) showing characteristic exosporium in types B and E and appendages in type E. Micrographs courtesy of Philipp Gerhardt from spores produced in E.A.J.’s laboratory.

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815912.ch03
1. Ablett, A. H.,, P. J. Lillford, and, D. R. Martin. 1999. Glass formation and dormancy in bacterial spores. Int. J. Food Sci. Technol. 34:5969.
2. Appert, N. 1810. L’Art de conserver pendant plusieurs anees toutes les substances animales et vegetables. In S. A. Goldblith,, M. A. Joslyn, and, J. T. R. Nickerson (ed.), Introduction to the Thermal Processing of Foods. 1961. AVI Publishing Co., Westport, Conn.
3. Aronson, A. I. 1993. Insecticidal toxins, p. 953964. In A. L. Sonenshein,, J. A. Hoch, and, R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
4. Ash, C.,, F. G. Priest, and, M. D. Collins. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Leeuwenhoek 64:253260.
5. Reference deleted.
6. Atrih, A., and, S. J. Foster. 2001. In vivo roles of the germination-specific lytic enzymes of Bacillus subtilis 168. Microbiology 147:29252932.
7. Barak, I., and, A. J. Wilkinson. 2005. Where asymmetry in gene expression originates. Mol. Microbiol. 57:611620.
8. Beaman, T. C., and, P. Gerhardt. 1986. Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization, and thermal adaptation. Appl. Environ. Microbiol. 52:12421246.
9. Black, E. P.,, K. Koziol-Dube,, D. Guan,, J. Wei,, D. E. Cortezzo,, D. G. Hoover, and, P. Setlow. 2005. Factors influencing the germination of Bacillus subtilis spores via the activation of nutrient receptors by high pressure. Appl. Environ. Microbiol. 71:58795887.
10. Reference deleted.
11. Blackistone, B.,, R. Chuyate,, D. Kautter, Jr.,, J. Charbonneau, and, K. Suit. 1999. Efficacy of oxonia active against selective spore formers. J. Food Prot. 62:262267.
12. Brown, K. L. 2000. Control of bacterial spores. Br. Med. Bull. 56:158171.
13. Bulloch, W. 1938. The History of Bacteriology. Oxford University Press, Oxford, England.
14. Cato, E. P.,, W. L. George, and, S. M. Finegold. 1986. The genus Clostridium, p. 11411200. In H. A. Sneath,, N. S. Mair, and, M. E. Sharpe (ed.), Bergey’s Manual of Systematic Bacteriology, vol. 2. Williams & Wilkins, Baltimore, Md.
15. Champagne, C. P.,, R. R. Laing,, D. Roy,, A. A. Mafu, and, M. W. Griffiths. 1994. Psychrotrophs in dairy products: their effects and their control. Crit. Rev. Food Sci. Nutr. 34:130.
16. Clarkson, J.,, I. D. Campbell, and, M. D. Yudkin. 2004. Efficient regulation of F, the first sporulation-specific sigma factor in B. subtilis. J. Mol. Biol. 342:11871195.
17. Cortezzo, D. E., and, P. Setlow. 2005. Analysis of factors that influence the sensitivity of spores of Bacillus subtilis to DNA damaging chemicals. J. Appl. Microbiol. 98:606617.
18. Cowan, A. E.,, D. E. Koppel,, B. Setlow, and, P. Setlow. 2003. A soluble protein is immobile in dormant spores of Bacillus subtilis but is mobile in germinated spores: implications for spore dormancy. Proc. Natl. Acad. Sci. USA 100:42094214.
19. Cowan, A. E.,, E. M. Olivastro,, D. E. Koppel,, C. A. Loshon,, B. Setlow, and, P. Setlow. 2004. Lipids in the inner membrane of dormant spores of Bacillus species are immobile. Proc. Natl. Acad. Sci. USA 101:77337738.
20. Crowe, J. H.,, E. A. Hoekstra, and, L. M. Crowe. 1992. Anhydrobiosis. Annu. Rev. Physiol. 54:579599.
21. Dawes, I. W., and, J. Mandelstam. 1970. Sporulation of Bacillus subtilis in continuous culture. J. Bacteriol. 103:529535.
22. Douki, T.,, B. Setlow, and, P. Setlow. 2005. Effects of the binding of α/β-type small, acid-soluble spore proteins on the photochemistry of DNA in spores of Bacillus subtilis and in vitro. Photochem. Photobiol. 81:163169.
23. Douki, T.,, B. Setlow, and, P. Setlow. 2005. Photosensitization of DNA by dipicolinic acid, a major component of spores of Bacillus species. Photochem. Photobiol. Sci. 4:591597.
24. Doyle, M. P. 1991. Evaluating the potential risk from extended shelf-life refrigerated foods by Clostridium botulinum inoculation studies. Food Technol. 45:154156.
25. Driks, A. 2002. Proteins of the spore core and coat, p. 527535. In A. L. Sonenshein,, J. A. Hoch, and, R. Losick (ed.), Bacillus subtilis and Its Closest Relatives: from Genes to Cells. ASM Press, Washington, D.C.
26. Dubnau, D., and, C. M. Lovett, Jr. 2002. Transformation and recombination, p. 453471. In A. L. Sonenshein,, J. A. Hoch, and, R. Losick (ed.), Bacillus subtilis and Its Closest Relatives: from Genes to Cells. ASM Press, Washington, D.C.
27. Eichenberger, P.,, M. Fujita,, S. T. Jensen,, E. M. Conlon,, D. Z. Rudner,, S. T. Wang,, C. Ferguson,, T. Sato,, J. S. Liu, and, R. Losick. 2005. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2:e328.
28. Ellar, D. J. 1978. Spore specific structures and their functions, p. 295325. In R. Y. Stanier,, H. J. Rogers, and, J. B. Ward (ed.), Relations between Structure and Function in the Prokaryotic Cell. Cambridge University Press, London, England.
29. Erickson, M. C., and, J. L. Kornacki. 2003. Bacillus anthracis: current knowledge in relation to contamination of food. J. Food Prot. 66:691699.
30. Errington, J. 2001. Septation and chromosome segregation during sporulation in Bacillus subtilis. Curr. Opin. Microbiol. 4:660666.
31. Esty, J. R., and, K. F. Meyer. 1922. The heat resistance of the spores of Bacillus botulinus and allied anaerobes. J. Infect. Dis. 31:650663.
32. Fairhead, H.,, B. Setlow, and, P. Setlow. 1993. Prevention of DNA damage in spores and in vitro by small, acid-soluble proteins from Bacillus species. J. Bacteriol. 175:13671374.
33. Franciosa, G.,, P. Aureli, and, R. Schechter. 2003. Clostridium botulinum, p. 6189. In M. D. Bier and, J. W. Miliotis (ed.), International Handbook of Foodborne Pathogens. Marcel Dekker, New York, N.Y.
34. Frenkiel-Krispin, D.,, R. Sack,, J. Englander,, E. Shimoni,, M. Eisenstein,, E. Bullitt,, R. Horowitz-Scherer,, C. S. Hayes,, P. Setlow,, A. Minsky, and, S. G. Wolf. 2004. Structure of the DNA-SspC complex: implications for DNA packaging, protection, and repair in bacterial spores. J. Bacteriol. 186:35253530.
35. Fujita, M.,, J. E. González-Pastor, and, R. Losick. 2005. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J. Bacteriol. 187:13571368.
36. Fujita, M., and, R. Losick. 2005. Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev. 19:22362244.
37. Fukushima, T.,, H. Yamamoto,, A. Atrih,, S. J. Foster, and, J. Sekiguchi. 2002. A polysaccharide deacetylase gene (pdaA) is required for germination and for production of muramic δ-lactam residues in the spore cortex of Bacillus subtilis. J. Bacteriol. 184:60076015.
38. Gerhardt, P., and, R. E. Marquis. 1989. Spore thermoresistance mechanisms, p. 1763. In I. Smith,, R. Slepecky, and, P. Setlow (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C.
39. Gilmore, M. E.,, D. Bandyopadhyay,, A. M. Dean,, S. D. Linnstaedt, and, D. L. Popham. 2004. Production of muramic δ-lactam in Bacillus subtilis spore peptidoglycan. J. Bacteriol. 186:8089.
40. Glass, K. G., and, E. A. Johnson. 2001. Formulating low-acid foods for botulinal safety, p. 323350. In V. K. Juneja and, J. N. Sofos (ed.), Control of Foodborne Organisms. Marcel Dekker, New York, N.Y.
41. Goldblith, S. A.,, M. A. Joslyn, and, J. T. R. Nickerson. 1961. An Anthology of Food Science, vol. 1. Introduction to the Thermal Processing of Foods. AVI Publishing, Westport, Conn.
42. Gonzalez-Pastor, J. E.,, E. C. Hobbs, and, R. Losick. 2003. Cannibalism by sporulating bacteria. Science 301:510513.
43. Gould, G. W. 1999. Sous vide foods: conclusions of an ECFF botulinum working party. Food Control 10:4751.
44. Granum, P. E., and, T. C. Baird-Parker. 2000. Bacillus species, p. 10291039. In B. M. Lund,, T. C. Baird-Parker, and, G. W. Gould (ed.). The Microbiological Safety and Quality of Food, vol. II. Aspen Publishers, Gaithersburg, Md.
45. Greenberg, R. A.,, R. B. Tompkin,, B. O. Blade,, R. S. Kittaka, and, A. Anelis. 1966. Incidence of mesophilic spores in raw pork, beef, and chicken in processing plants in the United States and Canada. Appl. Microbiol. 14:789793.
46. Guillemin, J. 1999. Anthrax. The Investigation of a Deadly Outbreak. University of California Press, Berkeley, Calif.
47. Hatheway, C. L., and, E. A. Johnson. 1998. Clostridium: the spore-bearing anaerobes, p. 732782. In W. J. Hausler and, M. Sussman (ed.), Topley and Wilson’s Microbiology and Microbial Infections, 9th ed., vol. 3. Edward Arnold, London, England.
48. Hilbert, D. W., and, P. J. Piggot. 2004. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev. 68:234262.
49. Hippe, H.,, J. R. Andreesen, and, G. Gottschalk. 1992. The genus Clostridium – nonmedical, p. 18001866. In A. Balows,, H. G. Truper,, M. Dworkin,, W. Harder, and, K. H. Schleifer (ed.), The Prokaryotes, 2nd ed., vol. II. Springer Verlag, New York, N.Y.
50. Hurst, A. 1983. Injury, p. 255274. In A. Hurst and, G. W. Gould (ed.), The Bacterial Spore, vol. 2. Academic Press, London, England.
51. Husmark, U., and, U. Ronner. 1992. The influence of hydrophobic, electrostatic and morphologic properties on the adhesion of Bacillus spores. Biofouling 5:335344.
52. Igarashi, T.,, B. Setlow,, M. Paidhungat, and, P. Setlow. 2004. Analysis of the effects of a gerF (lgt) mutation on the germination of spores of Bacillus subtilis. J. Bacteriol. 186:29842991.
53. Igarashi, T., and, P. Setlow. 2005. Interaction between individual protein components of the GerA and GerB nutrient receptors that trigger germination of Bacillus subtilis spores. J. Bacteriol. 187:25132518.
54. Inglesby, T. V.,, D. A. Henderson,, J. G. Bartlett,, M. S. Ascher,, E. Eitzen,, A. M. Friedlander,, J. Hauer,, J. McDade,, M. T. Osterholm,, T. O’Toole,, G. Parker,, T. M. Perl,, P. K. Russell, and, K. Tonat.For the Working Group on Civilian Biodefense. 1999. Anthrax as a biological weapon. Medical and public health management. JAMA 281:17351745.
55. Ingram, M. 1969. Sporeformers as food spoilage organisms, p. 549610. In G. W. Gould and, A. Hurst (ed.), The Bacterial Spore. Academic Press, London, England.
56. International Commission on Microbiological Specifications for Foods. 1996. Microorganisms in Foods. 5. Characteristics of Microbial Pathogens. Blackie Academic & Professional, London, England.
57. Jiang, M.,, W. Shao,, M. Perego, and, J. A. Hoch. 2000. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38:535542.
58. Johnson, E. A. 1991. Microbiological safety of fermented foods, p. 135169. In J. G. Zeikus and, E. A. Johnson (ed.), Mixed Cultures in Biotechnology. McGraw Hill, New York, N.Y.
59. Johnson, E. A., and, M. C. Goodnough. 1998. Botulism, p. 724741. In W. J. Hausler and, M. Sussman (ed.), Topley and Wilson’s Microbiology and Microbial Infections, 9th ed., vol. 3. Edward Arnold, London, England.
60. Johnson, E. A. 2006. Clostridium botulinum and Clostridium tetani, p. 10351088. In S. P. Borriello,, P. R. Murray, and, G. Funke (ed.), Topley and Wilson’s Microbiology and Microbial Infections, 8th ed. Hodder Arnold, London, England.
61. Juneja, V. K., and, H. M. Marks. 1999. Proteolytic Clostridium botulinum growth at 12–48°C simulating the cooling of cooked meat: development of a predictive model. Food Microbiol. 16:583592.
62. Juneja, V. K.,, B. S. Marmer,, J. G. Phillips, and, A. J. Miller. 1995. Influence of the intrinsic properties of food on thermal inactivation of spores of nonproteolytic Clostridium botulinum: development of a predictive model. J. Food Safety 15:349364.
63. Kalinowski, R. M., and, R. B. Tompkin. 1999. Psychrotrophic clostridia causing spoilage in cooked meat and poultry products. J. Food Prot. 62:766772.
64. Keynan, A., and, N. Sandler. 1984. Spore research in historical perspective, p. 148. In A. Hurst and, G. W. Gould (ed.), The Bacterial Spore, vol. 2. Academic Press, London, England.
65. Kihm, D. J.,, M. T. Hutton,, J. H. Hanlin, and, E. A. Johnson. 1988. Zinc stimulates sporulation in Clostridium botulinum 113B. Curr. Microbiol. 17:193198.
66. Kihm, D. J.,, M. T. Hutton,, J. H. Hanlin, and, E. A. Johnson. 1990. Influence of transition metals added during sporulation on heat resistance of Clostridium botulinum 113B spores. Appl. Environ. Microbiol. 56:681685.
67. Kihm, D. J., and, E. A. Johnson. 1990. Hydrogen gas accelerates thermal inactivation of Clostridium botulinum spores. Appl. Microbiol. Biotechnol. 33:705708.
68. Kim, H.,, M. Hahn,, P. Grabowski,, D. C. McPherson,, M. M. Otte,, R. Wang,, C. C. Ferguson,, P. Eichenberger, and, A. Driks. 2006. The Bacillus subtilis spore coat interaction network. Mol. Microbiol. 59:487502.
69. Kim, J., and, P. M. Foegeding. 1993. Principles of control, p. 121176. In A. H. W. Hauschild and, K. L. Dodds (ed.), Clostridium botulinum. Ecology and Control in Foods. Marcel Dekker, New York, N.Y.
70. Klobutcher, L. A.,, K. Ragkousi, and, P. Setlow. 2006. The Bacillus subtilis spore coat provides “eat resistance” during phagosomal predation by the protozoan Tetrahymena thermophila. Proc. Natl. Acad. Sci. USA 103:165170.
71. Lai, E. M.,, N. D. Phadke,, M. T. Kachman,, R. Giorno,, S. Vazquez,, J. A. Vazquez,, J. R. Maddock, and, A. Driks. 2003. Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis. J. Bacteriol. 185:14431454.
72. Lawson, P.,, R. H. Dainty,, N. Kristiansen,, J. Berg, and, M. D. Collins. 1994. Characterization of a psychrotrophic Clostridium causing spoilage in vacuum-packed cooked pork: description of Clostridium algidicarnis sp. nov. Lett. Appl. Microbiol. 19:153157.
73. Lazazzera, B.,, T. Palmer,, J. Quisel, and, A. D. Grossman. 1999. Cell density control of gene expression and development in Bacillus subtilis, p. 2746. In G. M. Dunny and, S. C. Winans (ed.), Cell-Cell Signaling in Bacteria. American Society for Microbiology, Washington, D.C.
74. Leuschner, R. G. K., and, P. J. Lillford. 2003. Thermal properties of bacterial spores and biopolymers. Int. J. Food Microbiol. 87:814.
75. Loeb, L. A.,, E. A. James,, A. M. Waltersdorph, and, S. J. Klebanoff. 1988. Mutagenesis by the autoxidation of iron with isolated DNA. Proc. Natl. Acad. Sci. USA 85:39183922.
76. Lund, B. M., and, M. W. Peck. 1994. Heat resistance and recovery of spores of nonproteolytic Clostridium botulinum in relation to refrigerated, processed foods with extended shelf-life. J. Appl. Bacteriol. Symp. 76:115S128S.
77. Lund, D. 1975. Thermal processing, p. 3192. In M. Karel,, O. R. Fennema, and, D. B. Lund (ed.), Principles of Food Science. Part II. Physical Principles of Food Preservation. Marcel Dekker, New York, N.Y.
78. Lynt, R. K.,, D. A. Kautter, and, R. B. Read, Jr. 1975. Botulism in commercially canned foods. J. Milk Food Technol. 38:546550.
79. Lynt, R. K.,, D. A. Kautter, and, H. M. Solomon. 1982. Differences and similarities among proteolytic strains of Clostridium botulinum types A, B, E and F: a review. J. Food Prot. 45:466474.
80. Makino, S., and, R. Moriyama. 2002. Hydrolysis of cortex peptidoglycan during bacterial spore germination. Med. Sci. Monit. 8:RA119RA127.
81. McDonnell, G., and, A. D. Russell. 1999. Antiseptics and disinfectants: activity, action and resistance. Clin. Microbiol. Rev. 12:147179.
82. McKee, L. H. 1995. Microbial contamination of spices and herbs: a review. Lebensm.-Wiss. Technol. 28:111.
83. Melly, E.,, P. C. Genest,, M. E. Gilmore,, S. Little,, D. L. Popham,, A. Driks, and, P. Setlow. 2002. Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. J. Appl. Microbiol. 92:11051115.
84. Moayeri, M., and, S. H. Leppla. 2004. The roles of anthrax toxin in pathogenesis. Curr. Opin. Microbiol. 7:1924.
85. Mohavedi, S., and, W. M. Waites. 2000. A two-dimensional protein gel electrophoresis study of the heat stress response of Bacillus subtilis cells during sporulation. J. Bacteriol. 182:47584763.
86. Moir, A.,, B. M. Corfe, and, J. Behravan. 2002. Spore germination. Cell. Mol. Life Sci. 59:403409.
87. Moir, C. J. (ed.). 2001. Spoilage of Processed Foods: Cause and Diagnosis. Australian Institute of Food Science and Technology, NSW Branch, Waterloo DC, New South Wales, Australia.
88. Molle, V.,, Y. Nakaura,, R. P. Shivers,, H. Yamaguchi,, R. Losick,, Y. Fujita, and, A. L. Sonenshein. 2003. Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J. Bacteriol. 185:19111922.
89. Moorhead, S. M., and, R. G. Bell. 1999. Psychrotrophic clostridia mediated gas and botulinal toxin production in vacuum-packed chilled meat. Lett. Appl. Microbiol. 28:108112.
90. Nazina, T. N.,, T. P. Tourova,, A. B. Poltaraus,, E. V. Novikova,, A. A. Grigoryan,, A. E. Ivanova,, A. M. Lysenko,, V. V. Petrunyaka,, G. A. Osipov,, S. S. Belyaev, and, M. V. Ivanov. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51:433446.
91. NFPA/CMI Container Integrity Task Force, Microbiological Assessment Group Report. 1984. Botulism risk from post-processing contamination of commercially canned foods in metal containers. J. Food Prot. 47:801816.
92. Nicholson, W. L.,, N. Munakata,, G. Horneck,, H. J. Melosh, and, P. Setlow. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64:548572.
93. Nicholson, W. L.,, A. C. Schuerger, and, P. Setlow. 2005. The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutat. Res. 571:248264.
94. Notermans, S.,, P. in’t Veld,, T. Wijtzes, and, G. C. Mead. 1993. A user’s guide to microbial challenge testing for ensuring the safety and stability of food products. Food Microbiol. 10:145157.
95. Ohye, D. F., and, W. J. Scott. 1957. Studies in the physiology of Clostridium botulinum type E. Aust. J. Biol. Sci. 10:8594.
96. Ordal, G. W.,, L. Marquez-Magana, and, M. J. Chamberlin. 1993. Motility and chemotaxis, p. 765784. In A. L. Sonenshein,, J. A. Hoch, and, R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
97. Orr, R. V., and, L. R. Beuchat. 2000. Efficacy of disinfectants in killing of spores of Alicycobacillus acidoterrestris and performance of media supporting colony development by survivors. J. Food Prot. 63:11171122.
98. Paidhungat, M.,, K. Ragkousi, and, P. Setlow. 2001. Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca2+-dipicolinate. J. Bacteriol. 183:48864893.
99. Paidhungat, M.,, B. Setlow,, W. B. Daniels,, D. Hoover,, E. Papafragkou, and, P. Setlow. 2002. Mechanisms of initiation of germination of spores of Bacillus subtilis by pressure. Appl. Environ. Microbiol. 68:31723175.
100. Paidhungat, M.,, B. Setlow,, A. Driks, and, P. Setlow. 2000. Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J. Bacteriol. 182:55055512.
101. Paidhungat, M., and, P. Setlow. 2002. Spore germination and outgrowth, p. 537548. In A. L. Sonenshein,, J. A. Hoch, and, R. Losick (ed.), Bacillus subtilis and Its Closest Relatives: from Genes to Cells. ASM Press, Washington, D.C.
102. Parades, C. J.,, K. V. Alasker, and, E. T. Papsoutsakis. 2005. A comparative genomic view of clostridial sporulation and physiology. Nat. Rev. Microbiol. 3:969978.
103. Peleg, M., and, M. B. Cole. 1998. Reinterpretation of microbial survival curves. Crit. Rev. Food Sci. 38:353380.
104. Peleg, M., and, M. B. Cole. 2000. Estimating the survival of Clostridium botulinum spores during heat treatments. J. Food Prot. 63:190195.
105. Perego, M., and, J. A. Hoch. 2002. Two-component systems, phosphorelays, and regulation of their activities by phosphatases, p. 473482. In A. L. Sonenshein,, J. A. Hoch, and, R. Losick (ed.), Bacillus subtilis and Its Closest Relatives: from Genes to Cells. ASM Press, Washington, D.C.
106. Pflug, I. J. 1987. Endpoint of a preservation process. J. Food Prot. 50:347351.
107. Pflug, I. J. 1987. Factors important in determining the heat process value, FT, for low acid canned foods. J. Food Prot. 50:528533.
108. Pflug, I. J. 1987. Calculating FT-values for heat preservation of shelf-stable, low acid canned foods using the straight-line semilogarithmic model. J. Food Prot. 50:608615.
109. Phillips, Z. E., and, M. A. Strauch. 2002. Bacillus subtilis sporulation and stationary phase gene expression. Cell. Mol. Life Sci. 59:392402.
110. Piggot, P. J., and, D. W. Hilbert. 2004. Sporulation of Bacillus subtilis. Curr. Opin. Microbiol. 7:579586.
111. Piggot, P. J., and, R. Losick. 2002. Sporulation genes and intercompartmental regulation, p. 483518. In A. L. Sonenshein,, J. A. Hoch, and, R. Losick (ed.), Bacillus subtilis and Its Closest Relatives: from Genes to Cells. ASM Press, Washington, D.C.
112. Pitt, J. I., and, A. D. Hocking (ed). 1997. Fungi and Food Spoilage, 2nd ed. Blackie Academic & Professional, London, England.
113. Popham, D. L. 2002. Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cell. Mol. Life Sci. 59:426433.
114. Pottahil, M., and, B. A. Lazazzera. 2003. The extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis. Front. Biosci. 8:3245.
115. Prescott, S. C., and, W. L. Underwood. 1897. Microorganisms and sterilizing processes in the canning industries. Technol. Q. 10:183199.
116. Ragkousi, K., and, P. Setlow. 2004. Transglutaminase-mediated cross-linking of GerQ in the coats of Bacillus subtilis spores. J. Bacteriol. 186:55675575.
117. Rahman, M. S. (ed.). 1999. Handbook of Food Preservation. Marcel-Dekker, New York, N.Y.
118. Ratnayake-Lecamwasam, M.,, P. Serror,, K. W. Wong, and, A. L. Sonenshein. 2001. Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev. 15:10931103.
119. Redmond, C.,, L. W. Baillie,, S. Hibbs,, A. J. Moir, and, A. Moir. 2004. Identification of proteins in the exosporium of Bacillus anthracis. Microbiology 150:355363.
120. Rice, E. W.,, N. J. Adcock,, M. Sivaganesan, and, L. J. Rose. 2005. Inactivation of spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis by chlorination. Appl. Environ. Microbiol. 71:55875589.
121. Ross, M. A., and, P. Setlow. 2000. The Bacillus subtilis HBsu protein modifies the effects of α/β-type small, acid-soluble spore proteins on DNA. J. Bacteriol. 182:19421948.
122. Rowland, S. L.,, W. F. Burkholder,, K. A. Cunningham,, M. W. Maciejewski,, A. D. Grossman, and, G. F. King. 2004. Structure and mechanism of action of Sda, an inhibitor of the histidine kinases that regulate initiation of sporulation in Bacillus subtilis. Mol. Cell 13:689701.
123. Russell, A. D. 1998. Assessment of sporicidal efficacy. Int. Biodeterior. Biodegradation 41:281287.
124. Russell, H. L. 1896. Gaseous fermentations in the canning industry, p. 227231. In Twelfth Annual Report of the Agricultural Experiment Station of the University of Wisconsin. University of Wisconsin, Madison, Wis.
125. Salas-Pacheco, J. M.,, B. Setlow,, P. Setlow, and, M. Pedraza-Reyes. 2005. Role of Nfo (YqfS) and ExoA apurinic/apyrimidinic endonucleases in protecting Bacillus subtilis spores from DNA damage. J. Bacteriol. 187:73747381.
126. Schmitt, H. P. 1966. Commercial sterility in canned foods, its meaning and determination. Assoc. Food Drug Off. U.S. Q. Bull. 30:141151.
127. Scott, V. N., and, D. T. Bernard. 1982. Heat resistance of spores of non-proteolytic type B Clostridium botulinum. J. Food Prot. 45:909912.
128. Scotti, C.,, M. Piatti,, A. Cuzzoni,, P. Perani,, A. Tognoni,, G. Grandi,, A. Galizzi, and, A. M. Albertini. 1993. A Bacillus subtilis large ORF coding for a polypeptide highly similar to polyketide synthases. Gene 130:6571.
129. Serrano, M.,, A. Neves,, C. M. Soares,, C. P. Moran, Jr., and, A. O. Henriques. 2004. Role of the anti-sigma factor SpoIIAB in regulation of σG during Bacillus subtilis sporulation. J. Bacteriol. 186:40004013.
130. Setlow, P. 1993. DNA structure, spore formation, and spore properties, p. 181194. In P. J. Piggot,, P. Youngman, and, C. P. Moran, Jr. (ed.), Regulation of Bacterial Differentiation. American Society for Microbiology, Washington, D.C.
131. Setlow, P. 1994. Mechanisms which contribute to the long-term survival of spores of Bacillus species. J. Appl. Bacteriol. 176:49S60S.
132. Setlow, P. 1995. Mechanisms for the prevention of damage to the DNA in spores of Bacillus species. Annu. Rev. Microbiol. 49:2954.
133. Setlow, P. 2001. Resistance of spores of Bacillus species to ultraviolet light. Environ. Mol. Mutagen. 38:97104.
134. Setlow, P. 2003. Spore germination. Curr. Opin. Microbiol. 6:550556.
135. Setlow, P. 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101:514525.
136. Setlow, P., and, E. A. Johnson. 2001. Spores and their significance, p. 3370. In M. P. Doyle,, L. R. Beuchat, and, T. J. Montville (ed.), Food Microbiology: Fundamentals and Frontiers, 2nd ed. ASM Press, Washington, D.C.
137. Shimizu, T.,, K. Ohtani,, H. Hirakawa,, K. Ohshima,, A. Yamashita,, T. Shiba,, N. Ogasawara,, M. Hattori,, S. Kuhara, and, H. Hayashi. 2002. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl. Acad. Sci. USA 99:9961001.
138. Slepecky, R. A., and, E. R. Leadbetter. 1994. Ecology and relationships of endospore-forming bacteria: changing perspectives, p. 195206. In P. J. Piggot,, C. P. Moran, Jr., and, P. Youngman (ed.), Regulation of Bacterial Differentiation. American Society for Microbiology, Washington, D.C.
139. Smith, L. D. S., and, H. Sugiyama. 1988. Botulism. The Organism, Its Toxins, the Disease, 2nd ed. Charles C Thomas, Springfield, Ill.
140. Sonenshein, A. L. 2000. Endospore-forming bacteria—an overview, p. 133150. In L. J. Shimkets and, Y. V. Brun (ed.), Prokaryotic Development. American Society for Microbiology, Washington, D.C.
141. Sonenshein, A. L. 2000. Control of sporulation initiation in Bacillus subtilis. Curr. Opin. Microbiol. 3:561566.
142. Songer, J. G. 1996. Clostridial enteric diseases of domestic animals. Clin. Microbiol. Rev. 9:216234.
143. Spotts Whitney, E. A.,, M. E. Beatty,, T. H. Taylor, Jr.,, R. Weyant,, J. Sobel,, M. J. Arduino, and, D. A. Ashford. 2003. Inactivation of Bacillus anthracis spores. Emerg. Infect. Dis. 9:623627.
144. Steichen, C. T.,, J. F. Kearney, and, C. L. Turnbough, Jr. 2005. Characterization of the exosporium basal layer protein BxpB of Bacillus anthracis. J. Bacteriol. 187:58685876.
145. Steil, L.,, M. Serrano,, A. O. Henriques, and, U. Volker. 2005. Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology 151:399420.
146. Stevenson, K. E., and, R. H. Vaughn. 1972. Exosporium formation in sporulating cells of Clostridium botulinum 78A. J. Bacteriol. 112:618621.
147. Stringer, M. 2005. Summary report. Food safety objectives - role in microbiological food safety management. Food Control 16:775794.
148. Stumbo, C. R. 1973. Thermobacteriology in Food Processing, 2nd ed. Academic Press, New York, N.Y.
149. Sugiyama, H. 1951. Studies on factors affecting the heat resistance of spores of Clostridium botulinum. J. Bacteriol. 62:8196.
150. Sugiyama, H. 1952. Effect of fatty acids on the heat resistance of Clostridium botulinum spores. Bacteriol. Rev. 16:125126.
151. Sugiyama, H. 1986. Mouse models for infant botulism, p. 7391. In O. Zak and, M. A. Sande (ed.), Experimental Models in Antimicrobial Chemotherapy, vol. 2. Academic Press, New York, N.Y.
152. Sugiyama, H. 1980. Clostridium botulinum neurotoxin. Microbiol. Rev. 44:419448.
153. Sylvestre, P.,, E. Couture-Tosi, and, M. Mock. 2002. A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol. Microbiol. 45:169178.
154. Takamatsu, H., and, K. Watabe. 2002. Assembly and genetics of spore protective structures. Cell. Mol. Life Sci. 59:434444.
155. Tanaka, N.,, E. Traisman,, P. Plantinga,, L. Finn,, W. Flom,, L. Meske, and, J. Guffisberg. 1986. Evaluation of factors involved in antibotulinal properties of pasteurized process cheese spreads. J. Food Prot. 49:526531.
156. Tournas, V. 1994. Heat-resistant fungi of importance to the food and beverage industry. Crit. Rev. Microbiol. 20:243263.
157. Tovar-Rojo, F.,, M. Chander,, B. Setlow, and, P. Setlow. 2002. The products of the spoVA operon are involved in dipicolinic acid uptake into developing spores of Bacillus subtilis. J. Bacteriol. 184:584587.
158. Townsend, C. T.,, J. R. Esty, and, F. C. Baselt. 1938. Heat-resistance studies on spores of putrefactive anaerobes in relation to the determination of safe processes for canned foods. Food Res. 3:323346.
159. Trent, J. D.,, M. Gabrielson,, B. Jensen,, J. Neuhard, and, J. Olsen. 1994. Acquired thermotolerance and heat shock proteins in thermophiles from the three phylogenetic domains. J. Bacteriol. 176:61486152.
160. Van Netton, P.,, A. Van de Moosdijk,, P. Van de Hoensel,, D. A. A. Mossel, and, I. Perales. 1990. Psychrotrophic strains of Bacillus cereus producing enterotoxin. J. Appl. Bacteriol. 69:7379.
161. Veening, J. W.,, L. W. Hamoen, and, O. P. Kuipers. 2005. Phosphatases modulate bistable sporulation gene expression pattern in Bacillus subtilis. Mol. Microbiol. 56:14811494.
162. Vepachedu, V. R., and, P. Setlow. 2005. Localization of SpoVAD to the inner membrane of spores of Bacillus subtilis. J. Bacteriol. 187:56775682.
163. Waller, L. N.,, M. J. Stump,, K. F. Fox,, W. M. Harley,, A. Fox,, G. C. Stewart, and, M. Shahgholi. 2005. Identification of a second collagen-like glycoprotein produced by Bacillus anthracis and demonstration of spore-specific sugars. J. Bacteriol. 187:45924597.
164. Wang, S. T.,, B. Setlow,, E. M. Conlon,, J. L. Lyon,, D. Imamura,, T. Sato,, P. Setlow,, R. Losick, and, P. Eichenberger. 2006. The forespore line of gene expression in Bacillus subtilis. J. Mol. Biol. 358:1637.
165. Westphal, A. J.,, P. B. Price,, T. J. Leighton, and, K. E. Wheeler. 2003. Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity. Proc. Natl. Acad. Sci. USA 100:34613466.
166. Willis, A. T. 1969. Clostridia of Wound Infection. Butterworths, London, England.
167. Wörner, K.,, H. Szurmant,, C. Chiang, and, J. A. Hoch. 2006. Phosphorylation and functional analysis of the sporulation initiation factor Spo0A from Clostridium botulinum. Mol. Microbiol. 59:10001012.
168. Wuytack, E. Y.,, J. Soons,, F. Poschet, and, C. W. Michiels. 2000. Comparative study of pressure- and nutrient-induced germination of Bacillus subtilis spores. Appl. Environ. Microbiol. 66:257261.
169. Yudkin, M. D., and, J. Clarkson. 2005. Differential gene expression in genetically identical sister cells: the initiation of sporulation in Bacillus subtilis. Mol. Microbiol. 56:578589.

Tables

Generic image for table
Table 3.1

Small molecules in cells and spores of species

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3
Generic image for table
Table 3.2

Killing and mutagenesis of spores and cells of by various treatments

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3
Generic image for table
Table 3.3

Heat resistance of spores prepared at different temperatures with different ions and with or without α/β-type SASP

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3
Generic image for table
Table 3.4

Heat resistance of sporeformers of importance in foods

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3
Generic image for table
Table 3.5

Growth requirements of sporeformers of public health significance

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3
Generic image for table
Table 3.6

Spoilage of canned foods by sporeformers

Citation: Setlow P, Johnson E. 2007. Spores and Their Significance, p 35-67. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error