1887

Chapter 20 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap20-2.gif

Abstract:

is widespread in nature and frequently isolated from soil and growing plants . In addition to rice, pasta, and spices, dairy products are among the most common food vehicles for . There are two types of foodborne illness. The first type, which is caused by an emetic toxin, results in vomiting, whereas the second type, which is caused by enterotoxin(s), results in diarrhea. Little is known about susceptible populations, but the more severe types of the illness have occasionally involved young athletes (19 years) or the elderly (60 years). The emetic toxin, causing vomiting, had been isolated and characterized, whereas the diarrheal disease is caused by one or more enterotoxins. The spore of is an important factor in foodborne illness. First, the spore is more hydrophobic than any other spp. spores, which enables it to adhere to several types of surfaces. Neither of the two commercial immunoassays available for enterotoxin detection can quantify the toxicity of enterotoxins. Desserts, meat dishes, and dairy products are most frequently associated with diarrheal illness, whereas rice and pasta are the most common vehicles of emetic illness. Three types of enterotoxins involved in outbreaks of foodborne illness have been identified. Two of these enterotoxins possess three components and are related, whereas the third is a one-component protein (CytK).

Citation: Granum P. 2007. , p 445-455. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch20

Key Concept Ranking

Meat and Meat Products
0.49913257
Sodium Dodecyl Sulfate
0.47163212
Foodborne Illnesses
0.45869806
16s rRNA Sequencing
0.42646965
0.49913257
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 20.1
Figure 20.1

Genetic organization of the three enterotoxins , , and ( ). The enterotoxins are all regulated by PlcR-PapR, which binds upstream of , , and . There is an inverted repeat of 13 bp between and . An aminopeptidase gene () is found about 600 bp downstream of has an ORF () upstream, encoding a protein of unknown function, and a histi-dine kinase () further upstream. encodes a long-chain fatty acid coenzyme A ligase (orientated in the direction opposite to that of ). The arrowheads indicate the orientation of the genes. The gaps between the different genes are indicated by a solid line.

Citation: Granum P. 2007. , p 445-455. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815912.ch20
1. Agaisse, H.,, M. Gominet,, O. A. Okstad,, A. B. Kolsto, and, D. Lereclus. 1999. PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol. Microbiol. 32:10431053.
2. Agata, N.,, M. Mori,, M. Ohta,, S. Suwan,, I. Ohtani, and, M. Isobe. 1994. A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiol. Lett. 121:3134.
3. Agata, N.,, M. Ohta,, M. Mori, and, M. Isobe. 1995. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol. Lett. 129:1720.
4. Andersson, A.,, P. E. Granum, and, U. Rönner. 1998. The adhesion of Bacillus cereus spores to epithelial cells might be an additional virulence mechanism. Int. J. Food Microbiol. 39:9399.
5. Andersson, A.,, U. Rönner, and, P. E. Granum. 1995. What problems does the food industry have with the sporeforming pathogens Bacillus cereus and Clostridium perfringens? Int. J. Food Microbiol. 28:145156.
6. Ash, C., and, M. D. Collins. 1992. Comparative analysis of 23S ribosomal RNA gene sequence of Bacillus anthracis and emetic Bacillus cereus determined by PCR-direct sequencing. FEMS Microbiol. Lett. 73:7580.
7. Ash, C.,, J. A. Farrow,, M. Dorsch,, E. Steckebrandt, and, M. D. Collins. 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41:343346.
8. Beecher, D. J., and, J. D. Macmillan. 1991. Characterization of the components of hemolysin BL from Bacillus cereus. Infect. Immun. 59:17781784.
9. Beecher, D. J.,, J. L. Schoeni, and, A. C. L. Wong. 1995. Enterotoxin activity of hemolysin BL from Bacillus cereus. Infect. Immun. 63:44234428.
10. Beecher, D. J., and, A. C. L Wong. 1997. Tripartite hemolysin BL from Bacillus cereus. Hemolytic analysis of component interaction and model for its characteristic paradoxical zone phenomenon. J. Biol. Chem. 272:233239.
11. Beecher, D. J., and, A. C. L. Wong. 1994. Identification and analysis of the antigens detected by two commercial Bacillus cereus diarrheal enterotoxin immunoassay kits. Appl. Environ. Microbiol. 60:46144616.
12. Beecher, D. J., and, A. C. L. Wong. 1994. Improved purification and characterization of hemolysin BL, a hemolytic dermonecrotic vascular permeability factor from Bacillus cereus. Infect. Immun. 62:980986.
13. Borge, G. A.,, M. Skeie,, T. Langsrud, and, P. E. Granum. 2001. Growth and toxin profiles of Bacillus cereus isolated from different food sources. Int. J. Food Microbiol. 69:237246.
14. Brynestad, S., and, P. E. Granum. 2002. Clostridium perfringens and foodborne infections. Int. J. Food Microbiol. 74:195202.
15. Carlson, C. R.,, D. A. Caugant, and, A.-B. Kolstø. 1994. Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl. Environ. Microbiol. 60:17191725.
16. Christiansson, A.,, A. S. Naidu,, I. Nilsson,, T. Wadström, and, H.-E. Pettersson. 1989. Toxin production by Bacillus cereus dairy isolates in milk at low temperatures. Appl. Environ. Microbiol. 55:25952600.
17. Claus, D., and, R. C. W. Berkeley. 1986. Genus Bacillus, p. 11051139. In P. H. A. Seneath (ed.), Bergeys Manual of Systematic Bacteriology, vol. 2. The Williams and Wilkins Co., Baltimore, Md.
18. Damgaaerd, P. H.,, H. D. Larsen,, B. M. Hansen,, J. Bresciani, and, K. Jørgensen. 1996. Enterotoxin-producing strains of Bacillus thuringiensis isolated from food. Lett. Appl. Microbiol. 23:146150.
19. Dierick, K.,, E. Van Coillie,, I. Swiecicka,, G. Meyfroidt,, H. Devlieger,, A. Meulemans,, G. Hoedemaekers,, L. Fourie,, M. Heyndrickx, and, J. Mahillon. 2005. Fatal family outbreak of Bacillus cereus-associated food poisoning. J. Clin. Microbiol. 43:42774279.
20. Dietrich, R.,, M. Moravek,, C. Bürk,, P. E. Granum, and, E. Märtlbauer. 2005. Production and characterization of antibodies against each of the three subunits of the Bacillus cereus nonhemolytic enterotoxin complex. Appl. Environ. Microbiol. 71:82148220.
21. Ehling-Schulz, M.,, B. Svensson,, M.-H. Guinebritiere,, T. Linback,, M. Andersson,, A. Schulz,, A. Christiansson,, P. E. Granum,, E. Märtelbauer,, C. Nyguyen-The,, M. Salkinoja-Salonen, and, S. Scherer. 2005. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 151:183197.
22. Ehling-Schulz, M.,, N. Vukov,, A. Schulz,, R. Shaheen,, M. Andersson,, E. Martlbauer, and, S. Scherer. 2005. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71:105113.
23. Fagerlund, A.,, O. Ween,, T. Lund,, S. P. Hardy, and, P. E. Granum. 2004. Genetic and functional analysis of the cytK family of genes in Bacillus cereus. Microbiology 150:26892697.
24. Rivera,, A. M. Gaviria,, P. E. Granum, and, F. G. Priest. 2000. Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis. FEMS Microbiol. Lett. 190:151155.
25. Gohar, M.,, O. A. Okstad,, N. Gilois,, V. Sanchis,, A. B. Kolsto, and, D. Lereclus. 2002. Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2:784791.
26. Gominet, M.,, L. Slamti,, N. Gilois,, M. Rose, and, D. Lereclus. 2001. Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol. Microbiol. 40:963975.
27. Granum, P. E. 1994. Bacillus cereus and its toxins. J. Appl. Bacteriol. Symp. Suppl. 76:61S66S.
28. Granum, P. E.,, A. Andersson,, C. Gayther,, M. C. te Giffel,, H. D. Larsen,, T. Lund, and, K. O’Sullivan. 1996. Evidence for a further enterotoxin complex produced by Bacillus cereus. FEMS Microbiol. Lett. 141:145149.
29. Granum, P. E., and, T. C. Baird-Parker. 2000. Bacillus spp., p. 10291039. In B. Lund,, T. Baird-Parker, and, G. Gould (ed.), The Microbiological Safety and Quality of Food. Aspen Publishers, Gaithersburg, Md.
30. Granum, P. E.,, S. Brynestad, and, J. M. Kramer. 1993. Analysis of enterotoxin production by Bacillus cereus from dairy products, food poisoning incidents and non-gastrointestinal infections. Int. J. Food Microbiol. 17:269279.
31. Granum, P. E., and, T. Lund. 1997. Bacillus cereus enterotoxins. FEMS Microbiol. Lett. 157:223228.
32. Granum, P. E.,, K. O’Sullivan, and, T. Lund. 1999. The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol. Lett. 177:225229.
33. Griffiths, M. W. 1990. Toxin production by psychrotrophic Bacillus spp. present in milk. J. Food Prot. 53:790792.
34. Haggblom, M. M.,, C. Apetroaie,, M. A. Andersson, and, M. S. Salkinoja-Salonen. 2002. Quantitative analysis of cereulide, the emetic toxin of Bacillus cereus, produced under various conditions. Appl. Environ. Microbiol. 68:24792483.
35. Hardy, S. P.,, T. Lund, and, P. E. Granum. 2001. CytK toxin of Bacillus cereus forms pores in planar lipid bilayers and is cytotoxic to intestinal epithelia. FEMS Microbiol. Lett. 197:4751.
36. Hauge, S. 1955. Food poisoning caused by aerobic spore forming bacilli. J. Appl. Bacteriol. 18:591595.
37. Heinrichs, J. H.,, D. J. Beecher,, J. M. MacMillan, and, B. A. Zilinskas. 1993. Molecular cloning and characterization of the hblA gene encoding the B component of hemolysin BL from Bacillus cereus. J. Bacteriol. 175:67606766.
38. Hoffmaster, A. R.,, J. Ravel,, D. A. Rasko,, G. D. Chapman,, M. D. Chute,, C. K. Marston,, B. K. De,, C. T. Sacchi,, C. Fitzgerald,, L. W. Mayer,, M. C. Maiden,, F. G. Priest,, M. Barker,, L. Jiang,, R. Z. Cer,, J. Rilstone,, S. N. Peterson,, R. S. Weyant,, D. R. Galloway,, T. D. Read,, T. Popovic, and, C. M. Fraser. 2004. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA 101:84498454.
39. Hoton, F. M.,, L. Andrup,, I. Swiecicka, and, J. Mahillon. 2005. The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne. Microbiology 151:21212124.
40. Hughes, S.,, B. Bartholomew,, J. C. Hardy, and, J. M. Kramer. 1988. Potential application of a HEp-2 cell assay in the investigation of Bacillus cereus emetic-syndrome food poisoning. FEMS Microbiol. Lett. 52:712.
41. Husmark, U. 1993. Adhesion mechanisms of bacterial spores to solid surfaces. Ph.D. thesis, Department of Food Science, Chalmers University of Technology and SIK, The Swedish Institute for Food Research, Göteborg, Sweden.
42. Jackson, S. G.,, R. B. Goodbrand,, R. Ahmed, and, S. Kasatiya. 1995. Bacillus cereus and Bacillus thuringiensis isolated in a gastroenteritis outbreak investigation. Lett.Appl. Microbiol. 21:103105.
43. Kramer, J. M., and, R. J. Gilbert. 1989. Bacillus cereus and other Bacillus species, p. 2170. In M. P. Doyle (ed.), Foodborne Bacterial Pathogens. Marcel Dekker, New York, N.Y.
44. Lechner, S.,, R. Mayr,, K. P. Francic,, B. M. Prub,, T. Kaplan,, E. Wieber-Gunkel,, G. A. S. B. Stewart, and, S. Scherer. 1998. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int. J.Syst. Bacteriol. 48:13731382.
45. Lereclus, D.,, H. Agaisse,, M. Gominet,, S. Salamitou, and, V. Sanchis. 1996. Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. J. Bacteriol. 178:27492756.
46. Lindbäck, T.,, A. Fagerlund,, M. S. Rødland, and, P. E. Granum. 2004. Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology 150:39593967.
47. Lund, T.,, M. L. De Buyser, and, P. E. Granum. 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38:254261.
48. Lund, T., and, P. E. Granum. 1996. Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol. Lett. 141:151156.
49. Lund, T., and, P. E. Granum. 1997. Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cereus. Microbiology 143:33293336.
50. Mahler, H.,, A. Pasi,, J. M. Kramer,, P. Schulte,, A. C. Scoging,, W. Bar, and, S. Krahenbuhl. 1997. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N. Engl. J. Med. 336:11421148.
51. Moravek, M.,, R. Dietrich,, C. Buerk,, V. Broussole,, M. H. Guinebretiere,, P. E. Granum,, C. Nguyen-the, and, E. Maertlbauer. 2006. Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses. FEMS Microbiol. Lett. 257:293298.
52. Mortimer, P. R., and, G. McCann. 1974. Food poisoning episodes associated with Bacillus cereus in fried rice. Lancet i:10431045.
53. Nakamura, L. K. 1998. Bacillus pseudomycoides sp. nov. Int. J. Syst. Bacteriol. 48:10311035.
54. Ray, D. E. 1991. Pesticides derived from plants and other organisms, p. 585636. In W. J. Hayes and, E. R. Laws, Jr. (ed.), Handbook of Pesticide Toxology. Academic Press, Inc., New York, N.Y.
55. (Reference deleted.)
56. Rosenquist, H.,, L. Smidt,, S. R. Andersen,, G. B. Jensen, and, A. Wilcks. 2005. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiol. Lett. 250:129136.
57. Ryan, P. A.,, J. M. Macmillan, and, B. A. Zilinskas. 1997. Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus. J. Bacteriol. 179:25512556.
58. Schmidt, K. (ed.). 2001. WHO Surveillance Programme for Control of Foodborne Infections and Intoxications in Europe. Seventh Report. FAO/WHO Collaborating Centre for Research and Training in Food Hygiene and Zoonoses, Berlin, Germany.
59. Schoeni, J. L., and, A. C. L. Wong. 1999. Heterogeneity observed in the components of hemolysin BL, an enterotoxin produced by Bacillus cereus. Int. J. Food Microbiol. 53:159167.
60. Shinagawa, K. 1993. Serology and characterization of Bacillus cereus in relation to toxin production. Bull. Int. Dairy Fed. 287:4249.
61. Shinagawa, K.,, H. Konuma,, H. Sekita, and, S. Sugii. 1995. Emesis of rhesus monkeys induced by intragastric administration with the HEp-2 vacuolation factor (cereulide) produced by Bacillus cereus. FEMS Microbiol. Lett. 130:8790.
62. Shinagawa, K.,, S. Otake,, N. Matsusaka, and, S. Sugii. 1992. Production of the vacuolation factor of Bacillus cereus isolated from vomiting-type food poisoning. J. Vet. Med. Sci. 54:443446.
63. Slamti, L., and, D. Lereclus. 2002. A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J. 21:45504559.
64. Slamti, L., and, D. Lereclus. 2005. Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group. J. Bacteriol. 187:11821187.
65. van Netten, P.,, A. van de Moosdijk,, P. van Hoensel,, D. A. A. Mossel, and, I. Perales. 1990. Psychrotrophic strains of Bacillus cereus producing enterotoxin. J. Appl. Bacteriol. 69:7379.
66. Yokoyama, K.,, M. Ito,, N. Agata,, M. Isobe,, K. Shibayama,, T. Horii, and, M. Ohta. 1999. Pathological effect of synthetic cereulide, an emetic toxin of Bacillus cereus, is reversible in mice. FEMS Immunol. Med. Microbiol. 24:115120.

Tables

Generic image for table
Table 20.1

Criteria to differentiate members of the group

Citation: Granum P. 2007. , p 445-455. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch20
Generic image for table
Table 20.2

Examples of types of foods involved in foodborne illness and outbreaks

Citation: Granum P. 2007. , p 445-455. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch20
Generic image for table
Table 20.3

Characteristics of the two types of foodborne illness caused by

Citation: Granum P. 2007. , p 445-455. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch20
Generic image for table
Table 20.4

Properties of the emetic toxin cereulide

Citation: Granum P. 2007. , p 445-455. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch20
Generic image for table
Table 20.5

Toxins produced by

Citation: Granum P. 2007. , p 445-455. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch20
Generic image for table
Table 20.6

Properties of the Nhe proteins

Citation: Granum P. 2007. , p 445-455. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error