Chapter 21 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap21-2.gif


Listeriosis is an atypical foodborne illness of major public health concern because of the severity of the disease (meningitis, septicemia, and abortion), a high case fatality rate (approximately 20 to 30% of cases), a long incubation time, and a predilection for individuals who have an underlying condition that leads to impairment of T-cell-mediated immunity. Certain ready-to-eat (RTE) processed foods are high-risk vehicles for transmitting listeriosis for susceptible populations as determined by active surveillance for sporadic listeriosis and epidemiologic investigation of listeriosis outbreaks. The risk assessment model was used to estimate the likely impact of control strategies by changing one or two input parameters and measuring the change in the model outputs. Most thermal-inactivation studies of in milk have shown that cells of suspended in milk were effectively inactivated under high temperature-short time pasteurization (HTST) conditions (71°C for 15s or equivalent). The LisRK two-component signal transduction system is implicated in virulence, acid and ethanol tolerance, and oxidative stress. The major heat shock chaperones, GroES and GroEL, are induced at high temperature, at low pH, and during cell infection. Research during the past 25 years has led to the (i) identification of the internalin receptor of mammalian cells; (ii) elucidation of the role of internalin multigene functions; (iii) understanding of the function of ; (iv) understanding of and the global regulation of virulence; and (v) the modulation of host cell signaling by the pathogen.

Citation: Swaminathan B, Cabanes D, Zhang W, Cossart P. 2007. , p 457-491. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch21

Key Concept Ranking

Two-Component Signal Transduction Systems
Meat and Meat Products
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 21.1
Figure 21.1

Phenotypic identification of species.

Citation: Swaminathan B, Cabanes D, Zhang W, Cossart P. 2007. , p 457-491. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.2
Figure 21.2

Potential routes of transmission of . Adapted from reference . Circles or ovals indicate areas of greatest risk of multiplication. Boxes indicate where direct consumption of minimally processed products (e.g., whole fresh vegetables, cooked carcass cuts of meat and fish, and effectively pasteurized milk) presents a low risk. Double arrows indicate consumer at risk.

Citation: Swaminathan B, Cabanes D, Zhang W, Cossart P. 2007. , p 457-491. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.3
Figure 21.3

Schematic representation of the pathophysiology of infection.

Citation: Swaminathan B, Cabanes D, Zhang W, Cossart P. 2007. , p 457-491. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.4
Figure 21.4

Schematic representation of the successive steps of the cell infectious process. Factors implicated in the different steps are indicated.

Citation: Swaminathan B, Cabanes D, Zhang W, Cossart P. 2007. , p 457-491. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abram, M.,, D. Schluter,, D. Vuckovic,, B. Wraber,, M. Doric, and, M. Deckert. 2003. Murine model of pregnancy-associated Listeria monocytogenes infection. FEMS Immunol. Med. Microbiol. 35:177182.
2. Al-Ghazali, M., and, S. Al-Azawi. 1990. Listeria monocytogenes contamination of crops grown on soil treated with sewage sludge cake. J. Appl. Bacteriol. 69:642674.
3. Alvarez-Dominguez, C.,, J. A. Vazquez-Boland,, E. Carrasco-Marin,, P. Lopez-Mato, and, F. Leyva-Cobian. 1997. Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect. Immun. 65:7888.
4. Anonymous. 2002. Final Assessment Report: Proposal 239—Listeria Risk Assessment & Risk Management Strategy. Food Standards Australia New Zealand. [Online.] www.foodstandards.gov.au/_srefiles/P239_DAR.021002.pdf. Accessed 24 May 2006.
5. Anonymous. 1988. Food Listeriosis—Report of the WHO Informal Working Group. WHO/EHE/FOS/88.5. World Health Organization, Geneva, Switzerland.
6. Anonymous. 2003. Interpretive Summary: Quantitative Assessment of the Relative Risk to Public Health from Foodborne Listeria monocytogenes among Selected Categories of Ready-To-Eat Meats. Center for Food Safety and Applied Nutrition, Food and Drug Administration, U. S. Department of Health and Human Services; Food Safety and Inspection Service, U. S. Department of Agriculture, Washington, D.C. [Online.] www.foodsafety.gov/∼dms/lmr2toc.html. Accessed 24 May 2006.
7. Anonymous. 2004. Microbiological Risk Assessment Series. World Health Organization, Geneva, Switzerland.
8. Arnaud, M.,, A. Chastanet, and, M. Debarbouille. 2004. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl. Environ. Microbiol. 70:68876891.
9. Audurier, A.,, P. Pardon,, J. Marly, and, F. Lantier. 1980. Experimental infection of mice with Listeria monocytogenes and L. innocua. Ann. Microbiol. 131B:4757.
10. Auerbuch, V.,, J. J. Loureiro,, F. B. Gertler,, J. A. Theriot, and, D. A. Portnoy. 2003. Ena/VASP proteins contribute to Listeria monocytogenes pathogenesis by controlling temporal and spatial persistence of bacterial actin-based motility. Mol. Microbiol. 49:13611375.
11. Aureli, P.,, G. C. Fiorucci,, D. Caroli,, G. Marchiaro,, O. Novara,, L. Leone, and, S. Salmaso. 2000. An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N. Engl. J. Med. 342:12361241.
12. Autret, N.,, I. Dubail,, P. Trieu-Cuot,, P. Berche, and, A. Charbit. 2001. Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect. Immun. 69:20542065.
13. Bakardjiev, A. I.,, B. A. Stacy,, S. J. Fisher, and, D. A. Portnoy. 2004. Listeriosis in the pregnant guinea pig: a model of vertical transmission. Infect. Immun. 72:489497.
14. Barbosa, W. B.,, L. Cabedo,, H. J. Wederquist,, J. N. Sofos, and, G. R. Schmidt. 1994. Growth variation among species and strains of Listeria monocytogenes. J. Food Prot. 57:765769.
15. Beauregard, K. E.,, K. D. Lee,, R. J. Collier, and, J. A. Swanson. 1997. pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. J. Exp. Med. 186:11591163.
16. Begley, M.,, C. G. Gahan, and, C. Hill. 2002. Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl. Environ. Microbiol. 68:60056012.
17. Begley, M.,, C. Hill, and, C. G. Gahan. 2003. Identification and disruption of btlA, a locus involved in bile tolerance and general stress resistance in Listeria monocytogenes. FEMS Microbiol. Lett. 218:3138.
18. Begley, M.,, R. D. Sleator,, C. G. Gahan, and, C. Hill. 2005. Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect. Immun. 73:894904.
19. Bierne, H.,, C. Garandeau,, M. G. Pucciarelli,, C. Sabet,, S. Newton,, F. Garcia-del Portillo,, P. Cossart, and, A. Charbit. 2004. Sortase B, a new class of sortase in Listeria monocytogenes. J. Bacteriol. 186:19721982.
20. Bierne, H.,, S. K. Mazmanian,, M. Trost,, M. G. Pucciarelli,, G. Liu,, P. Dehoux,, L. Jansch,, F. Garcia-del Portillo,, O. Schneewind,, P. Cossart, andThe European Listeria Genome Consortium. 2002. Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Mol. Microbiol. 43:869881.
21. Bille, J. 1989. Presented at the Foodborne Listeriosis Symposium, Wiesbaden, Germany, 7 September 1988.
22. Bille, J.,, J. Rocourt, and, B. Swaminathan. 2003. Listeria and Erysipelothrix, p. 461471. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. A. Pfaller, and, R. H. Yolken (ed.), Manual of Clinical Microbiology, 8th ed, vol. 1. ASM Press, Washington, D.C.
23. Boerlin, P.,, F. Boerlin-Petzold,, E. Bannerman,, J. Bille, and, T. Jemmi. 1997. Typing Listeria monocytogenes isolates from fish products and human listeriosis cases. Appl. Environ. Microbiol. 63:13381343.
24. Boerlin, P., and, J. Piffaretti. 1991. Typing of human, animal, food, and environmental isolates of Listeria monocytogenes by multilocus enzyme electrophoresis. Appl. Environ. Microbiol. 57:16241629.
25. Boerlin, P.,, J. Rocourt,, F. Grimont,, P. A. D. Grimont,, C. Jacquet, and, J. C. Piffaretti. 1992. Listeria ivanovii subspecies londoniensis. Int. J. Syst. Bacteriol. 15:4246.
26. Borezee, E.,, E. Pellegrini, and, P. Berche. 2000. OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival. Infect. Immun. 68:70697077.
27. Borucki, M. K.,, S. H. Kim,, D. R. Call,, S. C. Smole, and, F. Pagotto. 2004. Selective discrimination of Listeria monocytogenes epidemic strains by a mixed-genome DNA microarray compared to discrimination by pulsed-field gel electrophoresis, ribotyping, and multilocus sequence typing. J. Clin. Microbiol. 42:52705276.
28. Borucki, M. K.,, J. Reynolds,, D. R. Call,, T. J. Ward,, B. Page, and, J. Kadushin. 2005. Suspension microarray with dendrimer signal amplification allows direct and high-throughput subtyping of Listeria monocytogenes from genomic DNA. J. Clin. Microbiol. 43:32553259.
29. Boujemaa-Paterski, R.,, E. Gouin,, G. Hansen,, S. Samarin,, C. Le Clainche,, D. Didry,, P. Dehoux,, P. Cossart,, C. Kocks,, M. F. Carlier, and, D. Pantaloni. 2001. Listeria protein ActA mimics WASp family proteins: it activates filament barbed end branching by Arp2/3 complex. Biochemistry 40:1139011404.
30. Braun, L.,, S. Dramsi,, P. Dehoux,, H. Bierne,, G. Lindahl, and, P. Cossart. 1997. InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol. Microbiol. 25:285294.
31. Braun, L.,, B. Ghebrehiwet, and, P. Cossart. 2000. gC1qR/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J. 19:14581466.
32. Braun, L.,, F. Nato,, B. Payrastre,, J. C. Mazie, and, P. Cossart. 1999. The 213-amino-acid leucine-rich repeat region of the Listeria monocytogenes InlB protein is sufficient for entry into mammalian cells, stimulation of PI 3-kinase and membrane ruffling. Mol. Microbiol. 34:1023.
33. Brosch, R.,, B. Catimel,, G. Milon,, C. Burchrieser,, E. Vindel, and, J. Rocourt. 1993. Virulence heterogeneity of Listeria monocytogenes strains from various sources (food, human, animal) in immunocompetent mice and its association with typing characteristics. J. Food Prot. 56:296301.
34. Bubert, A.,, Z. Sokolovic,, S. K. Chun,, L. Papatheodorou,, A. Simm, and, W. Goebel. 1999. Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol. Gen. Genet. 261:323336.
35. Buchrieser, C.,, R. Brosch,, B. Catimel, and, J. Rocourt. 1993. Pulsed-field electrophoresis applied for comparing Listeria monocytogenes strains involved in outbreaks. Can. J. Microbiol. 39:395401.
36. Bula, C.,, J. Bille, and, M. Glauser. 1995. An epidemic of food-borne listeriosis in Western Switzerland: description of 57 cases involving adults. Clin. Infect. Dis. 20:6672.
37. Buncie, S. 1991. The incidence of Listeria monocytogenes in slaughtered animals, in meat, and in meat products in Yugoslavia. Int. J. Food Microbiol. 12:173180.
38. Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 94:223253.
39. Cabanes, D.,, P. Dehoux,, O. Dussurget,, L. Frangeul, and, P. Cossart. 2002. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol. 10:238245.
40. Cabanes, D.,, O. Dussurget,, P. Dehoux, and, P. Cossart. 2004. Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol. Microbiol. 51:16011614.
41. Cabanes, D.,, S. Sousa,, A. Cebria,, M. Lecuit,, F. Garcia-del Portillo, and, P. Cossart. 2005. Gp96 is a cellular receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J. 24:28272838.
42. Cai, S.,, D. Y. Kabuki,, A. Y. Kuaye,, T. G. Cargioli,, M. S. Chung,, R. Nielsen, and, M. Wiedmann. 2002. Rational design of DNA sequence-based strategies for subtyping Listeria monocytogenes. J. Clin. Microbiol. 40:33193325.
43. Camilli, A.,, H. Goldfine, and, D. A. Portnoy. 1991. Listeria monocytogenes mutants lacking phosphatidylinositolspecific phospholipase C are avirulent. J. Exp. Med. 173:751754.
44. Camilli, A.,, L. G. Tilney, and, D. A. Portnoy. 1993. Dual roles of PlcA in Listeria monocytogenes pathogenesis. Mol.Microbiol. 8:143157.
45. Centers for Disease Control and Prevention. 1989. Listeriosis associated with consumption of turkey franks. Morb.Mortal. Wkly. Rep. 38:267268.
46. Centers for Disease Control and Prevention. 2006. Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food—10 States, United States, 2005. Morb. Mortal. Wkly. Rep. 55:392395.
47. Centers for Disease Control and Prevention. 1996. Preventing Foodborne Illness: Listeriosis. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Center for Infectious Diseases, Atlanta, Ga.
48. Chakraborty, T.,, F. Ebel,, E. Domann,, K. Niebuhr,, B. Gerstel,, S. Pistor,, C. J. Temm-Grove,, B. M. Jockusch,, M. Reinhard, and, U. Walter. 1995. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J. 14:13141321.
49. Chen, Y.,, W. H. Ross,, M. J. Gray,, M. Wiedmann,, R. C. Whiting, and, V. N. Scott. 2006. Attributing risk to Listeria monocytogenes subgroups: dose response in relation to genetic lineages. J. Food Prot. 69:335344.
50. Chen, Y.,, W. H. Ross,, V. N. Scott, and, D. E. Gombas. 2003. Listeria monocytogenes: low levels equal low risk. J. Food Prot. 66:570577.
51. Chen, Y.,, W. Zhang, and, S. J. Knabel. 2005. Multi-virulence-locus sequence typing clarifies epidemiology of recent listeriosis outbreaks in the United States. J. Clin. Microbiol. 43:52915294.
52. Colburn, K.,, C. Kaysner,, C. Abeyta, Jr., and, M. Wekell. 1990. Listeria species in a California estuarine environment. Appl. Environ. Microbiol. 56:20072011.
53. Cossart, P. 2000. Actin-based motility of pathogens: the Arp2/3 complex is a central player. Cell. Microbiol. 2:195205.
54. Cossart, P., and, J. Mengaud. 1989. Listeria monocytogenes: a model system for the molecular study of intracellular parasitism. Mol. Biol. Med. 6:463474.
55. Cossart, P., and, P. J. Sansonetti. 2004. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304:242248.
56. Cossart, P.,, M. F. Vicente,, J. Mengaud,, F. Baquero,, J. C. Perez-Diaz, and, P. Berche. 1989. Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect. Immun. 57:36293636.
57. Cox, L.,, T. Kleiss,, J. Cordier,, C. Cordellana,, P. Konkel,, C. Pedrazzini,, R. Beumer, and, A. Siebenga. 1989. Listeria spp. in food processing, non-food and domestic environments. Food Microbiol. 6:4961.
58. Czuprynski, C. J.,, N. G. Faith, and, H. Steinberg. 2003. A/J mice are susceptible and C57BL/6 mice are resistant to Listeria monocytogenes infection by intragastric inoculation. Infect. Immun. 71:682689.
59. Dabiri, G. A.,, J. M. Sanger,, D. A. Portnoy, and, F. S. Southwick. 1990. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc. Natl. Acad. Sci. USA 87:60686072.
60. Dalton, C. B.,, C. C. Austin,, J. Sobel,, P. S. Hayes,, W. F. Bibb,, L. M. Graves,, B. Swaminathan,, M. E. Proctor, and, P. M. Griffin. 1997. An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. N. Engl. J. Med. 336:100105.
61. Dalton, C. B.,, J. Gregory,, M. D. Kirk,, R. J. Stafford,, R. Givney,, E. Kraa, and, D. Gould. 2004. Foodborne disease outbreaks in Australia, 1995 to 2000. Commun. Dis. Intell. 28:211224.
62. Danielsson-Tham, M. L.,, E. Eriksson,, S. Helmersson,, M. Leffler,, L. Ludtke,, M. Steen,, S. Sorgjerd, and, W. Tham. 2004. Causes behind a human cheese-borne outbreak of gastrointestinal listeriosis. Foodborne Pathog. Dis. 1:153159.
63. Davies, E., and, M. Adams. 1994. Resistance of Listeria monocytogenes to the bacteriocin nisin. Int. J. Food Microbiol. 21:341347.
64. De Buyser, M. L.,, B. Dufour,, M. Maire, and, V. Lafarge. 2001. Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. Int. J. Food Microbiol. 67:117.
65. Decatur, A. L., and, D. A. Portnoy. 2000. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 290:992995.
66. de Simon, M., and, M. D. Ferrer. 1998. Initial numbers, serovars and phagevars of Listeria monocytogenes isolated in prepared foods in the city of Barcelona (Spain). Int. J. Food Microbiol. 44:141144.
67. de Valk, H.,, C. Jacquet,, V. Goulet,, V. Vaillant,, A. Perra,, F. Simon,, J. C. Desenclos,, P. Martin, andListeria Surveillance Feasibility Study Participants. 2005. Surveillance of Listeria infections in Europe. Euro Surveill. 10:251255.
68. de Valk, H.,, V. Vaillant,, C. Jacquet,, J. Rocourt,, F. Le Querrec,, F. Stainer,, N. Quelquejeu,, O. Pierre,, V. Pierre,, J. C. Desenclos, and, V. Goulet. 2001. Two consecutive nationwide outbreaks of listeriosis in France, October 1999-February 2000. Am. J. Epidemiol. 154:944950.
69. Dijkstra, R. 1982. The occurrence of Listeria monocytogenes in surface water of canals and lakes, in ditches of one big polder and in the effluents and canals of a sewage treatment plant. Zentbl. Bakteriol. Hyg. Abt. 1 Orig. Reihe B 176:202205.
70. Domann, E.,, M. Leimeister-Wachter,, W. Goebel, and, T. Chakraborty. 1991. Molecular cloning, sequencing, and identification of a metalloprotease gene from Listeria monocytogenes that is species specific and physically linked to the listeriolysin gene. Infect. Immun. 59:6572.
71. Domann, E.,, J. Wehland,, M. Rohde,, S. Pistor,, M. Hartl,, W. Goebel,, M. Leimeister-Wachter,, M. Wuenscher, and, T. Chakraborty. 1992. A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J. 11:19811990.
72. Dominguez, C.,, I. Gomez, and, J. Zumalacarregui. 2001. Prevalence and contamination levels of Listeria monocytogenes in smoked fish and pate sold in Spain. J. Food Prot. 64:20752077.
73. Doumith, M.,, C. Cazalet,, N. Simoes,, L. Frangeul,, C. Jacquet,, F. Kunst,, P. Martin,, P. Cossart,, P. Glaser, and, C. Buchrieser. 2004. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect. Immun. 72:10721083.
74. Doumith, M.,, C. Jacquet,, P. Gerner-Smidt,, L. M. Graves,, S. Loncarevic,, T. Mathisen,, A. Morvan,, C. Salcedo,, M. Torpdahl,, J. A. Vazquez, and, P. Martin. 2005. Multicenter validation of a multiplex PCR assay for differentiating the major Listeria monocytogenes serovars 1/2a, 1/2b, 1/2c, and 4b: toward an international standard. J. Food Prot. 68:26482650.
75. Doyle, M. 1988. Effect of environmental and processing conditions on Listeria monocytogenes. Food Technol. 42:169171.
76. Dramsi, S.,, I. Biswas,, L. Braun,, E. Maguin,, P. Mastroenni, and, P. Cossart. 1995. Entry into hepatocytes requires expression of the inlB gene product. Mol. Microbiol. 16:251261.
77. Dramsi, S.,, F. Bourdichon,, D. Cabanes,, M. Lecuit,, H. Fsihi, and, P. Cossart. 2004. FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol. Microbiol. 53:639649.
78. Dramsi, S., and, P. Cossart. 2002. Listeriolysin O: a genuine cytolysin optimized for an intracellular parasite. J. Cell Biol. 156:943946.
79. Dussurget, O.,, D. Cabanes,, P. Dehoux,, M. Lecuit,, C. Buchrieser,, P. Glaser, and, P. Cossart. 2002. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol. 45:10951106.
80. Dussurget, O.,, E. Dumas,, C. Archambaud,, I. Chafsey,, C. Chambon,, M. Hebraud, and, P. Cossart. 2005. Listeria monocytogenes ferritin protects against multiple stresses and is required for virulence. FEMS Microbiol. Lett. 250:253261.
81. Dussurget, O.,, J. Pizarro-Cerda, and, P. Cossart. 2004. Molecular determinants of Listeria monocytogenes virulence. Annu. Rev. Microbiol. 58:587610.
82. Elliott, E. L., and, J. E. Kvenberg. 2000. Risk assessment used to evaluate the U.S. position on Listeria monocytogenes in seafood. Int. J. Food Microbiol. 62:253260.
83. Ericsson, H.,, A. Eklow,, M. L. Danielsson-Tham,, S. Loncarevic,, L. O. Mentzing,, I. Persson,, H. Unnerstad, and, W. Tham. 1997. An outbreak of listeriosis suspected to have been caused by rainbow trout. J. Clin. Microbiol. 35:29042907.
84. Evans, M. R.,, B. Swaminathan,, L. M. Graves,, E. Altermann,, T. R. Klaenhammer,, R. C. Fink,, S. Kernodle, and, S. Kathariou. 2004. Genetic markers unique to Listeria monocytogenes serotype 4b differentiate epidemic clone II (hot dog outbreak strains) from other lineages. Appl. Environ. Microbiol. 70:23832390.
85. Farber, J.,, E. Coates,, N. Beausoleil, and, J. Fournier. 1991. Feeding trials of Listeria monocytogenes with a nonhuman primate model. J. Clin. Microbiol. 29:26062608.
86. Farber, J. M. 2000. Present situation in Canada regarding Listeria monocytogenes and ready-to-eat seafood products. Int. J. Food Microbiol. 62:247251.
87. Farber, J. M.,, E. M. Daley,, M. T. MacKie, and, B. Limerick. 2000. A small outbreak of listeriosis potentially linked to the consumption of imitation crab meat. Lett. Appl. Microbiol. 31:100104.
88. Farber, J. M., and, J. Harwig. 1996. The Canadian position on Listeria monocytogenes in ready-to-eat foods. Food Control 7:253258.
89. Farber, J. M., and, P. I. Peterkin. 1999. Incidence and behavior of Listeria monocytogenes in meat products, p. 505564. In E. T. Ryser and, E. H. Marth (ed.), Listeria, Listeriosis and Food Safety. Marcel Dekker, New York, N.Y.
90. Fenlon, D. R. 1999. Listeria monocytogenes in the natural environment, p. 2137. In E. T. Ryser and, E. H. Marth (ed.), Listeria, Listeriosis and Food Safety. Marcel Dekker, New York, N.Y.
91. Ferreira, A.,, D. Sue,, C. P. O’Byrne, and, K. J. Boor. 2003. Role of Listeria monocytogenes sigma(B) in survival of lethal acidic conditions and in the acquired acid tolerance response. Appl. Environ. Microbiol. 69:26922698.
92. Fleming, D.,, S. Cochi,, K. MacDonald,, J. Brondum,, P. Hayes,, B. Plikaytis,, M. Holmes,, A. Audurier,, C. Broome, and, A. Reingold. 1985. Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. N. Engl. J. Med. 312:404407.
93. Freitag, N.,, L. Rong, and, D. Portnoy. 1993. Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect. Immun. 61:25372544.
94. Freitag, N. E. 2000. Genetic tools for use with Listeria monocytogenes, p. 488498. In V. A. Fischetti,, R. P. Novick,, J. J. Ferretti,, D. A. Portnoy, and, J. I. Rood (ed.), Gram-Positive Pathogens. ASM Press, Washington, D.C.
95. Freitag, N. E., and, K. E. Jacobs. 1999. Examination of Listeria monocytogenes intracellular gene expression by using the green fluorescent protein of Aequorea victoria. Infect. Immun. 67:18441852.
96. Frye, C., and, C. W. Donnelly. 2005. Comprehensive survey of pasteurized fluid milk produced in the United States reveals a low prevalence of Listeria monocytogenes. J.Food Prot. 68:973979.
97. Frye, D. M.,, R. Zweig,, J. Sturgeon,, M. Tormey,, M. LeCavalier,, I. Lee,, L. Lawani, and, L. Mascola. 2002. An outbreak of febrile gastroenteritis associated with delicatessen meat contaminated with Listeria monocytogenes. Clin. Infect. Dis. 35:943949.
98. Gahan, C. G.,, J. O’Mahony, and, C. Hill. 2001. Characterization of the groESL operon in Listeria monocytogenes: utilization of two reporter systems (gfp and hly) for evaluating in vivo expression. Infect. Immun. 69:39243932.
99. Gaillard, J.,, P. Berche,, C. Frehel,, E. Gouin, and, P. Cossart. 1991. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci. Cell 65:11271141.
100. Gaillard, J. L.,, P. Berche, and, P. Sansonetti. 1986. Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect.Immun. 52:5055.
101. Gaillot, O.,, E. Pellegrini,, S. Bregenholt,, S. Nair, and, P. Berche. 2000. The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes. Mol. Microbiol. 35:12861294.
102. Garner, M. R.,, B. L. Njaa,, M. Wiedmann, and, K. J. Boor. 2006. Sigma B contributes to Listeria monocytogenes gastrointestinal infection but not to systemic spread in the guinea pig infection model. Infect. Immun. 74:876886.
103. Gasanov, U.,, D. Hughes, and, P. M. Hansbro. 2005. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiol. Rev. 29:851875.
104. Gaulin, C.,, D. Ramsay,, L. Ringuette, and, J. Ismail. 2003. First documented outbreak of Listeria monocytogenes in Quebec, 2002. Can. Commun. Dis. Rep. 29:181186.
105. Gedde, M.,, D. Higgins,, L. Tilney, and, D. Portnoy. 2000. Role of listeriolysin O in cell-to-cell spread of Listeria monocytogenes. Infect. Immun. 68:9991003.
106. Geese, M.,, J. J. Loureiro,, J. E. Bear,, J. Wehland,, F. B. Gertler, and, A. S. Sechi. 2002. Contribution of Ena/VASP proteins to intracellular motility of Listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization. Mol. Biol. Cell 13:23832396.
107. Geginat, G.,, M. Lalic,, M. Kretschmar,, W. Goebel,, H. Hof,, D. Palm, and, A. Bubert. 1998. Th1 cells specific for a secreted protein of Listeria monocytogenes are protective in vivo. J. Immun. 160:60466055.
108. Geginat, G.,, T. Nichterlein,, M. Kretschmar,, S. Schenk,, H. Hof,, M. Lalic-Multhaler,, W. Goebel, and, A. Bubert. 1999. Enhancement of the Listeria monocytogenes p60–specific CD4 and CD8 T cell memory by nonpathogenic Listeria innocua. J. Immun. 162:47814789.
109. Genigeorgis, C.,, D. Dutulescu, and, J. Fernandez Garayzabal. 1989. Prevalence of Listeria spp. in poultry meat at the supermarket and slaughterhouse level. J. Food Prot. 52:618624.
110. Gerner-Smidt, P.,, S. Ethelberg,, P. Schiellerup,, J. J. Christensen,, J. Engberg,, V. Fussing,, A. Jensen,, C. Jensen,, A. M. Petersen, and, B. G. Bruun. 2005. Invasive listeriosis in Denmark 1994–2003: a review of 299 cases with special emphasis on risk factors for mortality. Clin. Microbiol. Infect. 11:618624.
111. Glaser, P.,, L. Frangeul,, C. Buchrieser,, C. Rusniok,, A. Amend,, F. Baquero,, P. Berche,, H. Bloecker,, P. Brandt,, T. Chakraborty,, A. Charbit,, F. Chetouani,, E. Couve,, A. de Daruvar,, P. Dehoux,, E. Domann,, G. Dominguez-Bernal,, E. Duchaud,, L. Durant,, O. Dussurget,, K. D. Entian,, H. Fsihi,, F. G. Portillo,, P. Garrido,, L. Gautier,, W. Goebel,, N. Gomez-Lopez,, T. Hain,, J. Hauf,, D. Jackson,, L. M. Jones,, U. Kaerst,, J. Kreft,, M. Kuhn,, F. Kunst,, G. Kurapkat,, E. Madueno,, A. Maitournam,, J. M. Vicente,, E. Ng,, H. Nedjari,, G. Nordsiek,, S. Novella,, B. de Pablos,, J. C. Perez-Diaz,, R. Purcell,, B. Remmel,, M. Rose,, T. Schlueter,, N. Simoes,, A. Tierrez,, J. A. Vazquez-Boland,, H. Voss,, J. Wehland, and, P. Cossart. 2001. Comparative genomics of Listeria species. Science 294:849852.
112. Glass, K. A., and, M. P. Doyle. 1989. Fate of Listeria monocytogenes in processed meat products during refrigerated storage. Appl. Environ. Microbiol. 55:15651569.
113. Goetz, M.,, A. Bubert,, G. Wang,, I. Chico-Calero,, J. A. Vazquez-Boland,, M. Beck,, J. Slaghuis,, A. A. Szalay, and, W. Goebel. 2001. Microinjection and growth of bacteria in the cytosol of mammalian host cells. Proc. Natl. Acad. Sci. USA 98:1222112226.
114. Goldfine, H., and, S. J. Wadsworth. 2002. Macrophage intracellular signaling induced by Listeria monocytogenes. Microbes Infect. 4:13351343.
115. Goldfine, H.,, S. J. Wadsworth, and, N. C. Johnston. 2000. Activation of host phospholipases C and D in macrophages after infection with Listeria monocytogenes. Infect. Immun. 68:57355741.
116. Gombas, D. E.,, Y. Chen,, R. S. Clavero, and, V. N. Scott. 2003. Survey of Listeria monocytogenes in ready-to-eat foods. J. Food Prot. 66:559569.
117. Gonzalez-Zorn, B.,, G. Dominguez-Bernal,, M. Suarez,, M. T. Ripio,, Y. Vega,, S. Novella, and, J. A. Vazquez-Boland. 1999. The smcL gene of Listeria ivanovii encodes a sphingomyelinase C that mediates bacterial escape from the phagocytic vacuole. Mol. Microbiol. 33:510523.
118. Gottlieb, S. L.,, E. C. Newbern,, P. M. Griffin,, L. M. Graves,, R. M. Hoekstra,, N. L. Baker,, S. B. Hunter,, K. G. Holt,, F. Ramsey,, M. Head,, P. Levine,, G. Johnson,, D. Schoonmaker-Bopp,, V. Reddy,, L. Kornstein,, M. Gerwel,, J. Nsubuga,, L. Edwards,, S. Stonecipher,, S. Hurd,, D. Austin,, M. A. Jefferson,, S. D. Young,, K. Hise,, E. D. Chernak, and, J. Sobel. 2006. Multistate outbreak of listeriosis linked to turkey deli meat and subsequent changes in US regulatory policy. Clin. Infect. Dis. 42:2936.
119. Gouin, E.,, C. Egile,, P. Dehoux,, V. Villiers,, J. Adams,, F. Gertler,, R. Li, and, P. Cossart. 2004. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427:457461.
120. Gouin, E.,, H. Gantelet,, C. Egile,, I. Lasa,, H. Ohayon,, V. Villiers,, P. Gounon,, P. J. Sansonetti, and, P. Cossart. 1999. A comparative study of the actin-based motility of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J. Cell Sci. 112:16971708.
121. Gouin, E.,, M. D. Welch, and, P. Cossart. 2005. Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol. 8:3545.
122. Goulet, V.,, H. de Valk,, O. Pierre,, F. Stainer,, J. Rocourt,, V. Vaillant,, C. Jacquet, and, J. C. Desenclos. 2001. Effect of prevention measures on incidence of human listeriosis, France, 1987–1997. Emerg. Infect. Dis. 7:983989.
123. Goulet, V.,, C. Jacquet,, V. Vaillant,, I. Rebiere,, E. Mouret,, E. Lorente,, F. Steiner, and, J. Rocourt. 1995. Listeriosis from consumption of raw milk cheese. Lancet 345:15811582.
124. Grau, F., and, P. Vanderlinde. 1992. Occurrence, numbers and growth of Listeria monocytogenes on some vacuum-packaged processed meats. J. Food Prot. 55:47.
125. Gravani, R. 1999. Listeria in food processing facilities, p. 657709. In E. T. Ryser and, E. H. Marth (ed.), Listeria, Listeriosis and Food Safety. Marcel Dekker, New York, N.Y.
126. Graves, L. M.,, S. B. Hunter,, A. R. Ong,, D. Schoonmaker-Bopp,, K. Hise,, L. Kornstein,, W. E. DeWitt,, P. S. Hayes,, E. Dunne,, P. Mead, and, B. Swaminathan. 2005. Microbiological aspects of the investigation that traced the 1998 outbreak. J. Clin. Microbiol. 43:23502355.
127. Graves, L. M., and, B. Swaminathan. 2005. PulseNet’s step-by-step laboratory protocol for molecular subtyping of Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis, p. 5772. In C. Adley (ed.), Food-Borne Pathogens, vol. 21. Humana Press, Totowa, N.J.
128. Graves, L. M.,, B. Swaminathan, and, S. Hunter. 1999. Subtyping Listeria monocytogenes, p. 279297. In E. T. Ryser and, E. H. Marth (ed.), Listeria, Listeriosis, and Food Safety, 2nd ed. Marcel Dekker, New York, N.Y.
129. Gray, M. J.,, R. N. Zadoks,, E. D. Fortes,, B. Dogan,, S. Cai,, Y. Chen,, V. N. Scott,, D. E. Gombas,, K. J. Boor, and, M. Wiedmann. 2004. Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. Appl. Environ. Microbiol. 70:58335841.
130. Greiffenberg, L.,, W. Goebel,, K. S. Kim,, J. Daniels, and, M. Kuhn. 2000. Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: an electron microscopic study. Infect. Immun. 68:32753279.
131. Grif, K.,, G. Patscheider,, M. P. Dierich, and, F. Allerberger. 2003. Incidence of fecal carriage of Listeria monocytogenes in three healthy volunteers: a one-year prospective stool survey. Eur. J. Clin. Microbiol. Infect. Dis. 22:1620.
132. Grundling, A.,, M. D. Gonzalez, and, D. E. Higgins. 2003. Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells. J. Bacteriol. 185:62956307.
133. Guenich, H.,, H. Muller,, A. Schrettenbrunner, and, H. Seeliger. 1985. The occurrence of different Listeria species in municipal waste water. Zentbl. Bakteriol. Hyg. Abt. 1 Orig. Reihe B 181:563565.
134. Gutekunst, K. A.,, L. Pine,, E. White,, S. Kathariou, and, G. M. Carlone. 1992. A filamentous-like mutant of Listeria monocytogenes with reduced expression of a 60-kilodalton extracellular protein invades and grows in 3T6 and Caco-2 cells. Can. J. Microbiol. 38:843851.
135. Hanawa, T.,, M. Fukuda,, H. Kawakami,, H. Hirano,, S. Kamiya, and, T. Yamamoto. 1999. The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient phagocytosis with macrophages. Cell Stress Chaperones 4:118128.
136. Hanawa, T.,, T. Yamamoto, and, S. Kamiya. 1995. Listeria monocytogenes can grow in macrophages without the aid of proteins induced by environmental stresses. Infect. Immun. 63:45954599.
137. Harty, J. T., and, E. G. Pamer. 1995. CD8 T lymphocytes specific for the secreted p60 antigen protect against Listeria monocytogenes infection. J. Immunol. 154:46424650.
138. Hebraud, M., and, J. Guzzo. 2000. The main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-like proteins. FEMS Microbiol. Lett. 190:2934.
139. Hess, J.,, I. Gentschev,, G. Szalay,, C. Ladel,, A. Bubert,, W. Goebel, and, S. H. Kaufmann. 1995. Listeria monocytogenes p60 supports host cell invasion by and in vivo survival of attenuated Salmonella typhimurium. Infect. Immun. 63:20472053.
140. Ho, J. L.,, K. N. Shands,, G. Friedland,, P. Eckind, and, D. W. Fraser. 1986. An outbreak of type 4b Listeria monocytogenes infection involving patients from eight Boston hospitals. Arch. Intern. Med. 146:520524.
141. Hodgson, D. A. 2000. Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. Mol. Microbiol. 35:312323.
142. Hoffman, A. D.,, K. L. Gall,, D. M. Norton, and, M. Wiedmann. 2003. Listeria monocytogenes contamination patterns for the smoked fish processing environment and for raw fish. J. Food Prot. 66:5260.
143. Huss, H. H.,, A. Reilly, and, P. K. Ben Embarek. 2000. Prevention and control of safety hazards in cold smoked salmon production. Food Control 11:149156.
144. Husu, J.,, S. Sivela, and, A. Rauramaa. 1990. Prevalence of Listeria species as related to chemical quality of farm-ensiled grass. Grass Forage Sci. 45:309314.
145. Inoue, S.,, A. Nakama,, Y. Arai,, Y. Kokubo,, T. Maruyama,, A. Saito,, T. Yoshida,, M. Terao,, S. Yamamoto, and, S. Kumagai. 2000. Prevalence and contamination levels of Listeria monocytogenes in retail foods in Japan. Int. J. Food Microbiol. 59:7377.
146. Jacobs, T.,, A. Darji,, N. Frahm,, M. Rohde,, J. Wehland,, T. Chakraborty, and, S. Weiss. 1998. Listeriolysin O: cholesterol inhibits cytolysis but not binding to cellular membranes. Mol. Microbiol. 28:10811089.
147. Jacquet, C.,, B. Catimel,, R. Brosch,, C. Buchrieser,, P. Dehaumont,, V. Goulet,, V. Lepoutre,, P. Veit, and, J. Rocourt. 1995. Investigations related to the epidemic strain involved in the French listeriosis outbreak in 1992. Appl. Environ. Microbiol. 61:22422246.
148. Jacquet, C.,, M. Doumith,, J. I. Gordon,, P. M. Martin,, P. Cossart, and, M. Lecuit. 2004. A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes. J. Infect. Dis. 189:20942100.
149. Jacquet, C.,, E. Gouin,, D. Jeannel,, P. Cossart, and, J. Rocourt. 2002. Expression of ActA, Ami, InlB, and listeriolysin O in Listeria monocytogenes of human and food origin. Appl. Environ. Microbiol. 68:616622.
150. Jeffers, G. T.,, J. L. Bruce,, P. L. McDonough,, J. Scarlett,, K. J. Boor, and, M. Wiedmann. 2001. Comparative genetic characterization of Listeria monocytogenes isolates from human and animal listeriosis cases. Microbiology 147:10951104.
151. Jensen, A. 1993. Excretion of Listeria monocytogenes in faeces after listeriosis: rate, quantity and duration. Med.Microbiol. Lett. 2:176182.
152. Jeong, D., and, J. Frank. 1994. Growth of Listeria monocytogenes at 10°C in biofilms with microorganisms isolated from meat and dairy processing environments. J. Food Prot. 57:576586.
153. Jinneman, K. C.,, M. M. Wekell, and, M. W. Eklund. 1999. Incidence and behavior of Listeria monocytogenes in fish and seafood, p. 601630. In E. T. Ryser and, E. H. Marth (ed.), Listeria, Listeriosis and Food Safety. Marcel Dekker, New York, N.Y.
154. Johansson, J.,, P. Mandin,, A. Renzoni,, C. Chiaruttini,, M. Springer, and, P. Cossart. 2002. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110:551561.
155. Jonquieres, R.,, H. Bierne,, F. Fiedler,, P. Gounon, and, P. Cossart. 1999. Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria. Mol. Microbiol. 34:902914.
156. Jonquieres, R.,, H. Bierne,, J. Mengaud, and, P. Cossart. 1998. The inlA gene of Listeria monocytogenes LO28 harbors a nonsense mutation resulting in release of internalin. Infect. Immun. 66:34203422.
157. Jonquieres, R.,, J. Pizarro-Cerda, and, P. Cossart. 2001. Synergy between the N- and C-terminal domains of InlB for efficient invasion of nonphagocytic cells by Listeria monocytogenes. Mol. Microbiol. 42:955965.
158. Kallipolitis, B. H., and, H. Ingmer. 2001. Listeria monocytogenes response regulators important for stress tolerance and pathogenesis. FEMS Microbiol. Lett. 204:111115.
159. Kathariou, S.,, P. Metz,, H. Hof, and, W. Goebel. 1987. Tn916-induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes. J. Bacteriol. 169:12911297.
160. Khelef, N.,, M. Lecuit,, C. Buchrieser,, D. Cabanes,, O. Dussurget, and, P. Cossart. 2004. Listeria monocytogenes and the Genus Listeria. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer, and, E. Stackebrandt (ed.), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd ed. Springer, New York, N.Y. [Online.] Accessed 31 December 2005.
161. Klarsfeld, A.,, P. Goossens, and, P. Cossart. 1994. Five Listeria monocytogenes preferentially expressed in mammalian cells. Mol. Microbiol. 13:585597.
162. Ko, R., and, L. T. Smith. 1999. Identification of an ATP-driven, osmoregulated glycine betaine transport system in Listeria monocytogenes. Appl. Environ. Microbiol. 65:40404048.
163. Kocks, C.,, E. Gouin,, M. Tabouret,, P. Berche,, H. Ohayon, and, P. Cossart. 1992. Listeria monocytogenes induced actin assembly requires the ActA gene product, a surface protein. Cell 68:521531.
164. Kolb-Maurer, A.,, S. Pilgrim,, E. Kampgen,, A. D. McLellan,, E. B. Brocker,, W. Goebel, and, I. Gentschev. 2001. Antibodies against listerial protein 60 act as an opsonin for phagocytosis of Listeria monocytogenes by human dendritic cells. Infect. Immun. 69:31003109.
165. Koutsoumanis, K. P., and, J. N. Sofos. 2005. Effect of inoculum size on the combined temperature, pH and aw limits for growth of Listeria monocytogenes. Int. J. Food Microbiol. 104:8391.
166. Kuhn, M., and, W. Goebel. 1989. Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect. Immun. 57:5561.
167. Lappi, V. R.,, J. Thimothe,, K. K. Nightingale,, K. Gall,, V. N. Scott, and, M. Wiedmann. 2004. Longitudinal studies on Listeria in smoked fish plants: impact of intervention strategies on contamination patterns. J. Food Prot. 67:25002514.
168. Larsen, A., and, B. Norrung. 1993. Inhibition of Listeria monocytogenes by bavaricin A, a bacteriocin produced by Lactobacillus bavaricus Ml401. Lett. Appl. Microbiol. 17:132134.
169. Lasa, I.,, V. David,, E. Gouin,, J. B. Marchand, and, P. Cossart. 1995. The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator. Mol. Microbiol. 18:425436.
170. Lasa, I.,, E. Gouin,, M. Goethals,, K. Vancompernolle,, V. David,, J. Vandekerckhove, and, P. Cossart. 1997. Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. EMBO J. 16:15311540.
171. Lauer, P.,, M. Y. Chow,, M. J. Loessner,, D. A. Portnoy, and, R. Calendar. 2002. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol. 184:41774186.
172. Lecuit, M., and, C. Cossart. 2001. Listeria monocytogenes, p. 14371462. In S. Sussman (ed.), Molecular Medical Microbiology, vol. 2. Academic Press, London, United Kingdom.
173. Lecuit, M., and, P. Cossart. 2002. Genetically-modified-animal models for human infections: the Listeria paradigm. Trends Mol. Med. 8:537542.
174. Lecuit, M.,, S. Dramsi,, C. Gottardi,, M. Fedor-Chaiken,, B. Gumbiner, and, P. Cossart. 1999. A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J. 18:39563963.
175. Lecuit, M.,, D. M. Nelson,, S. D. Smith,, H. Khun,, M. Huerre,, M. C. Vacher-Lavenu,, J. I. Gordon, and, P. Cossart. 2004. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin. Proc. Natl. Acad. Sci. USA 101:61526157.
176. Lecuit, M.,, H. Ohayon,, L. Braun,, J. Mengaud, and, P. Cossart. 1997. Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect. Immun. 65:53095319.
177. Lecuit, M.,, S. Vandormael-Pournin,, J. Lefort,, M. Huerre,, P. Gounon,, C. Dupuy,, C. Babinet, and, P. Cossart. 2001. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:17221725.
178. Leimeister-Wachter, M.,, E. Domann, and, T. Chakraborty. 1992. The expression of virulence genes in Listeria monocytogenes is thermoregulated. J. Bacteriol. 174:947952.
179. Leimeister-Wachter, M.,, C. Haffner,, E. Domann,, W. Goebel, and, T. Chakraborty. 1990. Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes. Proc. Natl. Acad. Sci. USA 87:83368340.
180. Lenz, L. L.,, S. Mohammadi,, A. Geissler, and, D. A. Portnoy. 2003. SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc. Natl. Acad. Sci. USA 100:1243212437.
181. Li, Z.,, J. Dai,, H. Zheng,, B. Liu, and, M. Caudill. 2002. An integrated view of the roles and mechanisms of heat shock protein gp96-peptide complex in eliciting immune response. Front. Biosci. 7:731751.
182. Lin, C. M.,, K. Takeuchi,, L. Zhang,, C. B. Dohm,, J. D. Meyer,, P. A. Hall, and, M. P. Doyle. 2006. Cross-contamination between processing equipment and deli meats by Listeria monocytogenes. J. Food Prot. 69:7179.
183. Linnan, M.,, L. Mascola,, X. Lou,, V. Goulet,, S. May,, C. Salminen,, D. Hird,, M. Yonekura,, P. Hayes,, R. Weaver,, A. Audurier,, B. Plikaytis,, S. Fannin,, A. Kleks, and, C. Broome. 1988. Epidemic listeriosis associated with Mexican-style cheese. N. Engl. J. Med. 319:823828.
184. Liu, D.,, M. L. Lawrence,, L. Gorski,, R. E. Mandrell,, A. J. Ainsworth, and, F. W. Austin. 2006. Listeria monocytogenes serotype 4b strains belonging to lineages I and III possess distinct molecular features. J. Clin. Microbiol. 44:214217.
185. Lorber, B. 1997. Listeriosis. Clin. Infect. Dis. 24:19.
186. Lou, Y., and, A. E. Yousef. 1999. Characteristics of Listeria monocytogenes important to food processors, p. 131224. In E. T. Ryser and, E. H. Marth (ed.), Listeria, Listeriosis, and Food Safety, 2nd ed. Marcel Dekker, New York, N.Y.
187. Low, J. C.,, F. Wright,, J. McLauchlin, and, W. Donachie. 1993. Serotyping and distribution of Listeria isolates from cases of ovine listeriosis. Vet. Rec. 133:165166.
188. Luchansky, J. B.,, P. M. Muriana, and, T. R. Klaenhammer. 1988. Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium. Mol. Microbiol. 2:637646.
189. Lunden, J. M.,, T. J. Autio, and, H. J. Korkeala. 2002. Transfer of persistent Listeria monocytogenes contamination between food-processing plants associated with a dicing machine. J. Food Prot. 65:11291133.
190. Lunden, J. M.,, T. J. Autio,, A. M. Sjoberg, and, H. J. Korkeala. 2003. Persistent and nonpersistent Listeria monocytogenes contamination in meat and poultry processing plants. J. Food Prot. 66:20622069.
191. Lyytikainen, O.,, T. Autio,, R. Maijala,, P. Ruutu,, T. Honkanen-Buzalski,, M. Miettinen,, M. Hatakka,, J. Mikkola,, V. J. Anttila,, T. Johansson,, L. Rantala,, T. Aalto,, H. Korkeala, and, A. Siitonen. 2000. An outbreak of Listeria monocytogenes serotype 3a infections from butter in Finland. J. Infect. Dis. 181:18381841.
192. MacDonald, P. D.,, R. E. Whitwam,, J. D. Boggs,, J. N. MacCormack,, K. L. Anderson,, J. W. Reardon,, J. R. Saah,, L. M. Graves,, S. B. Hunter, and, J. Sobel. 2005. Outbreak of listeriosis among Mexican immigrants as a result of consumption of illicitly produced Mexican-style cheese. Clin. Infect. Dis. 40:677682.
193. Makino, S. I.,, K. Kawamoto,, K. Takeshi,, Y. Okada,, M. Yamasaki,, S. Yamamoto, and, S. Igimi. 2005. An outbreak of food-borne listeriosis due to cheese in Japan, during 2001. Int. J. Food Microbiol. 104:189196.
194. Mandin, P.,, H. Fsihi,, O. Dussurget,, M. Vergassola,, E. Milohanic,, A. Toledo-Arana,, I. Lasa,, J. Johansson, and, P. Cossart. 2005. VirR, a response regulator critical for Listeria monocytogenes virulence. Mol. Microbiol. 57:13671380.
195. Marino, M.,, M. Banerjee,, R. Jonquieres,, P. Cossart, and, P. Ghosh. 2002. GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands. EMBO J. 21:56235634.
196. Marino, M.,, L. Braun,, P. Cossart, and, P. Ghosh. 1999. Structure of the InlB leucine-rich repeats, a domain that triggers host cell invasion by the bacterial pathogen L. monocytogenes. Mol. Cell 4:10631072.
197. Marquis, H.,, H. Bouwer,, D. Hinrichs, and, D. Portnoy. 1993. Intracytoplasmic growth and virulence of Listeria monocytogenes auxotrophic mutants. Infect. Immun. 61:37563760.
198. Marquis, H.,, V. Doshi, and, D. A. Portnoy. 1995. The broad-range phospholipase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect. Immun. 63:45314534.
199. Mascola, L.,, F. Sorvillo,, V. Goulet,, B. Hall,, R. Weaver, and, M. Linnan. 1992. Fecal carriage of Listeria monocytogenes—observations during a community wide, common-source outbreak. Clin. Infect. Dis. 15:557558.
200. Matthieu, F.,, M. Michel,, A. Lebrihi, and, G. Lefebvre. 1994. Effect of the bacteriocin carnocin CP5 and of the producing strain Carnobacterium piscicola CP5 on the viability of Listeria monocytogenes ATCC 15313 in salt solution, broth and skimmed milk, at various incubation temperatures. Int. J. Food Microbiol. 22:155172.
201. McLauchlin, J. 1997. The discovery of Listeria. PHLS Microbiol. Dig. 14:7678.
202. McLauchlin, J.,, S. Hall,, S. Velani, and, R. Gilbert. 1991. Human listeriosis and pate—a possible association. Br. Med. J. 303:773775.
203. McLauchlin, J., and, P. Hoffman. 1989. Neonatal cross-infection from Listeria monocytogenes. Commun. Dis. Rep. 6:34.
204. McLauchlin, J.,, R. T. Mitchell,, W. J. Smerdon, and, K. Jewell. 2004. Listeria monocytogenes and listeriosis: a review of hazard characterisation for use in microbiological risk assessment of foods. Int. J. Food Microbiol. 92:1533.
205. McLaughlan, A. M., and, S. J. Foster. 1998. Molecular characterization of an autolytic amidase of Listeria monocytogenes EGD. Microbiology 144:13591367.
206. Mead, P. S.,, E. F. Dunne,, L. Graves,, M. Wiedmann,, M. Patrick,, S. Hunter,, E. Salehi,, F. Mostashari,, A. Craig,, P. Mshar,, T. Bannerman,, B. D. Sauders,, P. Hayes,, W. Dewitt,, P. Sparling,, P. Griffin,, D. Morse,, L. Slutsker, and, B. Swaminathan. 2005. Nationwide outbreak of listeriosis due to contaminated meat. Epidemiol. Infect. 134:744751.
207. Meinersmann, R. J.,, R. W. Phillips,, M. Wiedmann, and, M. E. Berrang. 2004. Multilocus sequence typing of Listeria monocytogenes by use of hypervariable genes reveals clonal and recombination histories of three lineages. Appl. Environ. Microbiol. 70:21932203.
208. Mengaud, J.,, C. Braun-Breton, and, P. Cossart. 1991. Identification of phosphatidylinositol-specific phospholipase C activity in Listeria monocytogenes: a novel type of virulence factor? Mol. Microbiol. 5:367372.
209. Mengaud, J.,, J. Chenevert,, C. Geoffroy,, J. L. Gaillard, and, P. Cossart. 1987. Identification of the structural gene encoding the SH-activated hemolysin of Listeria monocytogenes: listeriolysin O is homologous to streptolysin O and pneumolysin. Infect. Immun. 55:32253227.
210. Mengaud, J.,, S. Dramsi,, E. Gouin,, J. Vasquez-Boland,, G. Milon, and, P. Cossart. 1991. Pleiotropic control of Listeria monocytogenes virulence factors by a gene which is autoregulated. Mol. Microbiol. 5:22732283.
211. Mengaud, J.,, H. Ohayon,, P. Gounon,, R. M. Mege, and, P. Cossart. 1996. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923932.
212. Miettinen, H., and, G. Wirtanen. 2005. Prevalence and location of Listeria monocytogenes in farmed rainbow trout. Int. J. Food Microbiol. 104:135143.
213. Miettinen, M. K.,, A. Siitonen,, P. Heiskanen,, H. Haajanen,, K. J. Bjorkroth, and, H. J. Korkeala. 1999. Molecular epidemiology of an outbreak of febrile gastroenteritis caused by Listeria monocytogenes in cold-smoked rainbow trout. J. Clin. Microbiol. 37:23582360.
214. Milohanic, E.,, P. Glaser,, J. Y. Coppee,, L. Frangeul,, Y. Vega,, J. A. Vazquez-Boland,, F. Kunst,, P. Cossart, and, C. Buchrieser. 2003. Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol. Microbiol. 47:16131625.
215. Milohanic, E.,, R. Jonquieres,, P. Cossart,, P. Berche, and, J. L. Gaillard. 2001. The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol. Microbiol. 39:12121224.
216. Modi, K.,, M. Chikindas, and, T. Montville. 2000. Sensitivity of nisin-resistant Listeria monocytogenes to heat and the synergistic action of heat and nisin. Lett. Appl. Microbiol. 30:249253.
217. Munder, A.,, A. Zelmer,, A. Schmiedl,, K. E. Dittmar,, M. Rohde,, M. Dorsch,, K. Otto,, H. J. Hedrich,, B. Tummler,, S. Weiss, and, T. Tschernig. 2005. Murine pulmonary infection with Listeria monocytogenes: differential susceptibility of BALB/c, C57BL/6 and DBA/2 mice. Microbes Infect. 7:600611.
218. Nadon, C. A.,, B. M. Bowen,, M. Wiedmann, and, K. J. Boor. 2002. Sigma B contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect. Immun. 70:39483952.
219. Nair, S.,, C. Frehel,, L. Nguyen,, V. Escuyer, and, P. Berche. 1999. ClpE, a novel member of the HSP100 family, is involved in cell division and virulence of Listeria monocytogenes. Mol. Microbiol. 31:185196.
220. Niebuhr, K.,, F. Ebel,, R. Frank,, M. Reinhard,, E. Domann,, U. D. Carl,, U. Walter,, F. B. Gertler,, J. Wehland, and, T. Chakraborty. 1997. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J. 16:54335444.