1887

Chapter 32 : Physical Methods of Food Preservation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Physical Methods of Food Preservation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap32-1.gif /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap32-2.gif

Abstract:

Physical methods of food preservation are those that utilize physical treatments to inhibit, destroy, or remove undesirable microorganisms without involving antimicrobial additives or products of microbial metabolism as preservative factors. Microorganisms can be destroyed by established physical microbicide treatments such as heating (including microwave heat treatment), UV or ionizing radiation, and emerging methods of new nonthermal treatments, such as the use of high hydrostatic pressure, pulsed electric fields (PEFs), oscillating magnetic fields, photodynamic effects, and a combination of physical processes such as heat irradiation, dehydroirradiation, and manothermosonication. Mechanical removal of microorganisms from food may be accomplished by membrane filtration of food liquids. This chapter discusses the microbiological fundamentals of the physical preservation methods outlined above, with the exception of mechanical removal. One of the oldest methods for preserving food is dehydration, and water is one of the most important factors controlling the rate of deterioration of food, by either microbial or nonmicrobial effects. The most effective and most widely used method for destroying microorganisms and inactivating enzymes is heat treatment. Sensitization of microorganisms with the aim of lowering the dose can be obtained by heating and chemical means. During recent years, several other physical treatments such as the use of high hydrostatic pressure and electric and magnetic fields have attracted much interest as promising tools for food processing and preservation and for the creation of new types of food products.

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32

Key Concept Ranking

Food Processing and Preservation
1.1388608
Foodborne Microorganisms
0.76339626
Chemical Preservatives
0.7122062
Viruses
0.64466137
Microbial Inactivation
0.59545964
Chemicals
0.59515023
Food Safety
0.5824021
1.1388608
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Untitled
Untitled

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.1
Figure 32.1

Bacterial survival curve showing logarithmic order of death and the concept of the value.

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.2
Figure 32.2

Thermal death time curve showing definition of value and value. T, reference temperature; τ, death time; lg, log; D, value at the reference temperature; tgα, slope of the thermal death time curve.

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.3
Figure 32.3

Typical radiation survival curves. , survivors of radiation dose; , original number of viable cells; 1, exponential survival curve; 2, curve characterized by an initial shoulder; 3, concave curve with a resistant tail.

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815912.ch32
1. Ababouch, L., and, F. F. Busta. 1987. Effect of thermal treatments in oils on bacterial spore survival. J. Appl. Bacteriol. 62:491502.
2. Agar, I. T.,, J. Streif, and, F. Bangerth. 1997. Effect of high CO2 and controlled atmosphere (CA) on the ascorbic and dehydroascorbic acid content of some berry fruits. Post-harvest Biol. Technol. 11:4755.
3. Arsene, F.,, T. Tomoyasu, and, B. Bukan. 2000. The heat shock response of Escherichia coli. Int. J. Food Microbiol. 55:39.
4. Auffray, Y.,, E. Lecesne,, A. Hartky, and, P. Boulibounes. 1995. Basic features of the Streptococcus thermophilus heat shock response. Curr. Microbiol. 30:8791.
5. Aymerich, T. A.,, A. Jofré,, M. Garriga, and, M. Hugas. 2005. Inhibition of Listeria monocytogenes and Salmonella by natural antimicrobials and high hydrostatic pressure in sliced cooked ham. J. Food Prot. 68:173177.
6. Barbosa-Cánovas, G. V.,, M. D. Pierson,, Q. H. Zhang, and, D. W. Schaffner. 2000. Pulsed electric fields. J. Food Sci. 65(Suppl.): 6579.
7. Barbosa-Cánovas, G. V.,, M. S. Tapia,, M. P. Cano,, O. Martin-Beloso, and, A. Martinez. 2005. Novel Food Processing Technologies. CRC Press, Boca Raton, Fla.
8. Bari, M. L.,, M. Nakauma,, S. Todoriki,, V. K. Juneja,, K. Isshiki, and, S. Kawamoto. 2005. Effectiveness of irradiation treatments in inactivating Listeria monocytogenes on fresh vegetables at refrigeration temperature. J. Food Prot. 68:318323.
9. Barsotti, I.,, P. Merle, and, K. Cheftel. 1999. Food processing by pulsed electric fields. (Part I and II). Food Rev. Int. 15(2): 163213.
10. Bawcom, D. W.,, L. D. Thompson,, M. F. Miller, and, C. B. Ramsey. 1995. Reduction of microorganisms on beef surfaces utilizing electricity. J. Food Prot. 58:3538.
11. Bidawid, S.,, J. M. Farber, and, S. A. Sattar. 2000. Inactivation of hepatitis A virus (HAV) in fruits and vegetables by gamma irradiation. Int. J. Food Microbiol. 57:9197.
12. Bigelow, W. D. 1921. The logarithmic nature of thermal death time curves. J. Infect. Dis. 29:528536.
13. Boutibonnes, P.,, V. Bisson,, B. Thammavongs,, A. Hartke,, J. M. Panoff,, A. Benackour, and, Y. Auffray. 1995. Induction of thermotolerance by chemical agents in Lactococcus lactis subsp. lactis IL 1403. Int. J. Food Microbiol. 25:8394.
14. Brown, A. D. 1974. Microbial water relations: features of the intracellular composition of sugar-tolerant yeasts. J. Bacteriol. 118:769777.
15. Brown, A. D. 1976. Microbial water stress. Bacteriol. Rev. 40:803846.
16. Brown, A. D., and, J. R. Simpson. 1972. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J. Gen. Microbiol. 72:589591.
17. Brown, K. L., and, C. A. Ayres. 1982. Thermobacteriology of UHT processed foods. Dev. Food Microbiol. 1:119152.
18. Buchanan, R. L.,, S. G. Edelson, and, G. Boyd. 1999. Effects of pH and acid resistance on the radiation resistance of enterohemorrhagic Escherichia coli. J. Food Prot. 62:219228.
19. Cabeza, M. C.,, M. L. Garcia,, L. de la Hoz,, I. Cambero, and, J. A. Ordonez. 2005. Thermo-ultrasonication eliminates salmonellae from intact eggshells without changing the functional properties. J. Food Sci. 70:M292M295.
20. Cabeza, M. C.,, J. A. Ordonez,, I. Cambero,, L. de la Hoz, and, M. L. Garcia. 2004. Effect of thermoultrasonication on Salmonella enterica serovar Enteritidis in distilled water and in intact shell eggs. J. Food Prot. 67:18861891.
21. Chang, J. C. H.,, S. F. Ossoff,, D. C. Lobe,, M. H. Dorfman,, C. M. Dumais,, R. G. Qualls, and, J. D. Johnson. 1985. UV inactivation of pathogenic and indicator microorganisms. Appl. Environ. Microbiol. 49:13611365.
22. Cheftel, J. C. 1992. Effects of high hydrostatic pressure on food constituents: an overview, p. 195209. In C. Balny,, R. Hayashi,, K. Heremans, and, P. Masson (ed.), High Pressure and Biotechnology. John Libbey and Co. Ltd., London, United Kingdom.
23. Cheftel, J. C.,, M. Thiebaud, and, E. Dumay. 2003. High pressure-low temperature processing of foods: a review, p. 327340. In R. Winter (ed.), Advances in High Pressure Bioscience and Biotechnology. Springer, Berlin, Germany.
24. Christian, J. H. B. 2000. Drying and reduction of water activity, p. 146174. In B. M. Lund,, T. C. Baird-Parker, and, G. W. Gould (ed.), The Microbiological Safety and Quality of Food, vol. I. Aspen Publishers, Inc., Gaithersburg, Md.
25. Church, N. 1994. Developments in modified-atmosphere packaging and related technologies. Trends Food Sci. Technol. 5:345352.
26. Clardy, S.,, D. M. Foley,, F. Caporaso,, M. L. Calicchia, and, A. Prakash. 2002. Effect of gamma irradiation on Listeria monocytogenes in frozen artificially contaminated sandwiches. J. Food Prot. 65:17401744.
27. Clavero, M. R. S.,, J. D. Monk,, L. R. Beuchat,, M. P. Doyle, and, R. E. Brackett. 1994. Inactivation of Escherichia coli O157:H7, salmonellae and Campylobacter jejuni in raw ground beef by gamma irradiation. Appl. Environ. Microbiol. 60:20692075.
28. Codex Alimentarius Commission. 2003. Codex General Standard for Irradiated Foods. CODEX STAN 106–1983, Rev. 1–2003. Codex Alimentarius Commission, Rome, Italy.
29. Cole, M. B.,, K. W. Davies,, G. Munro,, C. D. Holyoak, and, D. C. Kilsby. 1993. A vitalistic model to describe the thermal inactivation of Listeria monocytogenes. J. Ind. Microbiol. 12:232239.
30. Condon, S., and, F. J. Sala. 1992. Heat resistance of Bacillus subtilis in buffer and foods of different pH. J. Food Prot. 55:605608.
31. Corry, J. E. L. 1987. Relationship of water activity to fungal growth, p. 5199. In L. R. Beuchat (ed.), Food and Beverage Mycology. AVI Van Nostrand Reinhold Co., New York, N.Y.
32. Daifas, D. P.,, J. P. Smith,, B. Blanchfield, and, J. W. Austin. 1999. Growth and toxin production by Clostridium botulinum in English style crumpets packaged under modified atmosphere. J. Food Prot. 62:349355.
33. Davies, A. D. 1995. Advances in modified atmosphere packaging, p. 301320. In G. W. Gould (ed.), New Methods of Food Preservation. Blackie Academic and Professional, Glasgow, United Kingdom.
34. Davies, R. 1976. The inactivation of vegetative bacterial cells by ionizing radiation, p. 239255. In F. A. Skinner and, W. B. Hugo (ed.), Inhibition and Inactivation of Vegetative Microbes. Academic Press, London, United Kingdom.
35. Deák, T. 1991. Preservation by dehydration. p. 7082. In E. Szenes and, M. Oláh (ed.), Handbook of Canning Industry. (In Hungarian.) Integra Projekt, Budapest, Hungary.
36. Decereau, R. V. 1985. Microwaves in the Food Processing Industry. Academic Press, Orlando, Fla.
37. Decereau, R. V. 1992. Microwave Foods: New Product Development. Food & Nutrition Press, Trumbull, Conn.
38. De Heij, W.,, R. Van der Berg,, L. Van Schepdael,, H. Hoogland, and, H. Bijmolt. 2005. Sterilisation—only better. New Food 2005(2): 56, 5860, 61.
39. Diehl, J. F. 1995. Safety of Irradiated Foods, 2nd ed., revised and expanded. Marcel Dekker, Inc., New York, N.Y.
40. Doyle, M. P., and, E. H. Marth. 1975. Thermal inactivation of conidia from Aspergillus flavus and Aspergillus parasiticus. J. Milk Food Technol. 38:678.
41. Doyle, M. P.,, A. S. Mazzotta,, T. Wang,, D. W. Wieseman, and, V. N. Scott. 2001. Heat resistance of Listeria monocytogenes. J. Food Prot. 64:410429.
42. Eckardt, C., and, E. Ahrens. 1977. Untersuchungen über Byssochlamys fulva Olliver & Smith als potentiellen Verderbniserreger in Erdbeerkonserven. II. Hitzeresistenz der Ascosporen von Byssochlamys fulva. Chem. Mikrobiol. Technol. Lebensm. 5:7680.
43. Edelson-Mammel, S. G.,, R. C. Whiting,, S. G. Joseph, and, R. L. Buchanan. 2005. Effect of prior growth conditions on the thermal inactivation of 13 strains of Listeria monocytogenes in two heating menstrua. J. Food Prot. 68:168172.
44. Edgey, M., and, A. D. Brown. 1978. Response of xerotolerant and nontolerant yeasts to water stress. J. Gen. Microbiol. 104:343345.
45. Ellenberg, L., and, D. G. Hoover. 1999. Injury and survival of Aeromonas hydrophila 7965 and Yersinia enterocolitica 9610 from high hydrostatic pressure. J. Food Safety 19:263276.
46. Erichsen, I., and, G. Molin. 1981. Microbial flora of normal and high pH beef stored at 4°C in different gas environments. J. Food Prot. 44:866.
47. Ernshaw, R. G.,, J. Appleyard, and, R. M. Hurst. 1995. Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure. Int. J. Food Microbiol. 28:197219.
48. Farkas, D. F., and, D. G. Hoover. 2000. High pressure processing. J. Food Sci. 65(Suppl.): 47S64S.
49. Farkas, J. 1988. Irradiation of Dry Food Ingredients. CRC Press, Inc., Boca Raton, Fla.
50. Farkas, J. 1989. Microbiological safety of irradiated foods: a review. Int. J. Food Microbiol. 9:115.
51. Farkas, J. 1990. Combination of irradiation with mild heat treatment. Food Control 1:223229.
52. Farkas, J. 1998. Irradiation as a method for decontaminating food. A review. Int. J. Food Microbiol. 44:189204.
53. Farkas, J. 2000. Food irradiation, p. 785812. In A. Mozumder and, Y. Hatano (ed.), Charged Particle and Photon Interactions with Matter. Chemical, Physicochemical, and Biological Consequences with Applications. Marcel Dekker, Inc., New York, N.Y.
54. Farkas, J. 2000. Elimination of foodborne pathogens by ionising radiation, p. 157176. In F. J. H. Smulders and, J. D. Collins (ed.), Food Safety Assurance and Veterinary Public Health, vol. 2. Safety Assurance during Food Processing. Wageningen Academic Publishers, Wageningen, The Netherlands.
55. Farkas, J. 2001. Radiation decontamination of spices, herbs, condiments, and other dried food ingredients, p. 291312. In R. Molins (ed.), Food Irradiation: Principles and Applications. Wiley-Interscience, New York, N.Y.
56. Farkas, J.,, T. Sáray,, C. Mohácsi-Farkas,, K. Horti, and, E. Andrássy. 1997. Effect of low dose gamma radiation on shelf life and microbiological safety of pre-cut/prepared vegetables. Adv. Food Sci. 19:111119.
57. Fenice, M.,, R. Di Giambattista,, J.-L. Leuba, and, F. Federici. 1999. Inactivation of Mucor plumbeus by combined actions of chitinase and high hydrostatic pressure. Int. J. Food Microbiol. 52:109113.
58. Flowers, R. S., and, S. E. Martin. 1980. Ribosome assembly during recovery of heat-injured Staphylococcus aureus. J. Bacteriol. 141:645651.
59. Foong, S. C.,, G. L. Gonzalez, and, J. S. Dickson. 2004. Reduction and survival of Listeria monocytogenes in ready-to-eat meats after irradiation. J. Food Prot. 67:7782.
60. Fryer, P. 1995. Electrical resistance heating of foods, p. 205235. In G. W. Gould (ed.), New Methods of Food Preservation. Blackie Academic and Professional, Glasgow, United Kingdom.
61. Garcia, M. L.,, J. Burgos,, B. Sanz, and, J. A. Ordonez. 1989. Effect of heat and ultrasonic waves on the survival of two strains of Bacillus subtilis. J. Appl. Bacteriol. 67:619628.
62. Garcia-Graells, C.,, B. Masschalek, and, C. W. Michiels. 1999. Inactivation of Escherichia coli in milk by high-hydrostatic-pressure treatment in combination with antimicrobial peptides. J. Food Prot. 62:12481254.
63. George, A. M.,, W. A. Cramp, and, M. B. Yatvin. 1980. The influence of membrane fluidity on radiation induced changes in the DNA of E. coli K1060. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 38:427438.
64. Geveke, D. J. 2005. UV inactivation of bacteria in apple cider. J. Food Prot. 68:17391742.
65. Gill, C. O., and, G. Molin. 1991. Modified atmospheres and vacuum packaging, p. 172199. In N. J. Russell and, G. W. Gould (ed.), Food Preservatives. Blackie, Glasgow, United Kingdom.
66. Goldblith, S. A.,, L. Rey, and, W. W. Rothmayr. 1975. Freeze Drying and Advanced Food Technology. Academic Press, London, United Kingdom.
67. Gormley, T. R. (ed.). 1990. Chilled Foods. The State of the Art. Elsevier Applied Science, London, United Kingdom.
68. Gorris, L. G. M. 1994. Improvement of the safety and quality of refrigerated ready-to-eat foods using novel mild preservation techniques, p. 5772. In R. P. Singh and, F. A. R. Oliveira (ed.), Minimal Processing of Foods and Process Optimization. An Interface. CRC Press, Boca Raton, Fla.
69. Gould, G. W. 1973. Inactivation of spores in food by combined heat and hydrostatic pressure. Acta Aliment. 2:377383.
70. Gould, G. W. 1989. Drying, raised osmotic pressure and low water activity, p. 97117. In G. W. Gould (ed.), Mechanisms of Action of Food Preservation Procedures. Elsevier Applied Science, London, United Kingdom.
71. Gould, G. W. 1989. Heat induced injury and inactivation, p. 1142. In G. W. Gould (ed.), Mechanisms of Action of Food Preservation Procedures. Elsevier Applied Science, London, United Kingdom.
72. Gould, G. W. 2000. Strategies for food preservation, p. 1935. In B. M. Lund,, T. C. Baird-Parker, and, G. W. Gould (ed.), The Microbiological Safety and Quality of Food, vol. 1. Aspen Publishers, Inc., Gaithersburg, Md.
73. Gould, G. W. 2000. New and emerging physical methods of preservation, p. 277293. In B. M. Lund,, T. C. Baird-Parker, and, G. W. Gould (ed.), The Microbiological Safety and Quality of Food, vol. 1. Aspen Publishers, Inc., Gaithersburg, Md.
74. Gould, G. W. 2000. Emerging technologies in food preservation and processing in the last 40 years, p. 111. In G. V. Barbosa-Cánovas and, G. W. Gould (ed.), Innovations in Food Processing. Technomic Publishing Co., Inc., Lancaster, Pa.
75. Graham, A. F.,, D. R. Mason,, F. J. Maxwell, and, M. W. Peck. 1997. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperatures. Lett. Appl. Microbiol. 24:95100.
76. Grant, I. R., and, M. F. Patterson. 1989. A novel radiation-resistant Deinobacter sp. isolated from irradiated pork. Lett. Appl. Microbiol. 8:2124.
77. Grant, I. R., and, M. F. Patterson. 1995. Combined effect of gamma radiation and heating on the destruction of Listeria monocytogenes and Salmonella typhimurium in cook-chill roast beef and gravy. Int. J. Food Microbiol. 27:117128.
78. Grecz, N.,, D. B. Rowley, and, A. Matsuyama. 1983. The action of radiation on bacteria and viruses. In E. S. Josephson and, M. S. Peterson (ed.), Preservation of Food by Ionizing Radiation, vol. 2. CRC Press, Boca Raton, Fla.
79. Guan, D., and, D. G. Hoover. 2005. Emerging decontamination techniques for meat, p. 388417. In J. N. Sofos (ed.), Improving the Safety of Fresh Meat. CRC Press, Boca Raton, Fla.
80. Guiavarc’h, Y.,, F. Zuber,, A. Van Loey, and, M. Hendrickx. 2005. Combined use of two single-component enzymatic time-temperature integrators: application to industrial continuous rotary processing of canned ravioli. J. Food Prot. 68:375383.
81. Guynot, M. E.,, S. Marin,, V. Sanchis, and, A. J. Ramos. 2003. Modified atmosphere packaging for prevention of mold spoilage of bakery products with different pH and water activity levels. J. Food Prot. 66:18641872.
82. Han, Y. W. 1975. Death rates of bacterial spores: nonlinear survivor curves. Can. J. Microbiol. 21:14641467.
83. Heinz, V., and, O. Knorr. 1998. High pressure germination and inactivation kinetics of bacterial spores. In N. S. Isaacs (ed.), High Pressure Food Science, Bioscience and Chemistry. Royal Society of Chemistry, Cambridge, United Kingdom.
84. Hendrickx, M.,, L. Ludikhuyze,, I. Van den Broeck, and, C. Weermaes. 1998. Effects of high pressure on enzymes related to food quality. Trends Food Sci. Technol. 9:197203.
85. Herbert, R. A., and, J. P. Sutherland. 2000. Chill storage, p. 101121. In B. M. Lund,, T. C. Baird-Parker, and, G. W. Gould (ed.), The Microbiological Safety and Quality of Food, vol. 1. Aspen Publishers, Inc., Gaithersburg, Md.
86. Hiatt, C. W. 1964. Kinetics of the inactivation of viruses. Bacteriol. Rev. 28:150163.
87. Hightower, L. E. 1991. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66:191197.
88. Ho, Y. C., and, K. L. Yam. 1993. Effect of metal shielding on microwave heating uniformity of a cylindrical food model. J. Food Process. Preserv. 16:337359.
89. Hofmann, G. A. 1985. Inactivation of microorganisms by an oscillating magnetic field. U.S. patent 4,524,079.
90. Hollywood, N. W.,, Y. Varabioff, and, G. E. Mitchell. 1991. The effect of microwave and conventional cooking on the temperature profiles and microbial flora of minced beef. Int. J. Food Microbiol. 14:6776.
91. Hu, X.,, P. Maltikarjunan,, J. Koo,, L. S. Andrews, and, M. L. Jahncke. 2005. Comparison of kinetic models to describe high pressure and gamma irradiation used to inactivate Vibrio vulnificus and Vibrio parahaemolyticus prepared in buffer solution and whole oysters. J. Food Prot. 68:292295.
92. Hugas, M.,, M. Garriga, and, J. M. Monfort. 2002. New mild technologies in meat processing: high pressure as a model. Meat Sci. 3:359371.
93. Hülsheger, H.,, J. Potel, and, E. G. Neumann. 1983. Electric field effects on bacteria and yeast cells. Radiat. Environ. Biophys. 22:149162.
94. Hurst, A. 1984. Reversible heat damage, p. 303318. In A. Hurst and, A. Nasim (ed.), Repairable Lesions in Microorganisms. Academic Press, London, United Kingdom.
95. Institute of Food Technologists. 2000. Kinetics of microbial inactivation for alternative food processing technologies. A report of the Institute of Food Technologists for the Food and Drug Administration. J. Food Sci. 65:1S108S.
96. Institute of Food Technologists. 20 Feb. 2002, posting data. IFT Expert Report on Emerging Microbiological Food Safety Issues: Implications for Control in the 21st Century. [Online.] Institute of Food Technologists, Chicago, Ill. http://members.ift.org/IFT/Research/IFTExpertReports/microsfs_report.htm.
97. International Commission on Microbiological Specifications for Foods. 1980. Temperature, p. 137. In J. H. Silliker et al. (ed.), Microbial Ecology of Foods, vol. 1. Factors Affecting Life and Death of Microorganisms. Academic Press, New York, N.Y.
98. International Commission on Microbiological Specifications for Foods. 1996. Microorganisms in Foods. 5. Microbiological Specifications of Food Pathogens. Blackie Academic and Professional, London, United Kingdom.
99. Ingram, M., and, B. M. Mackey. 1976. Inactivation by cold, p. 111151. In F. A. Skinner and, W. B. Hugo (ed.), Society of Applied Bacteriology Symposia Series, no. 5. Inhibition and Inactivation of Vegetative Microbes. Academic Press, New York, N.Y.
100. Isaacs, N. S. 1998. High Pressure Food Science, Bioscience and Chemistry. Royal Society of Chemistry, Cambridge, United Kingdom.
101. Jakobsen, M.,, O. Filtenborg, and, F. Bramsnaes. 1972. Germination and outgrowth of the bacterial spore in the presence of different solutes. Lebensm. Wiss. Technol. 5:159162.
102. Jay, J. M. 1992. Modern Food Microbiology, 4th ed. Chapman & Hall, New York, N.Y.
103. Jermini, M. F. G., and, W. Schmidt-Lorenz. 1987. Heat resistance of vegetative cells and asci of two Zygosaccharomyces yeasts in broth at different water activity values. J. Food Prot. 50:835841.
104. Jeyamkondan, S.,, D. S. Jayas, and, R. A. Holley. 1999. Pulsed electric field processing of foods: a review. J. Food Prot. 62:10881096.
105. Josephson, E. S., and, M. S. Peterson (ed.). 1983. Preservation of Foods by Ionizing Radiation, vol. 1–3. CRC Press, Boca Raton, Fla.
106. Juneja, V. K. 2003. Sous-vide processed foods: safety hazards and control of microbial risk, p. 97124. In J. S. Novak and, V. K. Juneja (ed.), Microbial Safety of Minimally Processed Foods. CRC Press, Boca Raton, Fla.
107. Juneja, V. K.,, P. G. Klein, and, B. S. Marmer. 1998. Heat shock and thermotolerance of Escherichia coli O157: H7 in a model beef gravy system and ground beef. J. Appl. Microbiol. 84:677684.
108. Kang, C. K.,, M. Woodburn,, A. Pagenkopf, and, R. Cheney. 1969. Growth, sporulation and germination of Clostridium perfringens in media of controlled water activity. Appl. Microbiol. 18:798805.
109. Keith, W. D.,, L. J. Harris, and, M. W. Griffiths. 1997. Reduction of bacterial levels in flour by pulsed electric fields. J. Food Process Eng. 21:263269.
110. Keith, W. D.,, L. J. Harris,, L. Hudson, and, M. W. Griffiths. 1997. Pulsed electric fields as a processing alternative for microbial reduction in spice. Food Res. Int. 30:185191.
111. Keteleer, A., and, P. P. Tobback. 1994. Modified atmosphere storage of respiring product, p. 5964. In L. Leistner and, L. G. M. Gorris (ed.), Food Preservation by Combined Processes. Final Report FLAIR Concerted Action No. 7, Subgroup B. EUR 15776 EN. European Commission, The Netherlands.
112. Khattak, M. K.,, N. Bibi,, A. B. Khattak, and, M. A. Chaudry. 2005. Effect of irradiation on microbial safety and nutritional quality of minimally processed bitter gourd (Momordica charanta). J. Food Sci. 70:M255M259.
113. Kingsley, D. H.,, D. Guan, and, D. G. Hoover. 2005. Pressure inactivation of hepatitis A virus in strawberry puree and sliced green onions. J. Food Prot. 68:17481751.
114. Knorr, D. 1994. Non-thermal processes for food preservation, p. 315. In R. P. Singh and, F. A. R. Oliveira (ed.), Minimal Processing of Foods and Process Optimization. An Interface. CRC Press, Boca Raton, Fla.
115. Knorr, D. 2000. Process aspects of high-pressure treatment of food systems, p. 1330. In G. V. Barbosa-Cánovas and, G. W. Gould (ed.), Innovations in Food Processing. Technomic Publishing Co., Inc., Lancaster, Pa.
116. Laszlo, A. 1988. Evidence for two states of thermo-tolerance in mammalian cells. Int. J. Hyperthermia 4:513526.
117. Le Jean, G.,, G. Abraham,, E. Debray,, Y. Candau, and, G. Piar. 1994. Kinetics of thermal destruction of Bacillus stearothermophilus spores using a two reaction model. Food Microbiol. 11:229241.
118. Leistner, L. 1995. Principles and application of hurdle technology, p. 121. In G. W. Gould (ed.), New Methods of Food Preservation. Blackie Academic and Professional, Glasgow, United Kingdom.
119. Leistner, L., and, N. J. Russell. 1991. Solutes and low water activity, p. 111134. In N. J. Russell and, G. W. Gould (ed.), Food Preservatives. Blackie Academic and Professional, Glasgow, United Kingdom.
120. Lewis, M. 1993. UHT processing: safety and quality aspects. Food Technol. Int. Eur. 1993:4751.
121. Linton, M.,, J. M. J. McClements, and, M. F. Patterson. 1999. Survival of food Escherichia coli O157:H7 during storage in pressure-treated orange juice. J. Food Prot. 62:10381040.
122. Loaharanu, P., and, P. Thomas (ed.). 2001. Irradiation for Food Safety and Quality. Technomic Publishing Co., Inc., Lancaster, Pa.
123. López-Caballero, M. E.,, J. Carballo, and, F. Jiménez-Colmenero. 1999. Microbiological changes in pressurized, prepackaged sliced cooked ham. J. Food Prot. 62:14111415.
124. Luechapattanaporn, K.,, Y. Wang,, J. Wang,, J. Tang,, L. M. Hallberg, and, C. P. Dunne. 2005. Sterilization of scrambled eggs in military polymeric trays by radiofrequency energy. J. Food Sci. 70:288294.
125. Lund, B. M. 2000. Freezing, p. 122145. In B. M. Lund,, T. C. Baird-Parker, and, G. W. Gould (ed.), The Microbiological Safety and Quality of Food, vo1. 1. Aspen Publishers, Inc., Gaithersburg, Md.
126. Mackey, B. M., and, C. M. Derrick. 1986. Peroxide sensitivity of cold-shocked Salmonella typhimurium and Escherichia coli and its relationship to minimal medium recovery. J. Appl. Bacteriol. 60:501511.
127. Mackey, B. M., and, C. M. Derrick. 1986. Elevation of heat resistance of Salmonella typhimurium by sublethal heat shock. J. Appl. Bacteriol. 61:389394.
128. Mackey, B. M., and, C. M. Derrick. 1987. Changes in the heat resistance of Salmonella typhimurium during heating at rising temperatures. Lett. Appl. Microbiol. 4:316.
129. Mackey, B. M.,, K. Forestiere,, N. S. Isaacs,, R. Stenning, and, B. Brooker. 1994. The effect of high hydrostatic pressure on Salmonella thompson and Listeria monocytogenes examined by electron microscopy. Lett. Appl. Microbiol. 19:429432.
130. Macleod, R. A., and, P. H. Calcott. 1976. Cold shock and freezing damage to microbes, p. 81109. In T. R. G. Gray and, J. R. Postgate (ed.), The Survival of Vegetative Microbes. Twenty-Sixth Symposium of the Society for General Microbiology. Cambridge University Press, Cambridge, United Kingdom.
131. Margosch, D.,, M. A. Ehrmann,, M. G. Gaenzle, and, R. V. Vogel. 2005. Comparison of pressure and heat resistance of Clostridium botulinum and other endospores in mashed carrots. J. Food Prot. 67:25302537.
132. Margosch, D.,, M. Moravek,, M. G. Gaenzle,, E. Maertlbauer,, R. F. Vogel, and, A. Ehrmann. 2005. Effect of high pressure and heat on bacterial toxins. Food Technol. Biotechnol. 43:211217.
133. Martens, T. (ed.). 1999. Harmonization of Safety Criteria for Minimally Processed Foods. Rational and Harmonization Report. FAIR Concerted Action FAIR CT96-1020. Alma University Restaurants, Leuven, Belgium.
134. Marth, E. H. 1998. Extended shelf life refrigerated foods: microbiological quality and safety. Food Technol. 52(12): 5762.
135. McKellar, R. C., and, X. Lu. 2004. Primary models, p. 2162. In R. C. McKellar and, X. Lu (ed.), Modeling Microbial Responses in Food. CRC Press, Boca Raton, Fla.
136. Metrick, C.,, D. Hoover, and, D. Farkas. 1989. Effects of high hydrostatic pressure on heat-resistant and heat-sensitive strains of Salmonella. J. Food Sci. 54:15471549.
137. Meyer, R. S.,, K. L. Cooper,, D. Knorr, and, H. L. Lelifeld. 2000. High-pressure sterilization of foods. Food Technol. 54(11): 6772.
138. Mohácsi-Farkas, C.,, G. Kiskó,, J. Farkas,, L. Mészáros, and, T. Sáray. 1999. Assessment of antibacterial effects of essential oils by automated impedimetry and preliminary studies on their utility as biopreservatives, p. 279281. In A. C. J. Tuijtelaars,, R. A. Samson,, F. M. Rombouts, and, S. Notermans (ed.), Food Microbiology and Food Safety into the Next Millennium. Foundation Food Micro ’99, Zeist, The Netherlands.
139. Molin, G. 2000. Modified atmosphere, p. 214234. In B. M. Lund,, T. C. Baird-Parker, and, G. W. Gould (ed.), The Microbiological Safety and Quality of Food, vol. 1. Aspen Publishers, Inc., Gaithersburg, Md.
140. Molins, R. (ed.). 2001. Food Irradiation: Principles and Applications. Wiley-Interscience, New York, N.Y.
141. Molins, R. 2001. Global status of food irradiation in 2000, p. 443455. In R. Molins (ed.), Food Irradiation: Principles and Applications. Wiley-Interscience, New York, N.Y.
142. Monk, D. J.,, L. R. Beuchat, and, M. P. Doyle. 1995. Irradiation inactivation of food-borne microorganisms. J. Food Prot. 58:197208.
143. Montville, T. J., and, G. M. Sapers. 1981. Thermal resistance of spores from pH elevating strains of Bacillus licheniformis. J. Food Sci. 46:17101712.
144. Moreno, M. A.,, M. del Carmen Ramos,, A. Gonzalez, and, G. Suarez. 1987. Effect of ultraviolet light irradiation on viability and aflatoxin production by Aspergillus parasiticus. Can. J. Microbiol. 33:927929.
145. Moseley, B. E. B. 1989. Ionizing radiation: action and repair, p. 4370. In G. W. Gould (ed.), Mechanisms of Action of Food Preservation Procedures. Elsevier Applied Science, London, United Kingdom.
146. Mossel, D. A. A. 1975. Occurrence, prevention and monitoring of microbial quality loss of foods and dairy products. Crit. Rev. Environ. Control 5:1139.
147. Mossel, D. A. A., and, M. Ingram. 1955. The physiology of the microbial spoilage of foods. J. Appl. Bacteriol. 18:232268.
148. Mossel, D. A. A., and, C. B. Struijk. 1991. Public health implications of refrigerated pasteurized (“sous vide”) foods. Int. J. Food Microbiol. 13:187206.
149. Mudgett, R. E. 1985. Dielectrical properties of foods, p. 1537. In R. V. Decareau (ed.), Microwaves in the Food Processing Industry. Academic Press, Orlando, Fla.
150. Mui, W. W. Y.,, T. D. Durance, and, C. H. Seaman. 2002. Flavor and texture of banana chips dried by combination of hot air, vacuum, and microwave processing. J. Agric.Food Chem. 50:18831889.
151. Mulet, A.,, M. Blasco,, J. Garcia-Reverter, and, J. V. Garcia-Perez. 2005. Drying kinetics of Curcuma longa rhizomes. J. Food Sci. 70:318323.
152. Mullin, J. 1995. Microwave processing, p. 112134. In G. W. Gould (ed.), New Methods of Food Preservation. Blackie Academic and Professional, Glasgow, United Kingdom.
153. Narasimhan, R.,, M. M. Habibullah-Khan,, J. Ernest, and, K. Thangavel. 1989. Effect of ultraviolet radiation on the bacterial flora of the packaging materials of milk and milk products. Cherion 18(2): 8992.
154. Notermans, S.,, J. Dufrenne, and, B. M. Lund. 1990. Botulism risk of refrigerated processed foods of extended durability. J. Food Prot. 53:10201024.
155. Nychas, G. J. E. 1994. Modified atmosphere packaging of meats, p. 417436. In R. P. Singh and, F. A. R. Oliveira (ed.), Minimal Processing of Foods and Process Optimization. An Interface. CRC Press, Boca Raton, Fla.
156. Nychas, G. J. E., and, J. S. Arkoudelos. 1990. Microbiological and physico-chemical changes in minced meat under carbon dioxide, nitrogen or air at 3°C. Int. J. Food Sci. Technol. 25:389.
157. Ocio, M. J.,, T. Sanchez,, P. S. Fernandez,, M. Rodrigo, and, A. Martinez. 1994. Thermal resistance characteristics of PA3679 in the temperature range of 110–121°C as affected by pH, type of acidulant and substrate. Int. J. Food Microbiol. 22:239247.
158. Ohlsson, T. 2000. Minimal processing of foods with thermal methods, p. 141148. In G. V. Barbosa-Cánovas and, G. W. Gould (ed.), Innovations in Food Processing. Technomic Publishing Co., Inc., Lancaster, Pa.
159. Ohye, D. F., and, J. H. B. Christian. 1967. Combined effects of temperature, pH and water activity on growth and toxin production by C. botulinum types A, B and E, p. 217223. In M. Ingram and, T. A. Roberts (ed.), Botulism, 1966. Chapman & Hall, London, United Kingdom.
160. Oliveira, M. E. C., and, A. S. Franca. 2002. Microwave heating of foodstuffs. J. Food Eng. 53:347349.
161. Olson, D. G. 1998. Irradiation of food. Food Technol. 52(1): 5662.
162. Paidhungat, M.,, B. Setlow,, W. B. Daniels,, D. Hoover,, E. Papfragha, and, P. Setlow. 2002. Mechanism of induction of germination of Bacillus subtilis spores by high pressure. Appl. Environ. Microbiol. 68:31723175.
163. Palaniappan, S.,, S. K. Sastry, and, E. R. Richter. 1992. Effects of electroconductive heat treatment and electrical pretreatment on thermal death kinetics of selected microorganisms. Biotechnol. Bioeng. 39:225232.
164. Parsell, D. A., and, R. T. Sauer. 1989. Induction of heat shock-like response by unfolded protein in Escherichia coli: dependence on protein level not protein degradation. Genes Dev. 3:12261232.
165. Patterson, M. 2001. Combination treatments involving food irradiation, p. 313327. In R. Molins (ed.), Food Irradition: Principles and Applications. Wiley-Interscience, New York, N.Y.
166. Peleg, M. 1995. A model of microbial survival after exposure to pulsed electric fields. J. Sci. Food Agric. 67:9399.
167. Peleg, M. 2000. Modeling and simulating microbial survival in foods subjected to a combination of preservation methods, p. 163181. In G. V. Barbosa-Cánovas and, G. W. Gould (ed.), Innovations in Food Processing. Technomic Publishing Co., Inc., Lancaster, Pa.
168. Peleg, M., and, M. B. Cole. 1998. Reinterpretation of microbial survival curves. Crit. Rev. Food Sci. Nutr. 38:353380.
169. Perkin, A. G.,, F. L. Davies,, P. Neaves,, B. Jarvis,, C. A. Ayres,, K. L. Brown,, W. C. Falloon,, H. Dallyn, and, P. G. Bean. 1980. Determination of bacterial spore inactivation at high temperatures, p. 173188. In G. W. Gould and, J. E. L. Corry (ed.), Microbial Growth and Survival in Extreme Environments. Academic Press, London, United Kingdom.
170. Pflug, I.,, E. Dumay,, J.-P. Guiraud, and, J. C. Cheftel. 2005. Heat treatment, p. 3664. In B. M. Lund,, T. C. Baird-Parker, and, G. W. Gould (ed.), The Microbiological Safety and Quality of Food, vol. 1. Aspen Publishers, Inc., Gaithersburg, Md.
171. Picart, L.,, E. Dumay,, J.-P. Guiraud, and, J. C. Cheftel. 2005. Combined pressure-sub-zero temperature processing of smoked salmon mince: phase transition phenomena and inactivation of Listeria innocua. J. Food Eng. 68:4356.
172. Pirchardt, K. 1993. Lebensmittelmikrobiologie, 3rd ed. Springer-Verlag, Berlin, Germany.
173. Pitt, J. I. 1975. Xerophilic fungi and the spoilage of foods of plant origin, p. 273307. In R. B. Duckworth (ed.), Water Relations of Foods. Academic Press, London, United Kingdom.
174. Pitt, J. I., and, A. D. Hocking. 1997. Fungi and Food Spoilage. Blackie Academic and Professional, London, United Kingdom.
175. Pitt, J. I., and, B. F. Miscamble. 1995. Water relations of Aspergillus flavus and closely related species. J. Food Prot. 58:8690.
176. Piyasena, P. E.,, E. Mohareb, and, R. C. McKellar. 2003. Inactivation of microbes using ultrasound: a review. Int. J. Food Microbiol. 87:207216.
177. Pol, I. E.,, H. C. Mastwijk,, P. V. Bartels, and, E. J. Smid. 1999. Inactivation of Bacillus cereus by nisin combined with pulsed electric field, p. 287290. In A. C. J. Tuijtelaars,, R. A. Samson,, F. M. Rombouts, and, S. Notermans (ed.), Food Microbiology and Food Safety into the Next Millennium. Foundation Food Micro ’99, Zeist, The Netherlands.
178. Ponne, C. T., and, P. V. Bartels. 1995. Interaction of electromagnetic energy with biological material—relation to food processing. Radiat. Phys. Chem. 45:591607.
179. Popovich, D. G.,, C. Hu,, T. D. Durance, and, D. D. Kitts. 2005. Retention of ginsenoides in dried ginseng root: comparison of drying methods. J. Food Sci. 70:355358.
180. Pothakamury, U. R.,, U. R. Monsalve-Gonzalea,, G. V. Barbosa-Canovas, and, B. G. Swanson. 1993. Magnetic field inactivation of microorganisms and generation of biological changes. Food Technol. 47(12): 8593.
181. Pothakmury, U. R.,, H. Vega,, Q. Zhang,, G. V. Barbosa-Canovas, and, B Swanson. 1996. Effect of growth stage and processing temperature on the inactivation of E. coli by pulsed electric fields. J. Food Prot. 59:11671191.
182. Potter, N. N. 1986. Food Science, 4th ed. AVI-Van Nostrand Reinhold, New York, N.Y.
183. Put, H. M. C.,, J. de Jong,, F. E. M. Sand, and, A. M. van Grinsven. 1976. Heat resistance studies on yeast spp. causing spoilage in soft drinks. J. Appl. Bacteriol. 40:135152.
184. Rapenau, G.,, A. Vanloey,, C. Smout, and, M. Hendrickx. 2005. Effect of pH on thermal and/or pressure inactivation of Victoria grape (Vitis vinifera sativa) polyphenol oxidase: a kinetic study. J. Food Sci. 70:301307.
185. Raso, J.,, S. Condon, and, F. J. Sala Trepat. 1994. Mano-Thermo-Sonication: a new method of food preservation, p. 3741. In L. Leistner and, L. G. M. Gorris (ed.), Food Preservation by Combined Process. Final Report FLAIR Concerted Action No. 7, Subgroup B. EUR 15776 EN. European Commission, The Netherlands.
186. Reddy, N. R.,, H. M. Solomon,, G. A. Fingerhut,, E. J. Rhodehamel,, V. M. Balasubramaniam, and, P. Palaniappan. 1999. Inactivation of Clostridium botulinum type E spores by high pressure processing. J. Food Safety 19:277288.
187. Reichart, O., and, C. Mohácsi-Farkas. 1994. Mathematical modeling of the combined effect of water activity, pH and redox potential on the heat destruction. Int. J. Food Microbiol. 24:103112.
188. Ritz, M.,, J. L. Tolozan,, M. Federighi, and, M. F. Pilet. 2002. Physiological damages of Listeria monocytogenes treated by high hydrostatic pressure. Int. J. Food Microbiol. 79:4753.
189. Roberts, T. A.,, G. Hobbs,, J. H. B. Christian, and, N. Skovgaard. 1981. Psychrotrophic Microorganisms in Spoilage and Pathogenicity. Academic Press, London, United Kingdom.
190. Rockland, L. B., and, L. R. Beuchat (ed.). 1987. Water Activity: Theory and Applications to Food. Marcel Dekker Inc., New York, N.Y.
191. Rose, D. 1995. Advances and potential for aseptic processing, p. 283303. In G. W. Gould (ed.), New Methods of Food Preservation. Blackie Academic and Professional, Glasgow, United Kingdom.
192. Rosenberg, U., and, W. Bogl. 1987. Microwave pasteurization, sterilization, blanching and pest control in the food industry. Food Technol. 6:9299.
193. Sala, F. J.,, J. Burgos,, S. Condon,, P. Lopez, and, J. Raso. 1995. Effect of heat and ultrasound on microorganisms and enzymes, p. 176204. In G. W. Gould (ed.), New Methods of Food Preservation. Blackie Academic and Professional, Glasgow, United Kingdom.
194. Saleh, Y. G.,, M. S. Mayo, and, D. G. Ahearn. 1988. Resistance of some common fungi to gamma irradiation. Appl. Environ. Microbiol. 54:21342135.
195. San Martin, M. F.,, G. V. Barbosa-Cánovas, and, B. G. Swanson. 2002. Food processing by high hydrostatic pressure. Crit. Rev. Food Sci. Nutr. 42:627645.
196. Sapru, V.,, A. A. Teixeira,, G. H. Smerage, and, J. A. Lindsay. 1992. Predicting thermophilic spore population dynamics for U. H. T. sterilization processes. J. Food Sci. 57:12481257.
197. Sastry, S. K.,, A. Yousef,, H. Y. Cho,, S. R. Unal,, S. Salenghe,, W. C. Wang,, M. Lima,, S. Kulshrstha,, P. Wongsa-Ngasri, and, I. Senoy. 2002. Ohmic heating and moderate electric field (MEF) processing, p. 785793. In J. Welti-Chanes,, G. V. Barbosa-Cánovas, and, J. M. Aguilera (ed.), Engineering and Food for the 21st Century. CRC Press, Boca Raton, Fla.
198. Seyderhelm, I., and, D. Knorr. 1992. Reduction of Bacillus stearothermophilus spores by combined high pressure and temperature treatments. ZFL International Zeitschrift für Lebensmittel-Technik, Marketing, Verpackung und Analytik, EFS 43(4): 1720.
199. Shearer, A. E. H.,, C. P. Dunne,, A. Sikes, and, D. G. Hoover. 2000. Bacterial spore inhibition and inactivation in foods by pressure, chemical preservatives and mild heat. J. Food Prot. 63:15031510.
200. Sizer, C. E., and, V. M. Balsubramaniam. 1999. New intervention processes for minimally processed juices. Food Technol. 53(10): 6467.
201. Splittstoesser, D. F.,, S. B. Leasor, and, K. M. J. Swanson. 1986. Effect of food composition on the heat resistance of yeast ascospores. J. Food Sci. 51:12651267.
202. Splittstoesser, D. F., and, C. M. Splittstoesser. 1977. Ascospores of Byssochlamys fulva compared with those of a heat resistant Aspergillus. J. Food Sci. 42:685688.
203. Stannard, C. J.,, J. S. Abbiss, and, J. M. Wood. 1983. Combined treatment with hydrogen peroxide and ultra-violet irradiation to reduce microbial contamination levels in pre-formed packaging cartons. J. Food Prot. 46:10601064.
204. Stephens, P. J.,, M. B. Cole, and, M. V. Jones. 1994. Effect of heating rate on the thermal inactivation of Listeria monocytogenes. J. Appl. Bacteriol. 77:702708.
205. Stoforos, N. G.,, J. Noronha,, M. Hendrickx, and, P. Tobback. 1997. A critical analysis of mathematical procedures for the evaluation and design of in-container thermal processes for foods. Crit. Rev. Food Sci. Nutr. 37:411441.
206. Stumbo, C. R.,, K. S. Purohit,, T. V. Ramakrishnan,, D. A. Evans, and, F. J. Francis. 1983. Handbook of Lethality Guides for Low-Acid Canned Foods, vol. 1 and 2. CRC Press, Boca Raton, Fla.
207. Tartera, C.,, A. Bosch, and, J. Jofre. 1988. The inactivation of bacteriophages infecting Bacteroides fragilis by chlorine treatment and UV-irradiation. FEMS Microbiol. Lett. 56:313316.
208. Tempest, P. 1996. Electroheat Technologies for Food Processing. Bulletin of APV Processed Food Sector. Crawley, West Sussex, United Kingdom.
209. Thayer, D. W., and, G. Boyd. 1999. Irradiation and modified atmosphere packaging for the control of Listeria monocytogenes on turkey meat. J. Food Prot. 62:11361142.
210. Tomlins, R. I., and, Z. J. Ordal. 1976. Thermal injury and inactivation in vegetative bacteria, p. 153190. In F. A. Skinner and, W. B. Hugo (ed.), Society of Applied Bacteriology Symposia Series, no. 5. Inhibition and Inactivation of Vegetative Microbes. Academic Press, New York, N.Y.
211. Troller, J. A. 1983. Effect of low moisture environments on the microbial stability of foods, p. 173198. In A. H. Rose (ed.), Economic Microbiology, vol. 8. Academic Press, London, United Kingdom.
212. Urbain, W. M. 1986. Food Irradiation. Academic Press, Orlando, Fla.
213. U.S. Food and Drug Administration. 2000. Irradiation in the production, processing and handling of food. Fed. Regist. 65:7105671058.
214. Vas, K., and, G. Proszt. 1957. Observations on the heat destruction of spores of Bacillus cereus. J. Appl Bacteriol. 21:431441.
215. Vega-Mercado, H.,, U. P. Pothakamury,, F. J. Chang,, G. V. Barbosa-Canovas, and, G. G. Swanson. 1996. Inactivation of Escherichia coli by combining pH, ionic strength, and pulsed electric fields hurdles. Food Res. Int. 29:119199.
216. Wang, Y.,, T. D. Wing,, J. Tang, and, I. M Hallberg. 2003. Sterilization of foodstuffs using radiofrequency heating. J. Food Sci. 68:S39S44.
217. Wilkinson, V. M., and, G. W. Gould. 1996. Food Irradiation. A Reference Guide. Butterworth-Heinemann, Oxford, United Kingdom.
218. World Health Organization. 1994. Safety and Nutritional Adequacy of Irradiated Food. World Health Organization, Geneva, Switzerland.
219. World Health Organization. 1999. High-Dose Irradiation: Wholesomeness of Food Irradiated with Doses above 10 kGy. World Health Organization, Geneva, Switzerland.
220. Yousef, A. E., and, V. K. Juneja. 2003. Microbial Stress Adaptation and Food Safety. CRC Press, Boca Raton, Fla.
221. Zhang, Q.,, B.-L. Quin,, G. V. Barbosa-Cánovas, and, B. G. Swanson. 1994. Growth stage and temperature affect the inactivation of E. coli by pulsed electric fields, p. 104. In Proceedings of the Canadian Institute of Food Science Technology 37th Annual Conference. Vancouver, British Columbia, Canada.
222. Zhang, Y., and, G. S. Mittal. 2005. Inactivation of spoilage microorganisms in mango juice using low energy pulsed electric field in combination with antimicrobials. Ital. J. Food Sci. 17:167176.
223. Zhuang, H.,, M. M. Barth, and, T. R. Hankinson. 2003. Microbial safety, quality, and sensory aspects of fresh-cut fruits and vegetables, p. 255278. In J. S. Novak,, G. M. Sapers, and, V. K. Juneja (ed.), Microbial Safety of Minimally Processed Foods. CRC Press, Boca Raton, Fla.
224. Zoltai, P., and, P. Swearingen. 1996. Product development consideration for ohmic heating. Food Technol. 50(5): 263.
225. Zook, C. D.,, M. E. Parish,, R. J. Braddock, and, M. O. Balaban. 1999. High pressure inactivation kinetics of Saccharomyces cerevisiae ascospores in orange and apple juices. J. Food Sci. 64:533553.

Tables

Generic image for table
Table 32.1

as of various foods

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Generic image for table
Table 32.2

Moisture contents of various dry or dehydrated food products when their a is 0.70 at 20°C

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Generic image for table
Table 32.3

Minimal a levels required for growth of foodborne microorganisms at 25°C

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Generic image for table
Table 32.4

Minimal a requirements for growth of and mycotoxin production by some toxigenic molds

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Generic image for table
Table 32.5

Shelf-life extension for raw foods by cool storage

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Generic image for table
Table 32.6

Relative levels of heat resistance by some vegetative bacteria

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Generic image for table
Table 32.7

Approximate heat resistance levels ( values) for some bacterial spores

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Generic image for table
Table 32.8

Preservative effects of ionizing radiation

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Generic image for table
Table 32.9

Approximate doses of radiation needed to kill various organisms

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Generic image for table
Table 32.10

Typical radiation resistance levels of some foodborne microorganisms in fresh and frozen foods of animal origin

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32
Generic image for table
Table 32.11

Dose requirements for various applications of food irradiation

Citation: Farkas J. 2007. Physical Methods of Food Preservation, p 685-712. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch32

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error