1887

Chapter 33 : Chemical Preservatives and Natural Antimicrobial Compounds

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Chemical Preservatives and Natural Antimicrobial Compounds, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap33-1.gif /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap33-2.gif

Abstract:

Antimicrobials are classified as traditional when they (i) have been used for many years, (ii) are approved by many countries for inclusion as antimicrobials in foods (e.g., lysozyme and lactoferrin, which are naturally occurring but regulatory-agency approved), or (iii) are produced by synthetic means (as opposed to natural extracts). Many organic acids are used as food additives, but not all have antimicrobial activity. Research suggests that the most active are acetic, lactic, propionic, sorbic, and benzoic acids. Acetic acid was the most effective antimicrobial in ground roasted beef slurries against O157:H7 growth in comparison with citric or lactic acid. Sorbate is applied to foods by direct addition, dipping, spraying, dusting, or incorporation into packaging. The mechanism by which dimethyl dicarbonate (DMDC) acts is most likely related to inactivation of enzymes. A related compound, diethyl dicarbonate, reacts with imidazole groups, amines, or thiols of proteins. Lysozyme is most active against gram-positive bacteria, most likely because the peptidoglycan of the cell wall is more exposed. The primary use for sodium nitrite as an antimicrobial is to inhibit growth and toxin production in cured meats. Sulfites may be used to inhibit acetic acid-producing bacteria, lactic acid bacteria, and spoilage bacteria in meat products. In the future, traditional food antimicrobials will continue to play an important role in food preservation.

Citation: Davidson P, Taylor T. 2007. Chemical Preservatives and Natural Antimicrobial Compounds, p 713-745. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch33

Key Concept Ranking

Chemicals
1.2924643
Meat and Meat Products
1.1312413
Food Safety
1.0788579
Gram-Positive Bacteria
0.80079746
Gram-Negative Bacteria
0.7797829
Lactic Acid
0.7384415
1.2924643
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 33.1
Figure 33.1

Fate of an organic acid (RCOOH) in a low pH environment in the presence of a microbial cell.

Citation: Davidson P, Taylor T. 2007. Chemical Preservatives and Natural Antimicrobial Compounds, p 713-745. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 33.2
Figure 33.2

Organic acids used as antimicrobial food preservatives.

Citation: Davidson P, Taylor T. 2007. Chemical Preservatives and Natural Antimicrobial Compounds, p 713-745. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 33.3
Figure 33.3

Alkyl esters of -hydroxybenzoic acid (parabens).

Citation: Davidson P, Taylor T. 2007. Chemical Preservatives and Natural Antimicrobial Compounds, p 713-745. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 33.4
Figure 33.4

Dimethyldicarbonate (DMDC).

Citation: Davidson P, Taylor T. 2007. Chemical Preservatives and Natural Antimicrobial Compounds, p 713-745. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 33.5
Figure 33.5

Examples of antimicrobial compounds in spice essential oils.

Citation: Davidson P, Taylor T. 2007. Chemical Preservatives and Natural Antimicrobial Compounds, p 713-745. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 33.6
Figure 33.6

Allicin (diallyl thiosulfinate; thio-2-propene-1-sulfinic acid-5-allyl ester).

Citation: Davidson P, Taylor T. 2007. Chemical Preservatives and Natural Antimicrobial Compounds, p 713-745. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815912.ch33
1. Aalto, T. R.,, M. C. Firman, and, N. E. Rigler. 1953. p-Hydroxybenzoic acid esters as preservatives. I. Uses, antibacterial and antifungal studies, properties and determination. J. Am. Pharm. Assoc. 42:449458.
2. Abdul-Raouf, U. M.,, L. R. Beuchat, and, M. S. Ammar. 1993. Survival and growth of Escherichia coli O157:H7 in ground, roasted beef as affected by pH, acidulants, and temperature. Appl. Environ. Microbiol. 59:23642368.
3. Alakomi, H.-L.,, E. Skyttä,, M. Saarela,, T. Mattila-Sandholm,, K. Latva-Kala, and, I. M. Helander. 1999. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 66:20012005.
4. Al-Dagal, M. M., and, W. A. Bazaraa. 1999. Extension of shelf life of whole and peeled shrimp with organic acid salts and bifidobacteria. J. Food Prot. 62:5156.
5. Aligiannis, N.,, E. Kalpoutzakis,, S. Mitaku, and, I. B. Chinou. 2001. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 49:41684170.
6. Amerine, M. A., and, M. A. Joslyn. 1970. Table Wines: the Technology of Their Production, 2nd ed. Univ. Calif. Press, Berkeley.
7. Anonymous. 1998. Direct food substances affirmed as generally recognized as safe; egg white lysozyme. Fed. Regist. 63:1242112426.
8. Anonymous. 1999. Sorbic acid and potassium sorbate for preserving freshness. Public. ZS-1D. Eastman Chemical Co., Kingsport, Tenn.
9. Aran, N. 2001. The effect of calcium and sodium lactates on growth from spores of Bacillus cereus and Clostridium perfringens in a “sous-vide” beef goulash under temperature abuse. Int. J. Food Microbiol. 63:117123.
10. Araujo, C.,, M. J. Sousa,, M. F. Ferreira, and, C. Leao. 2003. Activity of essential oils from Mediterranean Lamiaceae species against food spoilage yeasts. J. Food Prot. 66:625632.
11. Aureli, P.,, A. Costantini, and, S. Zolea. 1992. Antimicrobial activity of some plant essential oils against Listeria monocytogenes. J. Food Prot. 55:344348.
12. Aymerich, T.,, A. Jofre,, M. Garriga, and, M. Hugas. 2005. Inhibition of Listeria monocytogenes and Salmonella by natural antimicrobials and high hydrostatic pressure in sliced cooked ham. J. Food Prot. 68:173177.
13. Azzouz, M. A., and, L. B. Bullerman. 1982. Comparative antimycotic effects of selected herbs, spices, plant components and commercial fungal agents. J. Food Prot. 45:12981301.
14. Bagamboula, C. F.,, M. Uyttendaele, and, J. Debevere. 2003. Antimicrobial effect of spices and herbs on Shigella sonnei and Shigella flexneri. J. Food Prot. 66:668673.
15. Bagamboula, C. F.,, M. Uyttendaele, and, J. Debevere. 2004. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol. 21:3342.
16. Banks, J. G., and, R. G. Board. 1982. Sulfite-inhibition of Enterobacteriaceae including Salmonella in British fresh sausage and in culture systems. J. Food Prot. 45:12921297.
17. Baranowski, J. D.,, P. M. Davidson,, C. W. Nagel, and, A. L. Branen. 1980. Inhibition of Saccharomyces cerevisiae by naturally-occurring hydroxycinnamates. J. Food Sci. 45:592594.
18. Baranowski, J. D., and, C. W. Nagel. 1983. Properties of alkyl hydroxycinnamates and effects on Pseudomonas fluorescens. Appl. Environ. Microbiol. 45:218222.
19. Barboza de Martinez, Y.,, K. Ferrer, and, E. Marquez Salas. 2002. Combined effects of lactic acid and nisin solution in reducing levels of microbiological contamination in red meat carcasses. J. Food Prot. 65:17801783.
20. Bargiota, E. E.,, E. Rico-Muñoz, and, P. M. Davidson. 1987. Lethal effect of methyl and propyl parabens as related to Staphylococcus aureus lipid composition. Int. J. Food Microbiol. 4:257266.
21. Barmpalia, I. M.,, I. Geornaras,, K. E. Belk,, J. A. Scanga,, P. A. Kendall,, G. C. Smith, and, J. N. Sofos. 2004. Control of Listeria monocytogenes on frankfurters with antimicrobials in the formulation and by dipping in organic acid solutions. J. Food Prot. 67:24562464.
22. Barone, F. E., and, M. R. Tansey. 1977. Isolation, purification, identification, synthesis and kinetics of the activity of the anticandidal component of Allium sativum, and a hypothesis for its mode of action. Mycologia 69:793825.
23. Barrett, N. E.,, A. S. Grandison, and, M. J. Lewis. 1999. Contribution of the lactoperoxidase system to the keeping quality of pasteurized milk. J. Dairy Res. 66:7380.
24. Bautista, D. A.,, N. Sylvester,, S. Barbut, and, M. W. Griffiths. 1997. The determination of efficacy of antimicrobial rinses on turkey carcasses using response surface designs. Int. J. Food Microbiol. 34:279292.
25. Bedie, G. K.,, J. Samelis,, J. N. Sofos,, K. E. Belk,, J. A. Scanga, and, G. C. Smith. 2001. Antimicrobials in the formulation to control Listeria monocytogenes postprocessing contamination on frankfurters stored at 4 degrees C in vacuum packages. J. Food Prot. 64:19491955.
26. Bellamy, W.,, M. Takase,, H. Wakabayashi,, K. Kawase, and, M. Tomita. 1992. Antibacterial spectrum of lactoferrin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J. Appl. Bacteriol. 73:472479.
27. Bennis, S.,, F. Chami,, N. Chami,, T. Bouchikhi, and, A. Remmal. 2004. Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol. Lett. Appl. Microbiol. 38:454458.
28. Beuchat, L. R. 1994. Antimicrobial properties of spices and their essential oils, p. 167179. In V. M. Dillon and, R. G. Board (ed.), Natural Antimicrobial Systems and Food Preservation. CAB Intl., Wallingford, England.
29. Beuchat, L. R., and, D. A. Golden. 1989. Antimicrobials occurring naturally in foods. Food Technol. 43:134142.
30. Beumer, R. R.,, A. Noomen,, J. A. Marijs, and, E. H. Kampelmacher. 1985. Antibacterial action of the lactoperoxidase system on Campylobacter jejuni in cow’s milk. Neth. Milk Dairy J. 39:107114.
31. Björck, L. 1978. Antibacterial effect of the lactoperoxidase system on psychrotrophic bacteria in milk. J. Dairy Res. 45:109118.
32. Blom, H.,, E. Nerbink,, R. Dainty,, T. Hagtvedt,, E. Borch,, H. Nissen, and, T. Nesbakken. 1997. Addition of 2.5% lactate and 0.25% acetate controls growth of Listeria monocytogenes in vacuum-packed, sensory-acceptable servelat sausage and cooked ham stored at 4°C. Int. J. Food Microbiol. 38:7176.
33. Boland, J. S.,, P. M. Davidson, and, J. Weiss. 2003. Enhanced inhibition of Escherichia coli O157:H7 by lysozyme and chelators. J. Food Prot. 66:17831789.
34. Bower, C. K., and, M. A. Daeschel. 1999. Resistance responses of microorganisms in food environments. Int. J. Food Microbiol. 50:3344.
35. Bracey, D.,, C. D. Holyoak, and, P. J. Coote. 1998. Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: is growth inhibition dependent on reduced intracellular pH? J. Appl. Microbiol. 85:10561066.
36. Branen, J., and, P. M. Davidson. 2000. Activity of hydrolysed lactoferrin against foodborne pathogenic bacteria in growth media: the effect of EDTA. Lett. Appl. Microbiol. 30:233237.
37. Branen, J. K., and, P. M. Davidson. 2004. Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. Int. J. Food Microbiol. 90:6374.
38. Bredin, J.,, A. Davin-Regli, and, J. M. Pages. 2005. Propyl paraben induces potassium efflux in Escherichia coli. J. Antimicrob. Chemother. 55:10131015.
39. Brudzinski, L., and, M. A. Harrison. 1998. Influence of incubation conditions on survival and acid tolerance response of Escherichia coli O157:H7 and non-O157:H7 isolates exposed to acetic acid. J. Food Prot. 61:524546.
40. Buchanan, R. L., and, S. G. Edelson. 1999. pH-dependent stationary-phase acid resistance response of enterohemorrhagic Escherichia coli in the presence of various acidulants. J. Food Prot. 62:211218.
41. Bullerman, L. B. 1983. Effects of potassium sorbate on growth and aflatoxin production by Aspergillus parasiticus and Aspergillus flavus. J. Food Prot. 46:940942.
42. Bullerman, L. B. 1984. Effects of potassium sorbate on growth and patulin production by Penicillium patulum and Penicillium roqueforti. J. Food Prot. 47:312315.
43. Bullerman, L. B. 1974. Inhibition of aflatoxin production by cinnamon. J. Food Sci. 39:11631165.
44. Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 94:223253.
45. Burt, S. A., and, R. D. Reinders. 2003. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett. Appl. Microbiol. 36:162167.
46. Burt, S. A.,, R. Vlielander,, H. P. Haagsman, and, E. J. A. Veldhuizen. 2005. Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157:H7 by addition of food stabilizers. J. Food Prot. 68:919926.
47. Carlsson, J.,, Y. Iwami, and, T. Yamada. 1983. Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase-thiocyanate-hydrogen peroxide. Infect. Immun. 40:7080.
48. Carneiro de Melo, A. M. S.,, C. A. Cassar, and, R. J. Miles. 1998. Trisodium phosphate increases sensitivity of gram-negative bacteria to lysozyme and nisin. J. Food Prot. 61:839844.
49. Carpenter, C. E.,, D. S. A. Reddy, and, D. P. Cornforth. 1987. Inactivation of clostridial ferredoxin and pyruvateferredoxin oxidoreductase by sodium nitrite. Appl. Environ. Microbiol. 53:549552.
50. Castellani, A. G., and, C. F. Niven. 1955. Factors affecting the bacteriostatic action of sodium nitrite. Appl. Microbiol. 3:154159.
51. Cavallito, C. J., and, J. H. Bailey. 1944. Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties, and antibacterial action. J. Am. Chem. Soc. 16:19501951.
52. Cerrutti, P., and, S. M. Alzamora. 1996. Inhibitory effects of vanillin on some food spoilage yeasts in laboratory media and fruit purées. Int. J. Food Microbiol. 29:379386.
53. Cerrutti, P.,, S. M. Alzamora, and, S. L. Vidales. 1997. Vanillin as an antimicrobial for producing shelf-stable strawberry purées. J. Food Sci. 62:608610.
54. Ceylan, E.,, D. Y. C. Fung, and, J. R. Sabah. 2004. Antimicrobial activity and synergistic effect of cinnamon with sodium benzoate or potassium sorbate in controlling Escherichia coli O157:H7 in apple juice. J. Food Sci. 69:M102-M106.
55. Chaibi, A.,, L. H. Ababouch, and, F. F. Busta. 1996. Inhibition of bacterial spores and vegetative cells by glycerides. J. Food Prot. 59:716722.
56. Chami, N.,, S. Bennis,, F. Chami,, A. Aboussekhra, and, A. Remmal. 2005. Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo. Oral Microbiol. Immunol. 20:106111.
57. Chan, L.,, R. Weaver, and, C. S. Ough. 1975. Microbial inhibition caused by p-hydroxybenzoate esters in wines. Am. J. Enol. Viticult. 26:201207.
58. Chen, C. S.,, W. Y. Liau, and, G. J. Tsai. 1998. Antibacterial effects of N-sulfonated and N-sulfobenzoyl chitosan and application to oyster preservation. J. Food Prot. 61:11241128.
59. Chen, N., and, L. A. Shelef. 1992. Relationship between water activity, salts of lactic acid, and growth of Listeria monocytogenes in a meat model system. J. Food Prot. 55:574578.
60. Chipley, J. R. 1974. Effects of 2,4-dinitrophenol and N,N′-cyclohexylcarbodiimide on cell-envelope associated enzymes of Escherichia coli and Salmonella enteriditis. Microbios 10:115.
61. Chipley, J. R. 2005. Sodium benzoate and benzoic acid, p. 1149. In P. M. Davidson,, J. N. Sofos, and, A. L. Branen (ed.), Antimicrobials in Foods, 3rd ed. CRC Press, Boca Raton, Fla.
62. Chipley, J. R., and, N. Uraih. 1980. Inhibition of Aspergillus growth and aflatoxin release by derivatives of benzoic acid. Appl. Environ. Microbiol. 40:352.
63. Chorianopoulos, N.,, E. Kalpoutzakis,, N. Aligiannis,, S. Mitaku,, G. J. Nychas, and, S. A. Haroutounian. 2004. Essential oils of Satureja, Origanum, and Thymus species: chemical composition and antibacterial activities against foodborne pathogens. J. Agric. Food Chem. 52:82618267.
64. Chung, K. T.,, Z. Lu, and, M. W. Chou. 1998. Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem. Toxicol. 36:10531060.
65. Chung, K. T., and, C. A. Murdock. 1991. Natural systems for preventing contamination and growth of microorganisms in foods. Food Microstruct. 10:361374.
66. Comes, J. E., and, R. B. Beelman. 2002. Addition of fumaric acid and sodium benzoate as an alternative method to achieve a 5-log reduction of Escherichia coli O157:H7 populations in apple cider. J. Food Prot. 65:476483.
67. Conner, D. E.,, L. R. Beuchat,, R. E. Worthington, and, H. L. Hitchcock. 1984. Effects of essential oils and oleoresins of plants on ethanol production, respiration and sporulation of yeasts. Int. J. Food Microbiol. 1:6374.
68. Corona, A., and, P. Quaglio. 2001. Sensitivity of Escherichia coli VTEC to herbs and spices. Industrie Alimentari 40:738740.
69. Cox, S. D.,, J. E. Gustafson,, C. M. Mann,, J. L. Markham,, Y. C. Liew,, R. P. Hartland,, H. C. Bell,, J. R. Warmington, and, S. G. Wyllie. 1998. Tea tree oil causes K+ leakage and inhibits respiration in Escherichia coli. Lett. Appl. Microbiol. 26:355358.
70. Cox, S. D.,, C. M. Mann, and, J. L. Markham. 2001. Interactions between components of the essential oil of Melaleuca alternifolia. J. Appl. Microbiol. 91:492497.
71. Cushnie, T. P. T., and, A. J. Lamb. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26:343.
72. Daferera, D. J.,, B. N. Ziogas, and, M. G. Polissiou. 2000. GC-MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J. Agric. Food Chem. 48:25762581.
73. Davidson, P. M. 2005. Parabens, p. 291304. In P. M. Davidson,, J. N. Sofos, and, A. L. Branen (ed.), Antimicrobials in Foods, 3rd ed. CRC Press, Boca Raton, Fla.
74. Davidson, P. M., and, M. A. Harrison. 2002. Resistance and adaptation to food antimicrobials, sanitizers, and other process controls. Food Technol. 56:6978.
75. Davidson, P. M., and, A. S. Naidu. 2000. Phytophenols, p. 266294. In A. S. Naidu (ed.), Natural Food Antimicrobial Systems. CRC Press, Boca Raton, Fla.
76. Debevere, J. M. 1989. The effect of sodium lactate on the shelf life of vacuum-packed coarse liver pate. Fleischwirtschaft 69:223224.
77. Degnan, A. J.,, C. W. Kaspar,, W. S. Otwell,, M. L. Tamplin, and, J. B. Luchansky. 1994. Evaluation of lactic acid bacterium fermentation products and food-grade chemicals to control Listeria monocytogenes in blue crab (Callinectes sapidus) meat. Appl. Environ. Microbiol. 60:31983203.
78. Delaquis, P.,, K. Stanich, and, P. Toivonen. 2005. Effect of pH on the inhibition of Listeria spp. by vanillin and vanillic acid. J. Food Prot. 68:14721476.
79. Delaquis, P. J., and, G. Mazza. 1995. Antimicrobial properties of isothiocyanates in food preservation. Food Technol. 49:7384.
80. Delaquis, P. J., and, P. L. Sholberg. 1997. Antimicrobial activity of gaseous allyl isothiocyanate. J. Food Prot. 60:943947.
81. Delaquis, P. J.,, K. Stanich,, B. Girard, and, G. Mazza. 2002. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 74:101109.
82. Delaquis, P. J.,, S. M. Ward,, R. A. Holley,, M. C. Cliff, and, G. Mazza. 1999. Microbiological, chemical and sensory properties of pre-cooked roast beef preserved with horse-radish essential oil. J. Food Sci. 64:519524.
83. Devlieghere, F.,, A. Vermeulen, and, J. M. Debevere. 2004. Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol. 21:703714.
84. Dickson, J. S., and, M. E. Anderson. 1992. Microbiological decontamination of animal carcasses by washing and sanitizing systems: a review. J. Food Prot. 55:13140.
85. Di Pasqua, R.,, V. De Feo,, F. Villani, and, G. Mauriello. 2005. In vitro antimicrobial activity of essential oils from Mediterranean Apiaceae, Verbenaceae and Lamiaceae against foodborne pathogens and spoilage bacteria. Ann. Microbiol. 55:139143.
86. Di Persio, P. A.,, P. A. Kendall,, M. Calicioglu, and, J. N. Sofos. 2003. Inactivation of Salmonella during drying and storage of apple slices treated with acidic or sodium metabisulfite solutions. J. Food Prot. 66:22452251.
87. Di Persio, P. A.,, P. A. Kendall, and, J. N. Sofos. 2004. Inactivation of Listeria monocytogenes during drying and storage of peach slices treated with acidic or sodium metabisulfite solutions. Food Microbiol. 21:641648.
88. Doores, S. 2005. Organic acids, p. 95136. In P. M. Davidson,, J. N. Sofos, and, A. L. Branen (ed.), Antimicrobials in Foods, 3rd ed. Marcel Dekker, Inc., New York, N.Y.
89. Duncan, C. L., and, E. M. Foster. 1968. Effect of sodium nitrite, sodium chloride, and sodium nitrate on germination and outgrowth of anaerobic spores. Appl. Microbiol. 16:406411.
90. Dymicky, M., and, C. N. Huhtanen. 1979. Inhibition of Clostridium botulinum by p-hydroxybenzoic acid n-alkyl esters. Antimicrob. Agents Chemother. 15:798801.
91. Ehrenberg, L.,, I. Fedorscsak, and, F. Solymosy. 1976. Diethyl pyrocarbonate in nucleic acid research. Prog. Nucleic Acid Mol. Biol. 16:189.
92. Eklund, T. 1983. The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J. Appl. Bacteriol. 54:383389.
93. Eklund, T. 1985. The effect of sorbic acid and esters of p-hydroxybenzoic acid on the proton motive force in Escherichia coli membrane vesicles. J. Gen. Microbiol. 131:7376.
94. Eklund, T. 1980. Inhibition of growth and uptake processes in bacteria by some chemical food preservatives. J. Appl. Bacteriol. 48:423432.
95. Eklund, T. 1985. Inhibition of microbial growth at different pH levels by benzoic and propionic acids and esters of p-hydroxybenzoic acid. Int. J. Food Microbiol. 2:159167.
96. Eklund, T. 1989. Organic acids and esters, p. 161200. In G. W. Gould (ed.), Mechanisms of Action of Food Preservation Procedures. Elsevier Applied Sci, London, England.
97. Eklund, T.,, I. F. Nes, and, Skjelkvåle. 1981. Control of Salmonella at different temperatures by propyl paraben and butylated hydroxyanisole, p. 377. In T. A. Roberts,, G. Hobbs,, J. H. B. Christian, and, N. Skovgaard (ed.), Psychrotrophic Microorganisms in Spoilage and Pathogenicity. Academic Press, London, England.
98. Ekstrand, B. 1994. Lactoperoxidase and lactoferrin, p. 1563. In V. M. Dillon and, R. G. Board (ed.), Natural Antimicrobial Systems and Food Preservation. CAB Intl., Wallingford, England.
99. Elci, S., and, N. O. Akpolat. 2003. Effect of glycerol monolaurate and sodium benzoate at different concentrations, temperatures and pH on the growth of Listeria monocytogenes. Biotechnol. Biotechnol. Equip. 17:123127.
100. Elgayyar, M.,, F. A. Draughon,, D. A. Golden, and, J. R. Mount. 2001. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. J. Food Prot. 64:10191024.
101. Elliot, R. M.,, J. C. McLay,, M. J. Kennedy, and, R. S. Simmonds. 2004. Inhibition of foodborne bacteria by the lactoperoxidase system in a beef cube system. Int. J. Food Microbiol. 91:7381.
102. Ellison, R. T.,, T. G. Giehl, and, F. M. LaForce. 1988. Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect. Immun. 56:27742781.
103. El-Shenawy, M. A., and, E. H. Marth. 1988. Sodium benzoate inhibits growth of or inactivates Listeria monocytogenes. J. Food Prot. 51:525530.
104. Fabio, A.,, A. Corona,, E. Forte, and, P. Quaglio. 2003. Inhibitory activity of spices and essential oils on psychrotrophic bacteria. Microbiologica 26:115120.
105. Falcone, P.,, B. Speranza,, M. A. Del Nobile,, M. R. Corbo, and, M. Sinigaglia. 2005. Study on the antimicrobial activity of thymol intended as a natural preservative. J. Food Prot. 68:16641670.
106. Fang, S. W.,, C. J. Li, and, D. Y. C. Shin. 1994. Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat. J. Food Prot. 56:136140.
107. Fernandez, J. L., and, W. J. Simpson. 1993. Aspects of the resistance of lactic acid bacteria to hop bitter acids. J. Appl. Bacteriol. 75:315319.
108. Filoche, S. K.,, K. Soma, and, C. H. Sissons. 2005. Antimicrobial effects of essential oils in combination with chlorhexidine digluconate. Oral Microbiol. Immunol. 20:221225.
109. Fisher, T. L., and, D. A. Golden. 1998. Survival of Escherichia coli O157:H7 in apple cider as affected by dimethyl dicarbonate, sodium bisulfite, and sodium benzoate. J. Food Sci. 63:904906.
110. Foster, J. W. 1995. Low pH adaptation and the acid tolerance response of Salmonella Typhimurium. Crit. Rev. Microbiol. 21:215237.
111. Francois, J.,, E. Vam Scjaftingen, and, H. G. Hers. 1986. Effect of benzoate on the metabolism of fructose 2,6-biphosphate in yeast. Eur. J. Biochem. 154:141145.
112. Freese, E.,, C. W. Sheu, and, E. Galliers. 1973. Function of lipophilic acids as antimicrobial food additives. Nature 241:321327.
113. Friedman, M.,, P. R. Henika, and, R. E. Mandrell. 2002. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 65:15451560.
114. Fujita, K.-I., and, I. Kubo. 2005. Naturally occurring antifungal agents against Zygosaccharomyces bailii and their synergism. J. Agric. Food Chem. 53:51875191.
115. Garren, D. M.,, M. A. Harrison, and, S. M. Russell. 1998. Acid tolerance and acid shock response of Escherichia coli O157:H7 and non-O157:H7 isolates provide cross protection to sodium lactate and sodium chloride. J. Food Prot. 61:158161.
116. Gay, M., and, A. Amgar. 2005. Factors moderating Listeria monocytogenes growth in raw milk and in soft cheese made from raw milk. Lait 85:153170.
117. Gaya, P.,, M. Medina, and, M. Nunez. 1991. Effect of the lactoperoxidase system on Listeria monocytogenes behavior in raw milk at refrigeration temperatures. Appl. Environ. Microbiol. 57:33553360.
118. Gaysinsky, S.,, P. M. Davidson,, B. D. Bruce, and, J. Weiss. 2005. Stability and antimicrobial efficiency of eugenol encapsulated in surfactant micelles as affected by temperature and pH. J. Food Prot. 68:13591366.
119. Gibson, A. M., and, T. A. Roberts. 1986. The effect of pH, sodium chloride, sodium nitrite and storage temperature on the growth of Clostridium perfringens and faecal streptococci in laboratory medium. Int. J. Food Microbiol. 3:195210.
120. Gibson, A. M., and, T. A. Roberts. 1986. The effect of pH, water activity, sodium nitrite and storage temperature on the growth of enteropathogenic Escherichia coli and salmonellae in laboratory medium. Int. J. Food Microbiol. 3:183194.
121. Gill, A. O.,, P. Delaquis,, P. Russo, and, R. A. Holley. 2002. Evaluation of antilisterial action of cilantro oil on vacuum packed ham. Int. J. Food Microbiol. 73:8392.
122. Gill, A. O., and, R. A. Holley. 2000. Inhibition of bacterial growth on ham and bologna by lysozyme, nisin and EDTA. Food Res. Int. 33:8390.
123. Gill, A. O., and, R. A. Holley. 2003. Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24 degrees C. Int. J. Food Microbiol. 80:251259.
124. Gill, A. O., and, R. A. Holley. 2004. Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl. Environ. Microbiol. 70:57505755.
125. Gill, A. O., and, R. A. Holley. 2000. Surface application of lysozyme, nisin, and EDTA to inhibit spoilage and pathogenic bacteria on ham and bologna. J. Food Prot. 63:13381346.
126. Glass, K. A.,, D. A. Granberg,, A. L. Smith,, A. M. McNamara,, M. Hardin,, J. Mattias,, K. Ladwig, and, E. A. Johnson. 2002. Inhibition of Listeria monocytogenes by sodium diacetate and sodium lactate on wieners and cooked bratwurst. J. Food Prot. 65:116123.
127. Golden, D. A.,, R. W. Worobo, and, C. S. Ough. 2005. Dimethyl dicarbonate and diethyl dicarbonate, p. 305326. In P. M. Davidson,, J. N. Sofos, and, A. L. Branen (ed.), Antimicrobials in Foods, 3rd ed. CRC Press, Boca Raton, Fla.
128. González-Fandos, E.,, M. L. García-López,, M. L. Sierra, and, A. Otero. 1994. Staphylococcal growth and enterotoxins (A-D) and thermonuclease synthesis in the presence of dehydrated garlic. J. Appl. Bacteriol. 77:549552.
129. Gould, G. W. 1964. Effect of food preservatives on the growth of bacteria from spores, p. 17. In N. Molin (ed.), Microbial Inhibitors in Food. Almqvist and Miksell, Stockholm, Sweden.
130. Gould, G. W. (ed.). 1989. Mechanisms of Action of Food Preservation Procedures. Elsevier Applied Sci., London, England.
131. Gould, G. W. 2000. The use of other chemical preservatives: sulfite and nitrite, p. 200213. In B. M. Lund,, T. C. Baird-Parker, and, G. W. Gould (ed.), The Microbiological Safety and Quality of Food. Aspen Publishers, Gaithersburg, Md.
132. Gould, G. W., and, N. J. Russell. 1991. Sulphite, p. 7288. In N. J. Russell and, G. W. Gould (ed.), Food Preservatives. Blackie and Son Ltd., Glasgow, Scotland.
133. Gram, L. 1991. Inhibition of mesophilic spoilage Aeromonas spp. on fish by salt, potassium sorbate, liquid smoke, and chilling. J. Food Prot. 54:436442.
134. Griffin, S. G.,, S. G. Wyllie,, J. L. Markham, and, D. N. Leach. 1999. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragrance J. 14:322332.
135. Haas, G. J., and, R. Barsoumian. 1994. Antimicrobial activity of hop resins. J. Food Prot. 57:5961.
136. Hammer, K. A.,, C. F. Carson, and, T. V. Riley. 2003. Anti-fungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 95:853860.
137. Hammer, K. A.,, C. F. Carson, and, T. V. Riley. 1999. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 86:985990.
138. Hao, Y. Y.,, R. E. Brackett, and, M. P. Doyle. 1998. Efficacy of plant extracts in inhibiting Aeromonas hydrophila and Listeria monocytogenes in refrigerated, cooked poultry. Food Microbiol. 15:367378.
139. Hao, Y. Y.,, R. E. Brackett, and, M. P. Doyle. 1998. Inhibition of Listeria monocytogenes and Aeromonas hydrophila by plant extracts in refrigerated cooked beef. J. Food Prot. 61:307312.
140. Hefnawy, Y. A.,, S. I. Moustafa, and, E. H. Marth. 1993. Sensitivity of Listeria monocytogenes to selected spices. J. Food Prot. 56:876878.
141. Helander, I. M.,, H. L. Alakomi,, K. Latva-Kala,, T. Mattila-Sandholm,, I. Pol,, E. J. Smid,, L. G. M. Gorris, and, A. von Wright. 1998. Characterization of the action of selected essential oil components on gram-negative bacteria. J. Agric. Food Chem. 46:35903595.
142. Herald, P. J., and, P. M. Davidson. 1983. The antibacterial activity of selected hydroxycinnamic acids. J. Food Sci. 48:13781379.
143. Hinton, A., Jr. 2006. Growth of Campylobacter in media supplemented with organic acids. J. Food Prot. 69:3438.
144. Hinze, H., and, H. Holzer. 1985. Effect of sulfite or nitrite on the ATP content and the carbohydrate metabolism in yeast. Z. Lebensm. Unters. Forsch. 181:8791.
145. Ho, C. T. 1992. Phenolic compounds in food. An overview. In C. T. Ho,, C. Y. Lee, and, M. T. Huang (ed.), Phenolic Compounds in Food and Their Effects on Health. Analysis, Occurrence, and Chemistry, vol. Symp. Ser. 506. American Chemical Society, Washington, D.C.
146. Holley, R. A., and, D. Patel. 2005. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 22:273292.
147. Houtsma, P. C.,, A. Heuvelink,, J. Dufrenne, and, S. Notermans. 1994. Effect of sodium lactate on toxin production, spore germination and heat resistance of proteolytic C. botulinum strains. J. Food Prot. 57:327330.
148. Houtsma, P. C.,, J. C. Wit, and, F. M. Rombouts. 1996. Minimum inhibitory concentration (MIC) of sodium lactate and sodium chloride for spoilage organisms and pathogens at different pH values and temperatures. J. Food Prot. 59:13001304.
149. Huang, L. H., and, V. K. Juneja. 2003. Thermal inactivation of Escherichia coli O157:H7 in ground beef supplemented with sodium lactate. J. Food Prot. 66:664667.
150. Hughey, V. L., and, E. A. Johnson. 1987. Antimicrobial activity of lysozyme against bacteria involved in food spoilage and food-borne disease. Appl. Environ. Microbiol. 53:21652170.
151. Hughey, V. L.,, R. A. Wilger, and, E. A. Johnson. 1989. Antibacterial activity of hen egg white lysozyme against Listeria monocytogenes Scott A in foods. Appl. Environ. Microbiol. 55:631638.
152. ICMSF. 1996. Micoorganisms in Foods 5. Microbiological Specifications of Food Pathogens. Blackie Academic and Professional, London, England.
153. Inovatech. 2000. Inovapure Product Description. Canadian Inovatech, Inc., Abbotsford, B.C., Canada.
154. Isshiki, K.,, K. Tokuora,, R. Mori, and, S. Chiba. 1992. Preliminary examination of allyl isothiocyanate vapor for food preservation. Biosci. Biotechnol. Biochem. 56:14761477.
155. Jangho, K., and, D. L. Marshall. 2001. Effect of lactic acid on Listeria monocytogenes and Edwardsiella tarda attached to catfish skin. Food Microbiol. 18:589596.
156. Jermini, M. F. G., and, W. Schmidt-Lorenz. 1987. Activity of Na-benzoate and ethyl-paraben against osmotolerant yeasts at different water activity values. J. Food Prot. 50:920927.
157. Johansen, C.,, L. Gram, and, A. S. Meyer. 1994. The combined inhibitory effect of lysozyme and low pH on growth of Listeria monocytogenes. J. Food Prot. 57:561566.
158. Johnson, E. A., and, A. E. Larson. 2005. Lysozyme, p. 361387. In P. M. Davidson,, A. L. Branen, and, J. N. Sofos (ed.), Antimicrobials in Food, 3rd ed. CRC Press, Boca Raton, Fla.
159. Jones, E. M.,, A. Smart,, G. Bloomberg,, L. Burgess, and, M. R. Millar. 1994. Lactoferrin, a new antimicrobial peptide. J. Appl. Bacteriol. 77:208214.
160. Juneja, V. K., and, P. M. Davidson. 1992. Influence of altered fatty acid composition on resistance of Listeria monocytogenes to antimicrobials. J. Food Prot. 56:302305.
161. Juneja, V. K., and, H. Thippareddi. 2004. Control of Clostridium perfringens in a model roast beef by salts of organic acids during chilling. J. Food Safety 24:95108.
162. Juneja, V. K., and, H. Thippareddi. 2004. Inhibitory effects of organic acid salts on growth of Clostridium perfringens from spore inocula during chilling of marinated ground turkey breast. Int. J. Food Microbiol. 93:155163.
163. Jurd, L.,, A. D. King,, K. Mihara, and, W. L. Stanley. 1971. Antimicrobial properties of natural phenols and related compounds. I. Obtusastyrene. Appl. Microbiol. 21:507510.
164. Kabara, J. J., and, D. L. Marshall. 2005. Medium-chain fatty acids and esters, p. 327360. In P. M. Davidson,, J. N. Sofos, and, A. L. Branen (ed.), Antimicrobials in Foods, 3rd ed. CRC Press, Boca Raton, Fla.
165. Kamau, D. N.,, S. Doores, and, K. M. Pruitt. 1990. Antibacterial activity of the lactoperoxidase system against Listeria monocytogenes and Staphylococcus aureus in milk. J. Food Prot. 53:10101014.
166. Kasrazadeh, M., and, C. Genigeorgis. 1995. Potential growth and control of Escherichia coli O157:H7 in soft hispanic type cheese. Int. J. Food Microbiol. 25:289300.
167. Kato, A., and, I. Shibasaki. 1975. Combined effect of different drugs on the antibacterial activity of fatty acids and their esters. J. Antibacterial Antifungal Agents (Japan) 8:355361.
168. Kennedy, M.,, A. L. O’Rourke,, J. McLay, and, R. Simmonds. 2000. Use of a ground beef model to assess the effect of the lactoperoxidase system on the growth of Escherichia coli O157:H7, Listeria monocytogenes and Staphylococcus aureus in red meat. Int. J. Food Microbiol. 57:147158.
169. Kim, J. M.,, M. R. Marshall,, J. A. Cornell,, J. F. Preston, and, C. I. Wei. 1995. Antibacterial activity of carvacrol, citral, and geraniol against Salmonella typhimurium in culture medium and on fish cubes. J. Food Sci. 60:13641368.
170. Kim, J. M.,, M. R. Marshall, and, C. Wei. 1995. Antibacterial activity of some essential oil components against five food-borne pathogens. J. Agric. Food Chem. 43:28392845.
171. Kirby, G. W.,, L. Atkin, and, C. N. Frey. 1973. Further studies on the growth of bread molds as influenced by acidity. Cereal Chem. 14:865.
172. Kisko, G., and, S. Roller. 2005. Carvacrol and p-cymene inactivate Escherichia coli O157: H7 in apple juice. BMC Microbiol. 5:36.
173. Korhonen, H. 1978. Effect of lactoferrin and lysozyme in milk on the growth inhibition of Bacillus stearothermophilus in the Thermocult method. Suomen Eläinlááhárilehti 84:255267.
174. Korpela, J. 1984. Avidin, a high affinity biotin-binding protein, as a tool and subject of biological research. Med. Biol. 65:526.
175. Lachowicz, K. J.,, G. P. Jones,, D. R. Briggs,, F. E. Bienvenu,, J. Wan,, A. Wilcock, and, M. J. Coventry. 1998. The synergistic preservative effects of the essential oils of sweet basil (Ocimum basilicum L.) against acid-tolerant food microflora. Lett. Appl. Microbiol. 26:209214.
176. Lambert, R. J., and, M. Stratford. 1999. Weak-acid preservatives: modeling microbial inhibition and response. J. Appl. Microbiol. 86:157164.
177. Lambert, R. J. W.,, P. N. Skandamis,, P. J. Coote, and, G. J. E. Nychas. 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 91:453462.
178. Larson, A. E.,, R. R. Yu,, O. A. Lee,, S. Price,, G. J. Haas, and, E. A. Johnson. 1996. Antimicrobial activity of hop extracts against Listeria monocytogenes in media and in food. Int. J. Food Microbiol. 33:195207.
179. Lee, J. S. 1973. What seafood processors should know about Vibrio parahaemolyticus. J. Milk Food Technol. 36:405408.
180. Lee, Y. L.,, T. Cesario,, J. Owens,, E. Shanbrom, and, L. D. Thrupp. 2002. Antibacterial activity of citrate and acetate. Nutrition 18:665666.
181. Lee, Y. L.,, L. Thrupp,, J. Owens,, T. Cesario, and, E. Shanbrom. 2001. Bactericidal activity of citrate against Gram-positive cocci. Lett. Appl. Microbiol. 33:349351.
182. Leitch, E. C. M., and, C. S. Stewart. 2002. Escherichia coli O157 and non-O157 isolates are more susceptible to L-lactate than to D-lactate. Appl. Environ. Microbiol. 68:46764678.
183. Lennox, J. E., and, L. J. McElroy. 1984. Inhibition of growth and patulin synthesis in Penicillium expansum by potassium sorbate and sodium propionate in culture. Appl. Environ. Microbiol. 48:10311033.
184. Leuschner, R. G. K., and, J. Zamparini. 2002. Effects of spices on growth and survival of Escherichia coli O157 and Salmonella enterica serovar Enteritidis in broth model systems and mayonnaise. Food Control 13:399404.
185. Lewis, J. C., and, L. Jurd. 1972. Sporostatic action of cinnamylphenols and related compounds on Bacillus megaterium, p. 384389. In H. O. Halvorson,, R. Hewson, and, L. L. Campbell (ed.), Spores, 5th ed. American Society for Microbiology, Washington, D.C.
186. Leyer, G. J., and, E. A. Johnson. 1993. Acid adaptation induces cross-protection against environmental stresses in Salmonella Typhimurium. Appl. Environ. Microbiol. 59:18421847.
187. Leyer, G. J.,, L.-L. Wang, and, E. A. Johnson. 1995. Acid adaptation of Escherichia coli O157:H7 increases survival in acidic foods. Appl. Environ. Microbiol. 61:37523755.
188. Liewen, M. B., and, E. H. Marth. 1985. Growth of sorbate-resistant and -sensitive strains of Penicillium roqueforti in the presence of sorbate. J. Food Prot. 48:525529.
189. Lillard, H. S.,, L. C. Blankenship,, J. A. Dickens,, S. E. Craven, and, A. D. Shackelford. 1987. Effect of acetic acid on the microbiological quality of scalded picked and unpicked broiler carcasses. J. Food Prot. 50:112114.
190. Lin, C. M.,, J. F. Preston, and, C. I. Wei. 2000. Antibacterial mechanism of allyl isothiocyanate. J. Food Prot. 63:727734.
191. López-Malo, A.,, S. M. Alzamora, and, A. Argaiz. 1998. Vanillin and pH synergistic effects on mold growth. J. Food Sci. 63:143146.
192. López-Malo, A.,, S. M. Alzamora, and, A. Argaiz. 1995. Effect of natural vanillin on germination time and radial growth of moulds in fruit-based agar systems. Food Microbiol. 12:213219.
193. López-Malo, A.,, S. M. Alzamora, and, A. Argaiz. 1997. Effect of vanillin concentration, pH and incubation temperature on Aspergillus flavus, Aspergillus niger, Aspergillus ochraceus, and Aspergillus parasiticus. Food Microbiol. 14:117124.
194. López-Malo, A.,, S. M. Alzamora, and, E. Palou. 2002. Aspergillus flavus dose-response curves to selected natural and synthetic antimicrobials. Int. J. Food Microbiol. 73:213218.
195. López-Malo, A.,, S. M. Alzamora, and, E. Palou. 2005. Aspergillus flavus growth in the presence of chemical preservatives and naturally occurring antimicrobial compounds. Int. J. Food Microbiol. 99:119128.
196. Lopez, M.,, S. Martinez,, J. Gonzalez,, R. Martin, and, A. Bernardo. 1998. Sensitization of thermally injured spores of Bacillus stearothermophilus to sodium benzoate and potassium sorbate. Lett. Appl. Microbiol. 27:331335.
197. Lyon, G. D., and, F. M. McGill. 1988. Inhibition of Erwinia carotovora in vitro by phenolics. Potato Res. 31:461467.
198. Lyon, G. D., and, F. M. McGill. 1989. Inhibition of polygalacturonase and polygalacturonic acid lyase from Erwinia carotovora subsp. carotovora by phenolics in vitro. Potato Res. 32:267274.
199. Maas, M. R.,, K. A. Glass, and, M. P. Doyle. 1989. Sodium lactate delays toxin production by Clostridium botulinum in cook-in-bag turkey products. Appl. Environ. Microbiol. 55:22262229.
200. Mandel, I. D., and, S. A. Ellison. 1985. The biological significance of the non-immunoglobulin defense factors, p. 114. In K. M. Pruitt and, J. O. Tenovuo (ed.), The Lactoperoxidase System: Its Chemistry and Biological Significance. Marcel Dekker, Inc., New York, N.Y.
201. Manderfeld, M. M.,, H. W. Schafer,, P. M. Davidson, and, E. A. Zottola. 1997. Isolation and identification of antimicrobial furocoumarins from parsley. J. Food Prot. 60:7277.
202. Mangena, T., and, N. Y. O. Muyima. 1999. Comparative evaluation of the antimicrobial activities of essential oils of Artemisia afra, Pteronia incana, and Rosmarinus officinalis on selected bacteria and yeast strains. Lett. Appl.Microbiol. 28:291296.
203. Manohar, V.,, C. Ingram,, J. Gray,, N. A. Talpur,, B. W. Echard,, D. Bagchi, and, H. G. Preuss. 2001. Antifungal activities of origanum oil against Candida albicans. Mol. Cell. Biochem. 228:111117.
204. Mari, M.,, R. Iori,, O. Leoni, and, A. Marchi. 1993. In vitro activity of glucosinolate derived isothiocyanates against postharvest fruit pathogens. Ann. Appl. Biol. 123:155164.
205. Marth, E. H. 1966. Antibiotics in foods—naturally occurring, developed, and added. Residue Rev. 12:65161.
206. Marwan, A. G., and, C. W. Nagel. 1986. Microbial inhibitors of cranberries. J. Food Sci. 51:10091013.
207. Mbandi, E., and, L. A. Shelef. 2002. Enhanced antimicrobial effects of combination of lactate and diacetate on Listeria monocytogenes and Salmonella spp. in beef bologna. Int. J. Food Microbiol. 76:191198.
208. McKellar, R. C. 1993. Effect of preservatives and growth factors on secretion of listeriolysin O by Listeria monocytogenes. J. Food Prot. 56:380384.
209. McMindes, M. K., and, A. J. Siedler. 1988. Nitrite mode of action: inhibition of yeast pyruvate decarboxylase (E.C. 4.1.1.1) and clostridial pyruvate:oxidoreductase (E.C. 1.2.7.1) by nitric oxide. J. Food Sci. 53:917919.
210. Meng, J. H., and, C. Genigeorgis. 1993. Modeling the lag phase of non-proteolytic Clostridium botulinum toxigenesis in cooked turkey and chicken breast as affected by temperature, sodium lactate, sodium chloride and spore inoculum. Int. J. Food Microbiol. 19:109122.
211. Millis, R. J., and, M. J. Schendel. February 1994. Inhibition of food pathogens by hop acids. U.S. patent 5,286,506.
212. Min, S.,, L. J. Harris,, J. H. Han, and, J. M. Krochta. 2005. Listeria monocytogenes inhibition by whey protein films and coatings incorporating lysozyme. J. Food Prot. 68:23172325.
213. Min, S., and, J. M. Krochta. 2005. Inhibition of Penicillium commune by edible whey protein films incorporating lactoferrin, lactoferrin hydrolysate, and lactoperoxidase systems. J. Food Sci. 70:8794.
214. Minor, T. E., and, E. H. Marth. 1970. Growth of Staphylococcus aureus in acidified pasteurized milk. J. Milk Food. Technol. 33:516520.
215. Mitchell, P., and, J. Moyle. 1969. Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur. J. Biochem. 7:471484.
216. Moir, C. J., and, M. J. Eyles. 1992. Inhibition, injury and inactivation of four psychrotrophic foodborne bacteria by the preservatives methyl p-hydroxybenzoate and potassium sorbate. J. Food Prot. 55:360366.
217. Moreira, M. R.,, A. G. Ponce,, C. E. del Valle, and, S. I. Roura. 2005. Inhibitory parameters of essential oils to reduce a foodborne pathogen. Lebensm. Wiss. Technol. 38:565570.
218. Morita, H.,, H. Yoshikawa,, T. Suzuki,, S. Hisamatsu,, Y. Kato,, R. Sakata,, Y. Nagata, and, T. Yoshimura. 2004. Antimicrobial action against verotoxigenic Escherichia coli O157:H7 of nitric oxide derived from sodium nitrite. Biosci. Biotechnol. Biochem. 68:10271034.
219. Mountney, G. J., and, J. O’Malley. 1985. Acids as poultry meat preservatives. Poultry Sci. 44:582.
220. Muhoberac, B. B., and, D. C. Wharton. 1980. EPR study of hemo-NO complexes of ascorbic acid-reduced Pseudomonas cytochrome oxidase and corresponding model complexes. J. Biol. Chem. 255:84378442.
221. Murdock, C. A., and, K. R. Matthews. 2002. Antibacterial activity of pepsin-digested lactoferrin on foodborne pathogens in buffered broth systems and ultra-high temperature milk with EDTA. J. Appl. Microbiol. 93:850856.
222. Murphy, R. Y.,, T. Osaili,, L. K. Duncan, and, J. A. Marcy. 2004. Effect of sodium lactate on thermal inactivation of Listeria monocytogenes and Salmonella in ground chicken thigh and leg meat. J. Food Prot. 67:14031407.
223. Musajo, L.,, F. Bordin, and, R. Bevilacqua. 1967. Photoreactions at 3655A linking the 3–4 double bond of furocoumarins with pyrimidine bases. Photochem. Photobiol. 6:927931.
224. Mytle, N.,, G. L. Anderson,, M. P. Doyle, and, M. A. Smith. 2006. Antimicrobial activity of clove (Syzgium aromaticum) oil in inhibiting Listeria monocytogenes on chicken frankfurters. Food Control 17:102.
225. Nadarajah, D.,, J. H. Han, and, R. A. Holley. 2005. Use of mustard flour to inactivate Escherichia coli O157:H7 in ground beef under nitrogen flushed packaging. Int. J. Food Microbiol. 99:257267.
226. Naidu, A. S. 2002. Activated lactoferrin—a new approach to meat safety. Food Technol. 56:4045.
227. Naidu, A. S. January 2001. Immobilized lactoferrin antimicrobial agents and use. U.S. patent 6,172,040 B1.
228. Naidu, A. S., and, W. R. Bidlack. 1998. Milk lactoferrinnatural microbial blocking agent (MBA) for food safety. Environ. Nutr. Interact. 2:3550.
229. Nakai, S. A., and, K. J. Siebert. 2004. Organic acid inhibition models for Listeria innocua, Listeria ivanovii, Pseudomonas aeruginosa, and Oenococcus oeni. Food Microbiol. 21:6772.
230. Nattress, F. M., and, L. P. Baker. 2003. Effects of treatment with lysozyme and nisin on the microflora and sensory properties of commercial pork. Int. J. Food Microbiol. 85:259267.
231. Nielsen, P. V., and, R. Rios. 2000. Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. Int. J. Food Microbiol. 60:219229.
232. O’Driscoll, B.,, C. G. M. Gahan, and, C. Hill. 1996. Adaptive acid tolerance response in Listeria monocytogenes: isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl. Environ. Microbiol. 62:16931698.
233. Oh, D. H., and, D. L. Marshall. 1994. Enhanced inhibition of Listeria monocytogenes by glycerol monolaurate with organic acids. J. Food Sci. 59:12581261.
234. Oh, D. H., and, D. L. Marshall. 1995. Influence of packaging method, lactic acid and monolaurin on Listeria monocytogenes in crawfish tail meat homogenate. Food Microbiol. 12:159163.
235. Oh, D. H., and, D. L. Marshall. 1993. Influence of temperature, pH, and glycerol monolaurate on growth and survival of Listeria monocytogenes. J. Food Prot. 56:744749.
236. Oh, H. I.,, Y. J. Kim,, E. J. Chang, and, J. Y. Kim. 2001. Antimicrobial characteristics of chitosans against food spoilage microorganisms in liquid media and mayonnaise. Biosci. Biotechnol. Biochem. 65:23782383.
237. Okrend, A. J.,, R. W. Johnston, and, A. B. Moran. 1986. Effect of acetic acid on the death rates at 52°C of Salmonella newport, Salmonella typhimurium, and Campylobacter jejuni in poultry scald water. J. Food Prot. 49:500503.
238. Olasupo, N. A.,, D. J. Fitzgerald,, M. J. Gasson, and, A. Narbad. 2003. Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Lett. Appl. Microbiol. 37:448451.
239. Olasupo, N. A.,, D. J. Fitzgerald,, A. Narbad, and, M. J. Gasson. 2004. Inhibition of Bacillus subtilis and Listeria innocua by nisin in combination with some naturally occurring organic compounds. J. Food Prot. 67:596600.
240. Omar, M. M. 1992. Phenolic compounds in botanical extracts used in foods, flavors, cosmetics, and pharmaceuticals, p. 154168. In C. T. Ho,, C. Y. Lee, and, M. T. Huang (ed.), Phenolic Compounds in Food and Their Effects on Health. I. Analysis, Occurrence, and Chemistry, vol. 506. American Chemical Society, Washington, D.C.
241. Oram, J. D., and, B. Reiter. 1968. Inhibition of bacteria by lactoferrin and other iron chelating agents. Biochim. Biophys. Acta 170:351365.
242. Ou, C.-Y.,, S.-F. Tsay,, C.-H. Lai, and, Y.-M. Weng. 2002. Using gelatin-based antimicrobial edible coating to prolong shelf-life of tilapia fillets. J. Food Qual. 25:213222.
243. Ough, C. S., and, R. E. Kunkee. 1974. The effect of fumaric acid on malolactic fermentation in wines from warm areas. Am. J. Enol. Viticult. 25:188190.
244. Ough, C. S., and, L. Were. 2005. Sulfur dioxide and sulfites, p. 143168. In P. M. Davidson,, J. N. Sofos, and, A. L. Branen (ed.), Antimicrobials in Foods, 3rd ed. CRC Press, Boca Raton, Fla.
245. Ozkan, G.,, O. Sagdic, and, M. Ozcan. 2003. Inhibition of pathogenic bacteria by essential oils at different concentrations. Food Sci. Technol. Int. 9:8588.
246. Pandit, V. A., and, L. A. Shelef. 1994. Sensitivity of Listeria monocytogenes to rosemary (Rosmarinus officianalis L.). Food Microbiol. 11:5763.
247. Papineau, A. M.,, D. G. Hoover,, D. Knorr, and, D. F. Farkas. 1991. Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure. Food Biotechnol. 5:4557.
248. Park, S. I.,, M. A. Daeschel, and, Y. Zhao. 2004. Functional properties of antimicrobial lysozyme-chitosan composite films. J. Food Sci. 69:M215-M221.
249. Park, S. I.,, S. D. Stan,, M. A. Daeschel, and, Y. Y. Zhao. 2005. Antifungal coatings on fresh strawberries (Fragaria x ananassa) to control mold growth during cold storage. J. Food Sci. 70:M202-M207.
250. Paul, B., and, I. Hirshfield. 2003. The effect of acid treatment on survival and protein expression of a laboratory K-12 strain Escherichia coli. Res. Microbiol. 154:115121.
251. Payne, K. D.,, P. M. Davidson,, S. P. Oliver, and, G. L. Christen. 1990. Influence of bovine lactoferrin on the growth of Listeria monocytogenes. J. Food Prot. 53:468472.
252. Payne, K. D.,, S. P. Oliver, and, P. M. Davidson. 1994. Comparison of EDTA and apo-lactoferrin with lysozyme on the growth of foodborne pathogenic and spoilage bacteria. J. Food Prot. 57:6265.
253. Payne, K. D.,, E. Rico-Muñoz, and, P. M. Davidson. 1989. The antimicrobial activity of phenolic compounds against Listeria monocytogenes and their effectiveness in a model milk system. J. Food Prot. 52:151153.
254. Pelroy, G. A.,, M. E. Peterson,, R. Paranjpye,, J. Almond, and, M. W. Eklund. 1994. Inhibition of Listeria monocytogenes in cold-process (smoked) salmon by sodium nitrite and packaging method. J. Food Prot. 57:114119.
255. Penalver, P.,, B. Huerta,, C. Borge,, R. Astorga,, R. Romero, and, A. Perea. 2005. Antimicrobial activity of five essential oils against origin strains of the Enterobacteriaceae family. APMIS 113:16.
256. Perigo, J. A., and, T. A. Roberts. 1968. Inhibition of clostridia by nitrite. J. Food Technol. 3:9194.
257. Pierson, M. D.,, L. A. Smoot, and, N. J. Stern. 1979. Effect of potassium sorbate on growth of Staphylococcus aureus in bacon. J. Food Prot. 42:302304.
258. Pilkington, B. J., and, A. H. Rose. 1988. Reactions of Saccharomyces cerevisiae and Zygosaccharomyces bailii to sulphite. J. Gen. Microbiol. 134:28232830.
259. Pilone, G. J. 1975. Control of malo-lactic fermentation in table wines by addition of fumaric acid, p. 121138. In J. G. Carr,, C. V. Cutting, and, G. C. Whiting (ed.), Lactic Acid Bacteria in Beverages and Foods. Academic Press, London, England.
260. Pol, I. E.,, W. G. C. van Arendonk,, H. C. Mastwijk,, J. Krommer,, E. J. Smid, and, R. Moezelaar. 2001. Sensitivities of germinating spores and carvacrol-adapted vegetative cells and spores of Bacillus cereus to nisin and pulsed-electric-field treatment. Appl. Environ. Microbiol. 67:16931699.
261. Post, F. J.,, T. L. Amoroso, and, M. Solberg. 1985. Inhibition of Clostridium botulinum type E in model acidified food systems. J. Food Sci. 50:966968.
262. Pranato, Y.,, S. K. Rakshit, and, V. M. Salokhe. 2005. Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. Food Sci. Technol. 38:859865.
263. Rahn, O., and, J. E. Conn. 1944. Effect of increase in acidity on antiseptic efficiency. Ind. Eng. Chem. 36:185.
264. Rajashekhara, E.,, E. R. Suresh, and, S. Ethiraj. 1998. Thermal death of ascospores of Neosartorya fischeri ATCC 200957 in the presence of organic acids and preservatives in fruit juices. J. Food Prot. 61:13581362.
265. Razavi-Rohani, S. M., and, M. W. Griffiths. 1999. The antifungal activity of butylated hydroxyanisole and lysozyme. J. Food Safety 19:97108.
266. Razavi-Rohani, S. M., and, M. W. Griffiths. 1994. The effect of mono and polyglycerol laurate on spoilage and pathogenic bacteria associated with foods. J. Food Safety 14:131151.
267. Reddy, N. R., and, M. D. Pierson. 1982. Influence of pH and phosphate buffer on inhibition of Clostridium botulinum by antioxidants and related phenolic compounds. J. Food Prot. 45:925927.
268. Reddy, N. R.,, M. D. Pierson, and, R. V. Lechowich. 1982. Inhibition of Clostridium botulinum by antioxidants, phenols and related compounds. Appl. Environ. Microbiol. 43:835839.
269. Rehm, H. J., and, H. Wittman. 1962. Beitrag Zur Kenntnis der antimikrobiellen wirkung der Schwefligen Saure I. Ubersicht uber einflussnehmende Factoren auf die antimikrobielle wirking der Schwefligen Saure. Z. Lebensm. Unters. Forsch. 118:413429.
270. Reinders, R. D.,, S. Biesterveld, and, P. G. H. Bijker. 2001. Survival of Escherichia coli O157: H7 ATCC 43895 in a model apple juice medium with different concentrations of proline and caffeic acid. Appl. Environ. Microbiol. 67:28632866.
271. Reiss, J. 1976. Prevention of the formation of mycotoxins in whole wheat bread by citric acid and lactic acid. Experientia 32:168.
272. Reiter, B. 1978. Review of the progress of dairy science: antimicrobial systems in milk. J. Dairy Res. 45:131147.
273. Reiter, B., and, B. G. Harnulv. 1984. Lactoperoxidase antibacterial system: natural occurrence, biological functions and practical applications. J. Food Prot. 47:724732.
274. Rhayour, K.,, T. Bouchikhi,, A. Tantaoui-Elaraki,, K. Sendide, and, A. Remmal. 2003. The mechanism of bactericidal action of oregano and clove essential oils and of their phenolic major components on Escherichia coli and Bacillus subtilis. J. Essential Oil Res. 15:356362.
275. Rhoades, J., and, S. Roller. 2000. Antimicrobial actions of degradated and native chitosan against spoilage organisms in laboratory media and foods. Appl. Environ. Microbiol. 66:8086.
276. Rice, K. M., and, M. D. Pierson. 1982. Inhibition of Salmonella by sodium nitrite and potassium sorbate in frankfurters. J. Food Sci. 47:16151617.
277. Rico-Muñoz, E.,, E. E. Bargiota, and, P. M. Davidson. 1987. Effect of selected phenolic compounds on the membrane-bound adenosine triphosphatase of Staphylococcus aureus. Food Microbiol. 4:239249.
278. Rico-Muñoz, E., and, P. M. Davidson. 1983. The effect of corn oil and casein on the antimicrobial activity of phenolic antioxidants. J. Food Sci. 48:12841288.
279. Roberts, T. A., and, M. Ingram. 1966. The effect of sodium chloride, potassium nitrate and sodium nitrite on the recovery of heated bacterial spores. J. Food Technol. 1:147163.
280. Roberts, T. A.,, L. F. J. Woods,, M. J. Payne, and, R. Cammack. 1991. Nitrite, p. 89111. In N. J. Russell and, G. W. Gould (ed.), Food Preservatives. Blackie and Son Ltd., Glasgow, Scotland.
281. Roland, J. O., and, L. R. Beuchat. 1984. Biomass and patulin production by Byssochlamys nivea in apple juice as affected by sorbate, benzoate, SO2 and temperature. J. Food Sci. 49:402406.
282. Roller, S., and, N. Covill. 2000. The antimicrobial properties of chitosan in mayonnaise and mayonnaise-based shrimp salads. J. Food Prot. 63:202209.
283. Ronning, I. E., and, H. A. Frank. 1987. Growth inhibition of putrefactive anaerobe 3679 caused by stringent-type response induced by protonophoric activity of sorbic acid. Appl. Environ. Microbiol. 53:10201027.
284. Rose, A. H., and, B. J. Pilkington. 1989. Sulphite, p. 201224. In G. W. Gould (ed.), Mechanisms of Action of Food Preservation Procedures. Elsevier Applied Sci., London, England.
285. Rosenquist, H., and, Å. Hansen. 1998. The antimicrobial effect of organic acids, sour dough and nisin against Bacillus subtilis and B. lichenformis isolated from wheat bread. J. Appl. Microbiol. 85:621631.
286. Rota, C.,, J. J. Carraminana,, J. Burillo, and, A. Herrera. 2004. In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens. J. Food Prot. 67:12521256.
287. Rowe, J. J.,, J. M. Yabrough,, J. B. Rake, and, R. G. Eagon. 1979. Nitrite inhibition of aerobic bacteria. Curr. Microbiol. 2:51.
288. Rusul, G., and, E. H. Marth. 1987. Growth and aflatoxin production by Aspergillus parasiticus NRRL 2999 in the presence of potassium benzoate or potassium sorbate at different initial pH values. J. Food Prot. 50:820825.
289. Sabah, J. R.,, H. Thippareddi,, J. L. Marsden, and, D. Y. C. Fung. 2003. Use of organic acids for the control of Clostridium perfringens in cooked vacuum-packaged restructured roast beef during an alternative cooling procedure. J. Food Prot. 66:14081412.
290. Sacchetti, G.,, S. Maietti,, M. Muzzoli,, M. Scaglianti,, S. Manfredini,, M. Radice, and, R. Bruni. 2005. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 91:621632.
291. Sagoo,