Chapter 36 : Fermented Vegetables

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Fermented Vegetables, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap36-1.gif /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap36-2.gif


Vegetable fermentation by lactic acid bacteria (LAB) in a salt brine began as a way to preserve foods for out-of-season use and for long journeys, especially by sea. Prior to the 1920s, research in the United States on pickled vegetables was primarily focused on product surveys and descriptions of brining methods. Reports on the microbiology and biochemistry of vegetable fermentations appeared in the literature between 1918 and 1920. Current research on pickled vegetables includes the genomics of LAB, mathematical modeling of bacterial growth and competition, the molecular ecology of vegetable fermentations, closed-tank fermentation technology to reduce salt waste, the use of clays to filter brines for recycling, sensory perception of pickled vegetable products, and the safety of acidified foods. There is continuing research interest in fermentation and storage of vegetables, particularly cucumbers, with reduced salt. The most notable effect of fermentation on cucumber volatiles was the inhibition of production of (E, Z)-2,6-nonadienal and 2-nonenal, the two most important odor impact compounds in fresh cucumbers. Among genome sequences are those belonging to the predominant bacteria present in fermented vegetables, , , , and . As expected, none of the predominant LAB in fermented vegetables have predicted genes for a complete citric acid cycle. The development of low-salt fermentations and storage of fermented vegetables for commercial use present significant technological hurdles, including the potential need for starter cultures (and the impact of bacteriophage on starter cultures) and for new product handling equipment.

Citation: Breidt, Jr. F, McFeeters R, Díaz-Muñiz I. 2007. Fermented Vegetables, p 783-793. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch36

Key Concept Ranking

Microbial Ecology
Lactic Acid Fermentation
Lactic Acid Bacteria
Mobile Genetic Elements
Bacterial Growth
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Baumann, A. 12 September 1911. Pickling green cucumbers. U.S. patent. 1,003,320.
2. Bell, T. A. 1951. Pectolytic enzyme activity in various parts of the cucumber plant and fruit. Bot. Gaz. 113(2):216221.
3. Bell, T. A., and, J. L. Etchells. 1952. Sugar and acid tolerance of spoilage yeasts from sweet-cucumber pickles. Food Technol. 6:468472.
4. Bell, T. A.,, J. L. Etchells, and, I. D. Jones. 1950. Softening of commercial cucumber salt-stock in relation to polygalacturonase activity. Food Technol. 4:157163.
5. Bell, T. A.,, J. L. Etchells, and, I. D. Jones. 1951. Pectinesterase in the cucumber. Arch. Biochem. Biophys. 31:431441.
6. Bjornsdottir, K.,, F. Breidt, Jr., and, R. F. McFeeters. 2006. Protective effects of organic acids on survival of Escherichia coli O157:H7. Appl. Environ. Microbiol. 72:660664.
7. Bolotin, A.,, P. Wincker,, S. Mauger,, O. Jaillon,, K. Malarme,, J. Weissenbach,, S. D. Ehrlich, and, A. Sorokin. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Gen. Res. 11:731753.
8. Breidt, F., Jr. 2004. A genomic study of Leuconostoc mesenteroides and the molecular ecology of sauerkraut fermentations. J. Food Sci. 69:3032.
9. Breidt, F.,, J. S. Hayes, and, R. F. McFeeters. 2004. The independent effects of acetic acid and pH on the survival of Escherichia coli O157:H7 in simulated acidified pickle products. J. Food Prot. 67:1218.
10. Buescher, R. W., and, C. Burgin. 1992. Diffusion plate assay for measurement of polygalacturonase activities in pickle brines. J. Food Biochem. 16:5968.
11. Buescher, R., and, C. Hamilton. 2000. Protection of cucumber pickle quality by CaNa2EDTA. J. Food Qual. 23:429441.
12. Buescher, R., and, C. Hamilton. 2002. Adsorption of polygalacturonase from recycled cucumber pickle brines by Pure-Flo B80 clay. J. Food Biochem. 26:153156.
13. Ciska, E., and, D. R. Pathak. 2004. Glucosinolate derivatives in stored fermented cabbage. J. Agric. Food Chem. 52:79387943.
14. Costilow, R. N.,, C. L. Bedford,, D. Mingus, and, D. Black. 1977. Purging of natural salt-stock pickle fermentations to reduce bloater damage. J. Food Sci. 42:234240.
15. Costilow, R. N., and, F. W. Fabian. 1953. Availability of essential vitamins and amino acids for Lactobacillus plantarum in cucumber fermentations. Appl. Microbiol. 1:320326.
16. Costilow, R. N., and, F. W. Fabian. 1953. Effect of various microorganisms on the vitamin and amino acid content of cucumber brines. Appl. Microbiol. 1:327329.
17. Costilow, R. N., and, F. W. Fabian. 1953. Microbiological studies of cucumber fermentations. Appl. Microbiol. 1:314319.
18. Costilow, R. N.,, K. Gates, and, C. L. Bedford. 1981. Air purging of commercial salt-stock pickle fermentations. J. Food Sci. 46:278282.
19. Costilow, R. N., and, M. Uebersax. 1982. Effects of various treatments on the quality of salt-stock pickles from commercial fermentations purged with air. J. Food Sci. 47:18661868.
20. Cruess, W. V. 26 February 1918. Pickling olives. U.S. patent 1,257,584.
21. Cruess, W. V., and, J. R. Zion. 1919. Olive investigations. USDA Exp. Sta. Rec. 42:805819.
22. Daeschel, M. A.,, R. F. McFeeters,, H. P. Fleming,, T. R. Klaenhammer, and, R. B. Sanozky. 1984. Mutation and selection of Lactobacillus plantarum strains that do not produce carbon dioxide from malate. Appl. Environ. Microbiol. 47:419420.
23. Daxenbichler, M. E.,, C. H. VanEtten, and, P. H. Williams. 1980. Glucosinolate products in commercial sauerkraut. J. Agric. Food Chem. 28:809811
24. DeVuyst, L., and, E. J. Vandamme. 1994. Antimicrobial potential of lactic acid bacteria, p. 91142. In L. DeVuyst and, E. J. Vandamme (ed.), Bacteriocins of Lactic Acid Bacteria. Blackie Academic and Professional, London, United Kingdom.
25. Dougherty, D. P.,, F. Breidt, Jr.,, R. F. McFeeters, and, S. R. Lubkin. 2002. Energy-based dynamic model for variable temperature batch fermentation by Lactococcus lactis. Appl. Environ. Microbiol. 68:24682478.
26. El-Rayah-Ahmed, A., and, J. M. Labavitch. 1980. Cell wall metabolism in ripening fruit. II. Changes in carbohydrate-degrading enzymes in ripening ‘Bartlett’ pears. Plant Physiol. 65:10141016.
27. Etchells, J. L. 1938. Rate of heat penetration during the pasteurization of cucumber pickle. Fruit Prod. J. 18:6870.
28. Etchells, J. L. 1950. Salt-tolerant yeasts from commercial cucumber brines. Texas Rep. Biol. Med. 8:103104.
29. Etchells, J. L.,, T. A. Bell,, H. P. Fleming,, R. E. Kelling, and, R. L. Thompson. 1973. Suggested procedure for the controlled fermentation of commercially brined pickling cucumbers—the use of starter cultures and reduction of carbon dioxide accumulation. Pickle Pak Sci. 3:414.
30. Etchells, J. L.,, T. A. Bell, and, W. R. Moore, Jr. 1976. Refrigerated dill pickles, questions and answers. Pickle Pak Sci. 5:120.
31. Etchells, J. L.,, A. F. Borg, and, T. A. Bell. 1961. Influence of sorbic acid on populations and species of yeasts occurring in cucumber fermentations. Appl. Microbiol. 9:139144.
32. Etchells, J. L., and, I. D. Jones. 1942. Pasteurization of pickle products. Fruit Prod. 21:330332.
33. Etchells, J. L., and, I. D. Jones. 1943. Bacteriological changes in cucumber fermentation. Food Ind. 15:5456.
34. Fabian, F. W. 1930. Pickle manufacture. Fruit Prod. J. Am. Vinegar Ind. 9:219220, 231.
35. Fabian, F. W.,, C. S. Bryan, and, J. L. Etchells. 1932. Experimental Work on Cucumber Fermentation. Technical Bulletin no. 126. Michigan Agricultural Experiment Station, East Lansing, Mich.
36. Fernández, A. G.,, P. G. Garcia, and, M. B. Balbuena. 1995. Olive fermentations, p. 593630. In H.-J. Rehm and, G. Reed (ed.), Biotechnology. VCH Publishers, New York, N.Y.
37. Fleming, H. P.,, J. L. Etchells,, R. L. Thompson, and, T. A. Bell. 1975. Purging of CO2 from cucumber brines to reduce bloater damage. J. Food Sci. 40:13041310.
38. Fleming, H. P.,, E. G. Humphries,, O. O. Fasina,, R. F. McFeeters,, R. L. Thompson, and, F. Breidt, Jr. 2002. Bagin-box technology: pilot system for process-ready, fermented cucumbers. Pickle Pak Sci. 8:18.
39. Fleming, H. P.,, E. G. Humphries,, R. L. Thompson, and, R. F. McFeeters. 2002. Bag-in-box technology: storage stability of process-ready, fermented cucumbers. Pickle Pak Sci. 8:1418.
40. Fleming, H. P.,, K.-H. Kyung, and, F. Breidt, Jr. 1995. Vegetable fermentations, p. 629661. In H.-J. Rehm and, G. Reed (ed.), Biotechnology. VCH Publishers, New York, N.Y.
41. Fleming, H. P.,, L. C. McDonald,, R. F. McFeeters,, R. L. Thompson, and, E. G. Humphries. 1995. Fermentation of cucumbers without sodium chloride. J. Food Sci. 60:312315, 319.
42. Fleming, H. P.,, R. F. McFeeters, and, E. G. Humphries. 1988. A fermentor for study of sauerkraut fermentation. Biotechnol. Bioeng. 31:189197.
43. Fleming, H. P.,, R. L. Thompson,, T. A. Bell, and, L. H. Hontz. 1978. Controlled fermentation of sliced cucumbers. J. Food Sci. 43:888891.
44. Fleming, H. P.,, R. L. Thompson,, J. L. Etchells,, R. E. Kelling, and, T. A. Bell. 1973. Bloater formation in brined cucumbers fermented by Lactobacillus plantarum. J. Food Sci. 38:499503.
45. Fleming, H. P.,, W. M. Walter, and, J. L. Etchells. 1973. Antimicrobial properties of oleuropein and products of its hydrolysis from green olives. Appl. Microbiol. 26:777782.
46. Fred, E. B., and, W. H. Peterson. 1922. The production of pink sauerkraut by yeasts. J. Bacteriol. 7:257269.
47. Fred, E. B., and, W. H. Peterson. 1924. Factors determining quality in kraut. Can. Age 5:161165.
48. Gates, K., and, R. N. Costilow. 1981. Factors influencing softening of salt-stock pickles in air-purged fermentations. J. Food Sci. 46:274277, 282.
49. Hasbrouck, F. F. 1910. Salting and curing cucumber pickles. Pure Prod. 6:509514.
50. Heredia, A.,, R. Guillén,, A. Jiménez, and, J. Fernández-Bolanos. 1993. Activity of glycosidases during development and ripening of olive fruit. Z. Lebensm. Unters. Forsch. 196:147151.
51. Hilts, R. W., and, R. S. Hollingshead. 1920. A Chemical Study of the Ripening and Pickling of California Olives. USDA Bulletin no. 803. USDA, Washington, D.C.
52. Hudson, J. M., and, R. W. Buescher. 1986. Relationship between degree of pectin methylation and tissue firmness of cucumber pickles. J. Food Sci. 51:138140, 149.
53. Johanningsmeier, S. D.,, H. P. Fleming,, R. L. Thompson, and, R. F. McFeeters. 2005. Chemical and sensory properties of sauerkraut produced with Leuconostoc mesenteroides starter cultures of differing malolactic phenotypes. J. Food Sci. 70:S343S349.
54. Jones, I. D.,, J. L. Etchells,, M. K. Veldhuis, and, O. Veerhoff. 1941. Pasteurization of genuine dill pickles. Fruit Prod. 20:304305, 316, 325.
55. Kalač, P.,, J. Spicka,, M. Krizek, and, T. Pelikanova. 2000. Changes in biogenic amine concentrations during sauerkraut storage. Food Chem. 69:309314.
56. Klaenhammer, T.,, E. Altermann,, F. Arigoni,, A. Bolotin,, F. Breidt,, J. Broadbent,, R. Cano,, S. Chaillou,, J. Deutscher,, M. Gasson,, M. van de Guchte,, J. Guzzo,, A. Hartke,, T. Hawkins,, P. Hols,, R. Hutkins,, M. Kleerebezem,, J. Kok,, O. Kuipers,, M. Lubbers,, E. Maguin,, L. McKay,, D. Mills,, A. Nauta,, R. Overbeek,, H. Pel,, D. Pridmore,, M. Saier,, D. van Sinderen,, A. Sorokin,, J. Steele,, D. O’Sullivan,, W. de Vos,, B. Weimer,, M. Zagorec, and, R. Siezen. 2002. Discovering lactic acid bacteria by genomics. Antonie Leeuwenhoek 82:2958.
57. Kleerebezem, M.,, J. Boekhorst,, R. van Kranenburg,, D. Molenaar,, O. P. Kuipers,, R. Leer,, R. Tarchini,, S. A. Peters,, H. M. Sandbring,, M. W. E. J. Fiers,, W. Stickema,, R. M. K. Lankhorst,, P. A. Bron,, S. M. Hoffer,, M. N. M. Groot,, R. Kerkhoven,, M. de Vries,, B. Ursing,, W. M. de Vos, and, R. J. Siezen. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 100:19901995.
58. Krall, S. M., and, R. F. McFeeters. 1998. Pectin hydrolysis: effect of temperature, degree of methylation, pH, and calcium on hydrolysis rates. J. Agric. Food Chem. 46:13111315.
59. LeFevre, E., and, L. A. Round. 1919. Preliminary report on some haliphylic bacteria. J. Bacteriol. 4:177182.
60. Lu, Z.,, F. Breidt, Jr.,, V. Plengvidhya, and, H. P. Fleming. 2003. Bacteriophage ecology in commercial sauerkraut fermentations. Appl. Environ. Microbiol. 69:31923202.
61. Lu, Z.,, H. P. Fleming, and, R. F. McFeeters. 2002. Effects of fruit size on fresh cucumber composition and the chemical and physical consequences of fermentation. J. Food Sci. 67:29342939.
62. Marsili, R. T., and, N. Miller. 2000. Determination of major aroma impact compounds in fermented cucumbers by solid-phase microextractiongas chromatography-mass spectrometry-olfactometry detection. J. Chromatogr. Sci. 38:307314.
63. Maruvada, R. 2005. Evaluation of the importance of enzymatic and non-enzymatic softening in low salt cucumber fermentations. M.S. Thesis. North Carolina State University, Raleigh.
64. McDonald, L. C.,, H. P. Fleming, and, H. M. Hassan. 1990. Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl. Environ. Microbiol. 56:21202124.
65. McFeeters, R. F., and, S. A. Armstrong. 1984. Measurement of pectin methylation in plant cell walls. Anal. Biochem. 139:212217.
66. McFeeters, R. F.,, M. Balbuena,, M. Brenes, and, H. P. Fleming. 1995. Softening rates of fermented cucumber tissue: effects of pH, calcium, and temperature. J. Food Sci. 60:786788.
67. McFeeters, R. F.,, T. A. Bell, and, H. P. Fleming. 1980. An endo-polygalacturonase in cucumber fruit. J. Food Biochem. 4:116.
68. McFeeters, R. F., and, K.-H. Chen. 1986. Utilization of electron acceptors for anaerobic mannitol metabolism by Lactobacillus plantarum. Compounds which serve as electron acceptors. Food Microbiol. 3:7381.
69. McFeeters, R. F.,, W. Coon,, M. P. Palnitkar,, M. Velting, and, N. Fehringer. 1978. Reuse of Fermentation Brines in the Cucumber Pickling Industry, p. 1115. EPA-600/2-78-207. U.S. Environmental Protection Agency, Washington, D.C.
70. McFeeters, R. F., and, H. P. Fleming. 1989. Inhibition of cucumber tissue softening in acid brines by multivalent cations: inadequacy of the pectin “egg box” model to explain textural effects. J. Agric. Food Chem. 37:10531059.
71. McFeeters, R. F., and, H. P. Fleming. 1990. Effect of calcium ions on the thermodynamics of cucumber tissue softening. J. Food Sci. 55:446449.
72. McFeeters, R. F.,, H. P. Fleming, and, R. L. Thompson. 1982. Malic acid as a source of carbon dioxide in cucumber fermentations J. Food Sci. 47:18621865.
73. McGill, A. 1909. Pickles. Bulletin no. 163(9). Lab. Inland Rev. Dept., Ottawa, Canada.
74. McGill, A. 1913. Bottled Pickles. Bulletin no. 249(11). Inland Rev. Dept., Ottawa, Canada.
75. Meurer, P., and, K. Gierschner. 1992. Occurrence and effect of indigenous and eventual microbial enzymes in lactic acid fermented vegetables. Acta Aliment. 21:171188.
76. Moret, S.,, D. Smela,, T. Populin, and, L. S. Conte. 2005. A survey on free biogenic amine content of fresh and preserved vegetables. Food Chem. 89:355361.
77. Nelson, V. E., and, A. J. Beck. 1918. By-product of the fermentation of cabbage. J. Am. Chem. Soc. 40:10011005.
78. Pederson, C. S. 1930. Effect of Pure Culture Inoculation on the Quality and Chemical Composition of Sauerkraut. Technical Bulletin no. 169. N.Y. State Agricultural Experiment Station, Geneva, N.Y.
79. Pederson, C. S. 1932. Floral changes in the fermentation of sauerkraut. Zentbl. Bakteriol. Parasitenkd. Infektion. Hyg. Naturwiss. Allgemeine Landwirtschaftliche Technische Mikrobiol. 85(Abt. II): 215223.
80. Pederson, C. S. 1935. The effect of inoculation on the quality, chemical composition and bacterial flora of sauerkraut. Zentbl. Bakteriol. Parasitenkd. 92(Abt. II): 342348.
81. Pederson, C. S., and, M. N. Albury. 1954. The influence of salt and temperature on the microflora of sauerkraut fermentation. Food Technol. 8:15.
82. Pederson, C. S., and, M. N. Albury. 1969. The Sauerkraut Fermentation. Technical Bulletin no. 824. N.Y. State Agricultural Experiment Station, Geneva, N.Y.
83. Pederson, C. S.,, G. L. Mack, and, W. L. Athawes. 1939. Vitamin C content of sauerkraut. Food Res. 4:3145.
84. Pederson, C. S.,, J. Whitcombe, and, W. B. Robinson. 1956. The ascorbic acid content of sauerkraut. Food Technol. 10:365367.
85. Peterson, W. H., and, E. B. Fred. 1923. An abnormal fermentation of sauerkraut. Centr. Bakt. Parasit. 58(Abt. II): 199204.
86. Peterson, W. H.,, E. B. Fred, and, J. A. Viljoen. 1926. Variations in the chemical composition of cabbage and sauerkraut. USDA Expt. Sta. Rec. 54:803.
87. Plengvidhya, V. 2003. Microbial ecology of sauerkraut fermentation and genome analysis of lactic acid bacterium Leuconostoc mesenteroides ATCC 8293. Ph.D. Thesis. North Carolina State University, Raleigh.
88. Plengvidhya, V.,, F. Breidt, Jr., and, H. P. Fleming. 2004. Use of RADP-PCR as a method to follow the progress of starter cultures in sauerkraut fermentations. Int. J. Food Microbiol. 93:287296.
89. Potts, E. A., and, H. P. Fleming. 1979. Changes in dissolved oxygen and microflora during fermentation of aerated, brined cucumbers. J. Food Sci. 44:429434.
90. Prescott, A. B. 1880. Contributions from the chemical laboratory of the University of Michigan. J. Amer. Chem. Soc. 2:333340.
91. Pressey, R., and, J. K. Avants. 1975. Cucumber polygalacturonase. J. Food Sci. 40:937939.
92. Preuss, L. M.,, W. H. Peterson, and, E. B. Fred. 1928. Gas production in the making of sauerkraut. J. Ind. Eng. Chem. 20:11871190.
93. Priem, L. A.,, W. H. Peterson, and, E. B. Fred. 1927. Studies of commercial sauerkraut with special reference to changes in the bacterial flora during fermentation at low temperatures. J. Agric. Res. 34:7995.
94. Rybaczyk-Pathak, D. 2005. Joint association of high cabbage/sauerkraut intake at 12–13 years of age and adulthood with reduced breast cancer risk in Polish migrant women: results from the U.S. Component of the Polish Women’s Health Study (PWHS), abstr. 3697. Abstr. Am. Assoc. Cancer Res. 4th Annu. Frontiers Cancer Prevention Res., Baltimore, Md., November 2, 2005.
95. Stamer, J. R.,, G. Hrazdina, and, B. O. Stoyla. 1973. Induction of red color formation in cabbage juice by Lactobacillus brevis and its relationship to pink sauerkraut. Appl. Microbiol. 26:161166.
96. Stamer, J. R., and, B. O. Stoyla. 1978. Stability of sauerkraut packaged in plastic bags. J. Food Prot. 41:525529.
97. Takayanagi, T.,, T. Okuda, and, K. Yokotsuka. 1997. Changes in glycosidase activity in grapes during development. J. Inst. Enol. Vitic. Yamanashi Univ. 32:14.
98. Tang, H. C. L., and, R. F. McFeeters. 1983. Relationships among cell wall constituents, calcium and texture during cucumber fermentation and storage. J. Food Sci. 48:6670.
99. Tolonen, M., T.,, T. Marianne,, V. Britta,, P. Juha-Matti,, K. Hannu, and, R. Eeva-Liisa. 2002. Plant-derived bio-molecules in fermented cabbage. J. Agric. Food Chem. 50:67986803.
100. Tolonen, M.,, S. Rajaniemi,, J.-M. Pihlava,, T. Johansson,, P. E. J. Saris, and, E.-L. Ryhanen. 2004. Formation of nisin, plant-derived biomolecules and antimicrobial activity in starter culture fermentations of sauerkraut. Food Microbiol. 21:167179.
101. United States Code of Federal Regulations. 2006. Acidified Foods. 21 CFR Part 114. U.S. Department of Health and Human Services, Washington, D.C.
102. Veldhuis, M. K. 1938. The preservation of brine samples for chemical analysis. Fruit Prod. J. 18:67.
103. Vorbeck, M. L.,, F. A. Lee,, L. R. Mattick, and, C. S. Pederson. 1961. Volatile flavor of sauerkraut—gas chromatographic identification of a volatile acidic off-odor. J. Food Sci. 26:569572.
104. Zhou, A., and, R. F. McFeeters. 1998. Volatile compounds in cucumbers fermented in low-salt conditions. J. Agric. Food Chem. 46:21172122.
105. Zhou, A.,, R. F. McFeeters, and, H. P. Fleming. 2000. Development of oxidized odor and volatile aldehydes in fermented cucumber tissue exposed to oxygen. J. Agric. Food Chem. 48:193197.


Generic image for table
Table 36.1

Distribution of ORFs among COG functional categories

Citation: Breidt, Jr. F, McFeeters R, Díaz-Muñiz I. 2007. Fermented Vegetables, p 783-793. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch36
Generic image for table
Table 36.2

Pyruvic-acid-dissipating enzymes present in the predominant LAB in fermented vegetables

Citation: Breidt, Jr. F, McFeeters R, Díaz-Muñiz I. 2007. Fermented Vegetables, p 783-793. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch36

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error