1887

Chapter 37 : Fermented Meat, Poultry, and Fish Products

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Fermented Meat, Poultry, and Fish Products, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap37-1.gif /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap37-2.gif

Abstract:

Understanding the technological, microbiological, and biochemical processes that occur during meat, poultry, and fish fermentation is essential for ensuring safe, palatable products. Dry and semidry sausages represent the largest category of fermented meat products, with many present-day processing practices having their origin in the Mediterranean region. Micrococci and staphylococci reduce nitrate to nitrite to generate nitric oxide, which reacts with myoglobin to produce the characteristic cured color of fermented meats. Slightly larger amounts of fermentable carbohydrate should be used in formulas containing higher-pH meats, such as poultry. Mechanically deboned poultry meat is an acceptable meat source for fermented dry sausages when limited to 10% of the meat block, as sausages tend to become soft when larger amounts are used. Thus, the combined effects of low pH, increased acidity, concomitant loss of moisture during drying, reduction of a, concentration of curing salts, such as sodium chloride and sodium nitrite, bacterial inhibition of spoilage or pathogenic microorganisms, and heat processing (if applied) preserve fermented meat and poultry products against spoilage by inactivating indigenous tissue and bacterial enzymes. Pyruvate-formate lyase generates formate and acetyl Coenzyme A (CoA) from pyruvate and CoA, and the acetyl CoA can be used either as a precursor for substrate-level phosphorylation, for direct reduction to ethanol, or both. This alteration in pyruvate metabolism has been demonstrated in studies where lactobacilli have been shown to shift fermentation patterns and, concomitantly, the amount of potential ATP formed as the growth rate changes.

Citation: Ricke S, Diaz I, Keeton J. 2007. Fermented Meat, Poultry, and Fish Products, p 795-815. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch37

Key Concept Ranking

Food Safety
0.7390605
Foodborne Illnesses
0.6765338
Food and Beverages
0.64882594
Lactic Acid Fermentation
0.6433355
Meat and Meat Products
0.6140265
0.7390605
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815912.ch37
1. Acton, J. C. 1977. The chemistry of dry sausages. Proc. Recip. Meat Conf. 30:4962.
2. Al-Sheddy, I. A.,, D. Y. C. Fung, and, C. L. Kastner. 1995. Microbiology of fresh and restructured lamb meat: a review. Crit. Rev. Microbiol. 21:3152.
3. American Meat Institute Foundation. 1997. Good Manufacturing Practices for Fermented Dry and Semi-Dry Sausage Products. American Meat Institute Foundation, Washington, D.C.
4. Arihara, K.,, H. Kushida,, Y. Kondo,, M. Itoh,, J. B. Luchansky, and, R. G. Cassens. 1993. Conversion of metmyoglobin to bright red myoglobin derivatives by Chromobacterium violaceum, Kurthia sp., and Lactobacillus fermentum JCM1173. J. Food Sci. 58:3842.
5. Association of Food and Drug Officials. 1999. Safe Practices for Sausage Production—Distance Learning Course Manual, version 1. United States Department of Agriculture, Food Safety and Inspection Service, Washington, D.C. Accessed 12 October 2005. [Online.] www.aamp.com/links/documents/Sausage.pdf.
6. Aukrist, T., and, I. F. Nes. 1988. Transformation of Lactobacillus plantarum with the plasmid pTV1 by electroporation. FEMS Microbiol. Lett. 52:127132.
7. Axelsson, L. T. 1993. Lactic acid bacteria: classification and physiology, p. 127159. In S. Salminen and, A. von Wright (ed.), Lactic Acid Bacteria. Marcel Dekker, Inc., New York, N.Y.
8. Bacus, J. N. 1986. Fermented meat and poultry products. Adv. Meat Res. 2:123164.
9. Bacus, J. N. 11 May 2005, posting date. Microbiology—Shelf-Stable Dried Meats. Accessed 12 October 2005. [Online.] www.fsis.usda.gov/PDF/FSRE_SS_5MicrobiologyDried.pdf.
10. Bacus, J. N., and, W. L. Brown. 1981. Use of microbial cultures: meat products. Food Technol. 35:7478, 83.
11. Bacus, J. N., and, W. L. Brown. 1985. The lactobacilli: meat products, p. 5871. In S. E. Gilliland (ed.), Bacterial Starter Cultures for Foods. CRC Press, Inc., Boca Raton, Fla.
12. Bacus, J. N., and, W. L. Brown. 1985. The pediococci: meat products, p. 8695. In S. E. Gilliland (ed.), Bacterial Starter Cultures for Foods. CRC Press, Inc., Boca Raton, Fla.
13. Bartholomew, D. R., and, C. I. Osuala. 1986. Acceptability of flavor, texture, and appearance of mutton processed meat products made by smoking, curing, spicing, adding starter cultures and modifying fat source. J. Food Sci. 51:15601562.
14. Beddows, C. G. 1985. Fermented fish and fish products, p. 139. In B. J. B. Wood (ed.), Microbiology of Fermented Foods, vol. II. Elsevier Applied Science Publishers, London, United Kingdom.
15. Beddows, C. G.,, A. G. Ardeshir, and, W. Johari bin Daud. 1979. Biochemical changes occurring during the manufacture of budu. J. Sci. Food Agric. 30:10971103.
16. Beddows, C. G.,, A. G. Ardeshir, and, W. Johari bin Daud. 1980. Development and origin of the volatile fatty acids in budu. J. Sci. Food Agric. 31:8692.
17. Berdague, J. L.,, P. Monteil,, M. C. Montel, and, R. Talon. 1993. Effects of starter cultures on the formation of flavor compounds in dry sausage. Meat Sci. 35:275287.
18. Bolotin, A.,, S. Mauger,, K. Malarme,, S. D. Ehrlich, and, A. Sorokin. 1999. Low-redundancy sequencing of the entire Lactococcus lactis IL 1403 genome. Antonie Leeuwenhoek 76:2776.
19. Bringle, F., and, J.-C. Hubert. 1990. Optimized transformation by electroporation of Lactobacillus plantarum strains by plasmid vectors. Appl. Microbiol. Biotechnol. 33:664670.
20. Chassy, B. M. 1987. Prospect for the genetic manipulation of lactobacilli. FEMS Microbiol. Lett. 46:297312.
21. Chassy, B. M.,, E. Gibson, and, A. Giuffrida. 1976. Evidence for extrachromosomal elements in Lactobacillus. J. Bacteriol. 127:15761578.
22. Collins, M. D.,, A. M. Williams, and, S. Wallbanks. 1990. The phylogeny of Aerococcus and Pediococcus as determined by 16 rRNA sequence analysis: description of Tetragenococcus gen. nov. FEMS Microbiol. Lett. 70:255262.
23. Crisan, E. V., and, A. Sands. 1975. The microbiology of four fermented fish sauces. Appl. Microbiol. 29:106.
24. Curtis, S. I. 1995. Personal communication.
25. Deibel, R. H., and, C. F. Niven, Jr. 1957. Pediococcus cerevisiae: a starter culture for summer sausage. Bacteriol. Proc. 1957:1415.
26. Deibel, R. H.,, G. D. Wilson, and, C. F. Niven, Jr. 1961. Microbiology of meat curing. IV. A lyophilized Pediococcus cerevisiae starter culture for fermented sausages. Appl. Microbiol. 9:239243.
27. Demeyer, D., and, K. Samejima. 1991. Animal biotechnology and meat processing, p. 127143. In L. O. Fiems,, B. G. Cottyn, and, D. I. Demeyer (ed.), Animal Biotechnology and the Quality of Meat Production. Elsevier, Amsterdam, The Netherlands.
28. de Vos, W. M. 1999. Gene expression systems for lactic acid bacteria. Curr. Opin. Microbiol. 2:289295.
29. de Vries, W.,, W. M. C. Kapteijn,, E. G. van der Beek, and, A. H. Stouthamer. 1970. Molar growth yields and fermentation balance of Lactobacillus casei L3 in batch cultures and continuous cultures. J. Gen. Microbiol. 63:333345.
30. Dougan, J., and, G. E. Howard. 1975. Some flavouring constituents of fermented fish sauces. J. Sci. Food Agric. 26:887894.
31. Egan, A. F. 1983. Lactic acid bacteria of meat and meat products. Antonie Leeuwenhoek 49:327336.
32. Everson, C. W.,, W. E. Danner, and, P. A. Hammes. 1970. Bacterial starter cultures in sausage products. J. Agric. Food Chem. 18:570571.
33. Everson, C. W.,, W. E. Danner, and, P. A. Hammes. June 1974. Process for curing dry and semidry sausages. U.S. patent 3,814,817.
34. Fujii, T.,, S. D. Basuki, and, H. Tozawa. 1980. Microbiological studies on the ageing of fish sauce; chemical composition and microflora of fish sauce produced in the Philippines. Nippon Suissan Gakkaishi 46:12351240.
35. Garvie, E. I. 1986. Genus Pediococcus, p. 10751079. In P. H. A. Sneath,, N. S. Mair,, M. E. Sharpe, and, J. G. Holt (ed.), Bergey’s Manual of Systematic Bacteriology, vol. 2. The Williams and Wilkins Co., Baltimore, Md.
36. Gasson, M. J. 1993. Progress and potential in the biotechnology of the lactic acid bacteria. FEMS Microbiol. Rev. 12:320.
37. Gottschalk, G. 1986. Bacterial Metabolism, 2nd ed. Springer-Verlag, New York, N.Y.
38. Grazia, L.,, P. Romano,, A. Bagni,, D. Roggiani, and, G. Guglielmi. 1986. The role of moulds in the ripening process of salami. Food Microbiol. 3:1925.
39. Gruss, A., and, S. D. Ehrlich. 1989. The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol. Rev. 53:231241.
40. Hammer, G. F. 1987. Meat processing: ripened products. Fleischwirtschaft 67:7174.
41. Hammes, W. P.,, A. Bantleon, and, S. Min. 1990. Lactic acid bacteria in meat fermentation. FEMS Microbiol. Lett. 87:165174.
42. Hammes, W. P., and, H. J. Knauf. 1994. Starters in the processing of meat products. Meat Sci. 36:155168.
43. Hammes, W. P.,, N. Weiss, and, W. Holzapfel. 1992. The genera Lactobacillus and Carnobacterium, p. 15351594. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder, and, K.-H. Schleifer (ed.), The Prokaryotes—a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. Springer-Verlag, New York, N.Y.
44. Harlander, S. K. 1992. Genetic improvement of microbial starter cultures, p. 2026. In Applications of Biotechnology to Traditional Fermented Foods. National Academy Press, Washington, D.C.
45. Hols, P.,, T. Ferain,, D. Garmyn,, N. Bernard, and, J. Delcour. 1994. Use of homologous expression-secretion signals and vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for α-amylase and levanase expression. Appl. Environ. Microbiol. 60:14011413.
46. Jay, J. M. 1992. Fermented foods and related products, p. 371409. In Modern Food Microbiology, 4th ed. Chapman and Hall, New York, N.Y.
47. Kagermeier, A. 1981. Taxonomie und Vorkommen von Milchsaurebakterien in Fleischprodukten. Dissertation. Fakultat fur Biologie, Ludwig-Maximilian-Universität München, Munich, Germany.
48. Kandler, O. 1983. Carbohydrate metabolism in lactic acid bacteria. Antonie Leeuwenhoek 49:209224.
49. Kandler, O. 1984. Current taxonomy of lactobacilli. Dev. Ind. Microbiol. 25:109123.
50. Kandler, O., and, N. Weiss. 1986. Regular, non-sporing gram-positive rods, p. 12081234. In P. H. A. Sneath,, N. S. Mair,, M. E. Sharpe, and, J. G. Holt (ed.), Bergey’s Manual of Systematic Bacteriology, vol. 2. The Williams and Wilkins Co., Baltimore, Md.
51. Kitchell, A. G., and, B. G. Shaw. 1975. Lactic acid bacteria in fresh and cured meat, p. 209220. In J. G. Carr,, C. V. Cutting, and, G. C. Whiting (ed.), Lactic Acid Bacteria in Beverages and Food. Academic Press, Inc., New York, N.Y.
52. Klettner, P.-G., and, D. List. 1980. Beitrag zum Einfluss der Kohlenhydratart auf den Verlauf der Rohwurstreifung. Fleischwirtschaft 60:15891593.
53. Knauf, H. J.,, R. F. Vogel, and, W. P. Hammes. 1989. Introduction of the transposon Tn919 into Lactobacillus curvatus. FEMS Microbiol. Lett. 65:101104.
54. Languer, H. J. 1972. Aromastoffe in der Rohwurst. Fleischwirtschaft 52:12991306.
55. Leer, R. J.,, N. van Luijk,, M. Posno, and, P. H. Pouwels. 1992. Structural and functional analysis of two cryptic plasmids from Lactobacillus pentosus MD353 and Lactobacillus plantarum ATCC 8014. Mol. Gen. Genet. 234:265274.
56. Leistner, L. 1986. Mould-ripened foods. Fleischwirtschaft 66:13851388.
57. Liepe, H. U. 1983. Starter cultures in meat production, p. 400424. In H.-J. Rehm and, G. Reed (ed.), Biotechnology, Food and Feed Production with Microorganisms, vol. 5. Verlag Chemie, Weinheim, Germany.
58. Liu, M.-L.,, J. K. Kondo,, M. B. Barnes, and, D. T. Bartholomew. 1988. Plasmid-linked maltose utilization in Lactobacillus spp. Biochimie 70:351355.
59. London, J. 1990. Uncommon pathways of metabolism among lactic acid bacteria. FEMS Microbiol. Lett. 87:103112.
60. Luchansky, J. B.,, P. M. Muriana, and, T. R. Klaenhammer. 1988. Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium. Mol. Microbiol. 2:637646.
61. Lücke, F.-K. 1985. Fermented sausages, p. 4183. In B. J. B. Wood (ed.), Microbiology of Fermented Foods, vol. 2. Elsevier Applied Science Publishing Co., Inc., London, United Kingdom.
62. McKay, L. L., and, K. A. Baldwin. 1990. Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiol. Lett. 87:314.
63. Michels, P. A. M.,, J. P. J. Michels,, J. Boonstra, and, W. N. Konings. 1979. Generation of electrochemical proton gradient in bacteria by the extrusion of metabolic end products. FEMS Microbiol. Lett. 5:357364.
64. Mogensen, G. 1993. Starter cultures, p. 122. In J. Smith (ed.), Technology of Reduced-Additive Foods. Blackie Academic and Professional, Chapman and Hall, New York, N.Y.
65. Morelli, L.,, P. S. Cocconcelli,, V. Bottazzi,, G. Damiani,, L. Ferretti, and, V. Sgaramella. 1987. Lactobacillus protoplast transformation. Plasmid 17:7375.
66. Mortvedt, C. I., and, I. F. Nes. 1989. Bacteriocin production by a Lactobacillus strain isolated from fermented meat. Eur. Food Chem. Proc. 1:336341.
67. Mortvedt, C. I., and, I. F. Nes. 1990. Plasmid-associated bacteriocin production by a Lactobacillus sake strain. J. Gen. Microbiol. 136:16011607.
68. Mortvedt, C. I.,, J. Nissen-Meyer,, K. Sletten, and, I. F. Nes. 1991. Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl. Environ. Microbiol. 57:18291834.
69. National Research Council. 1992. Applications of Biotechnology to Traditional Fermented Foods, p. 121149. National Academy Press, Washington, D.C.
70. Nes, I. F. 1984. Plasmid profiles of ten strains of Lactobacillus plantarum. FEMS Microbiol. Lett. 21:359361.
71. Niinivaara, F. P. 1955. The influence of pure cultures of bacteria on the maturing and reddening of raw sausage. Acta Agric. Fenn. 85:95101.
72. Niven, C. F., Jr. 1951. Sausage discolorations of bacterial origin. American Meat Institute Foundation Bulletin, no. 13. American Meat Institute Foundation, Chicago, Ill.
73. Niven, C. F., Jr.,, R. H. Deibel, and, G. D. Wilson. 1958. The AMIF Sausage Starter Culture. Circular no. 41. American Meat Institute Foundation, Chicago, Ill.
74. Palumbo, S. A., and, J. L. Smith. 1977. Lebanon bologna processing. Proc. Recip. Meat Conf. 30:6368.
75. Pearson, A. M., and, W. F. Tauber. 1996. Processed Meats, 3rd ed. Chapman and Hall, New York, N.Y.
76. Pederson, C. S. 1979. Fermented sausage, p. 210234. In Microbiology of Food Fermentations. AVI Publishing Co., Inc., Westport, Conn.
77. Poolman, B. 1993. Energy transduction in lactic acid bacteria. FEMS Microbiol. 12:125148.
78. Posno, M.,, R. J. Leer,, N. Van Luijk,, M. J. F. van Giezen,, P. T. H. M. Heuvelmans,, B. C. Lokman, and, P. H. Pouwels. 1991. Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Appl. Environ. Microbiol. 57:18221828.
79. Raccach, M. 1984. Method for selection of lactic acid bacteria and determination of minimum temperature for meat fermentations. J. Food Prot. 47:670671.
80. Raccach, M. 1987. Pediococci and biotechnology. Crit. Rev. Microbiol. 14:291309.
81. Reuter, G. 1975. Classification problems, ecology and some biochemical activities of lactobacilli in meat products, p. 221229. In J. G. Carr,, C. V. Cutting, and, G. C. Whiting (ed.), Lactic Acid Bacteria in Beverages and Food. Academic Press, Inc., New York, N.Y.
82. Rogosa, M., and, M. E. Sharpe. 1959. An approach to the classification of the lactobacilli. J. Appl. Bacteriol. 22:329340.
83. Romans, J. R.,, W. J. Costello,, C. W. Carlson,, M. L. Greaser, and, K. W. Jones. 1994. Sausages, p. 773886. In The Meat We Eat. Interstate Publishers, Inc., Danville, Ill.
84. Romero, D. A., and, L. L. McKay. 1986. Isolation and plasmid characterization of a Lactobacillus species involved in the manufacture of fermented sausage. J. Food Prot. 48:10281035.
85. Rust, R. E. 1976. Sausage and Processed Meats Manufacturing. American Meat Institute, Washington, D.C.
86. Scheirlinck, T.,, J. Mahillon,, H. Joos,, P. Dhaese, and, F. Michiels. 1989. Integration and expression of α-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl. Environ. Microbiol. 55:21302137.
87. Schillinger, U., and, F.-K. Lücke. 1987. Identification of lactobacilli from meat and meat products. Food Microbiol. 4:199208.
88. Schillinger, U., and, F.-K. Lücke. 1989. Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol. 55:19011906.
89. Schleifer, K. H. 1986. Gram-positive cocci, p. 9991002. In P. H. A. Sneath,, N. S. Mair,, M. E. Sharpe, and, J. G. Holt (ed.), Bergey’s Manual of Systematic Bacteriology, vol. 2. The Williams and Wilkins Co., Baltimore, Md.
90. Sharpe, M. E. 1981. The genus Lactobacillus, p. 16531679. In M. P. Starr,, H. G. Trüper,, A. Balows, and, H. G. Schlegel (ed.), The Prokaryotes—a Handbook on Habitats, Isolation, and Identification of Bacteria, vol. II (1st ed.). Springer-Verlag, New York, N.Y.
91. Sharpe, M. E.,, T. F. Fryer, and, D. G. Smith. 1966. Identification of the lactic acid bacteria. In B. M. Gibbs and, F. A. Skinner (ed.), Identification Methods for Microbiologists, part A. Academic Press, Ltd., London, United Kingdom.
92. Shay, B. J.,, A. F. Egan,, M. Wright, and, P. J. Rogers. 1988. Cysteine metabolism in an isolate of Lactobacillus sake: plasmid composition and cysteine transport. FEMS Microbiol. Lett. 56:183188.
93. Shrago, A. W.,, B. M. Chassy, and, W. J. Dobrogosz. 1986. Conjugal plasmid transfer (pAMb1) in Lactobacillus plantarum. Appl. Environ. Microbiol. 52:574576.
94. Shrago, A. W., and, W. J. Dobrogosz. 1988. Conjugal transfer of group B streptococcal plasmids and comobilization of Escherichia coli-Streptococcus shuttle plasmids to Lactobacillus plantarum. Appl. Environ. Microbiol. 54:824826.
95. Skaugen, M., and, I. F. Nes. 1994. Transposition in Lactobacillus sake and its abolition of lactocin S production by insertion of IS1163, a new member of the IS3 family. Appl. Environ. Microbiol. 60:28182825.
96. Stackebrandt, E.,, V. J. Fowler, and, C. R. Woese. 1983. A phylogenetic analysis of lactobacilli, Pediococcus pentosaceus and Leuconostoc mesenteroides. Syst. Appl. Microbiol. 4:326337.
97. Stackebrandt, E.,, C. Koch,, O. Gvozdiak, and, P. Schumann. 1995. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int. J. Syst. Bacteriol. 45:682692.
98. Stackebrandt, E., and, M. Teuber. 1988. Molecular taxonomy and phylogenetic position of lactic acid bacteria. Biochimie 70:317324.
99. Stiles, M. E., and, W. H. Holzapfel. 1997. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36:129.
100. ten Brink,, R. Otto,, U. P. Hansen, and, W. N. Konings. 1985. Energy recycling by lactate efflux in growing and nongrowing cells of Streptococcus cremoris. J. Bacteriol. 162:383390.
101. Terrell, R. N.,, G. C. Smith, and, Z. L. Carpenter. 1977. Practical manufacturing technology for dry and semi-dry sausage. Proc. Recip. Meat Conf. 30:3944.
102. Townsend, W. E.,, C. E. Davis, and, C. E. Lyon. 1978. Some properties of fermented dry sausage prepared from PSE and normal pork. In Kongressdokumentation. 24th Europäischer Fleischforscher-Kongress, Kulmbach, Germany.
103. U.S. Department of Agriculture, Food Safety Inspection Service. 1995. Prescribed treatment for pork and products containing pork to destroy trichinae, part 318.10. Code of Federal Regulations, Title 9. Office of the Federal Register, Washington, D.C.
104. U.S. Department of Agriculture, Food Safety Inspection Service. 1995. Requirements for the production of cooked beef, roast beef, and cooked corn beef, part 318.17. Code of Federal Regulations, Title 9. Office of the Federal Register, Washington, D.C.
105. U.S. Department of Agriculture, Food Safety and Inspection Service. June 1999, revision date. Appendix A. Compliance guidelines for meeting lethality performance standards for certain meat and poultry products. [Online.] www.fsis.usda.gov/OPPDE/rdad/FRPubs/95-033F/95-033F_Appendix%20A.htm.
106. U.S. Department of Agriculture, Food Safety and Inspection Service. May 2003, revision date. The Food Standards and Labeling Policy Book. Office of Policy Program Development, Washington, D.C. [Online.] www.fsis.usda.gov/oppde/larc/policies/policybook.pdf.
107. Vandekerckhove, P., and, D. Demeyer. 1975. Die Zusammernstzung belgischer Rohwurst (Salami). Fleischwirtschaft 55:680682.
108. von Wright, A., and, M. Sibakov. 1993. Genetic modification of lactic acid bacteria, p. 161198. In S. Salminen and, A. von Wright (ed.), Lactic Acid Bacteria. Marcel Dekker, Inc., New York, N.Y.
109. Weiss, N. 1992. The genera Pediococcus and Aerococcus, p. 15021507. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder, and, K.-H. Schleifer (ed.), The Prokaryotes—A Handbook on the Biology of Bacteria: Ecophysiogy, Isolation, Identification, Applications, 2nd ed. Springer-Verlag, New York, N.Y.
110. West, C. A., and, P. J. Warner. 1985. Plasmid profiles and transfer of plasmid-encoded antibiotic resistance in Lactobacillus plantarum. Appl. Environ. Microbiol. 50:13191321.
111. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221271.
112. Wolf, G.,, E. K. Aarendt,, U. Pfahler, and, W. P. Hammes. 1990. Heme-dependent and heme-independent nitrite reduction by lactic acid bacteria results in different N-containing products. Int. J. Food Microbiol. 10:323330.
113. Wu, W. J.,, D. C. Rule,, J. R. Busboom,, R. A. Field, and, B. Ray. 1991. Starter culture and time/temperature of storage influences on quality of fermented mutton sausage. J. Food Sci. 56:919925.
114. Zenitani, B. 1955. Studies on fermented fish products. I. On the aerobic bacteria in “Shiokara.” Bull. Jpn. Soc. Sci. Fish. 21:280283.

Tables

Generic image for table
Table 37.1

Categories and origins of selected dry and semidry sausages

Citation: Ricke S, Diaz I, Keeton J. 2007. Fermented Meat, Poultry, and Fish Products, p 795-815. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch37
Generic image for table
Table 37.2

Compositions of two types of fermented sausages

Citation: Ricke S, Diaz I, Keeton J. 2007. Fermented Meat, Poultry, and Fish Products, p 795-815. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch37
Generic image for table
Table 37.3

Generic manufacturing scheme for dry and semidry fermented sausages with starter cultures

Citation: Ricke S, Diaz I, Keeton J. 2007. Fermented Meat, Poultry, and Fish Products, p 795-815. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch37
Generic image for table
Table 37.4

Chemical characteristics of selected fermented sausage products

Citation: Ricke S, Diaz I, Keeton J. 2007. Fermented Meat, Poultry, and Fish Products, p 795-815. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch37
Generic image for table
Table 37.5

Research needs for meat starter cultures

Citation: Ricke S, Diaz I, Keeton J. 2007. Fermented Meat, Poultry, and Fish Products, p 795-815. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch37

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error