1887

Chapter 43 : Rapid Methods for the Detection of Foodborne Pathogens: Current and Next-Generation Technologies

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Rapid Methods for the Detection of Foodborne Pathogens: Current and Next-Generation Technologies, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap43-1.gif /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap43-2.gif

Abstract:

The history of biotechnology reveals that scientific discoveries lead to technological advances and these are usually followed by a phase of research and development to find applications for the technologies. The authors are currently in another application phase, where new technologies such as real-time PCR (rtPCR), DNA microarrays, and biosensors are providing very sophisticated tools for use in diagnostics. This chapter therefore includes discussions on these "next-generation technologies," which will have an impact on the way one can test for pathogens and toxins in foods. All identification assays require a pure culture of the unknown bacteria, which is then identified most often by its biochemical characteristics. It is a lengthy, labor-intensive, and media-consuming process. The introduction of miniaturized biochemical kits, which provide a quick biochemical profile of bacteria at a great savings in cost, labor, and time, has simplified the process of bacterial identification and continues to be important in regulatory testing of foods. Many of the new methods use next-generation technologies such as rtPCR, biosensors, and DNA chips, which may be more rapid, more sensitive, and capable of multitarget testing and hence are well suited for use in screening large numbers of samples in compliance or food security surveillance programs. Furthermore, comparative evaluation by with standard methods or validation of rapid methods is critical to document their efficacy in detecting foodborne pathogens and toxins.

Citation: Feng P. 2007. Rapid Methods for the Detection of Foodborne Pathogens: Current and Next-Generation Technologies, p 911-934. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch43

Key Concept Ranking

Food Microbiology
0.6724122
Gram-Negative Bacteria
0.47133717
Gram-Positive Bacteria
0.45631447
Enzyme-Linked Immunosorbent Assay
0.44558817
Salmonella enterica
0.44213402
0.6724122
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 43.1
Figure 43.1

History of biotechnology. Modified from reference .

Citation: Feng P. 2007. Rapid Methods for the Detection of Foodborne Pathogens: Current and Next-Generation Technologies, p 911-934. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 43.2
Figure 43.2

Conventional microbiological analysis of foods.

Citation: Feng P. 2007. Rapid Methods for the Detection of Foodborne Pathogens: Current and Next-Generation Technologies, p 911-934. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815912.ch43
1. Abee, T.,, W. van Schaik, and, R. J. Siezen. 2004. Impact of genomics on microbial food safety. Trends Biotechnol. 22:653660.
2. Alocilja, E. C., and, S. M. Radke. 2003. Market analysis of biosensors for food safety. Biosens. Bioelectron. 18:841846.
3. Andrews, W. H. 1996. AOAC INTERNATIONAL’S three validation programs for methods used in the microbiological analysis of foods. Trends Food Sci. Technol. 7:147151.
4. Benoit, P. W., and, D. W. Donahue. 2003. Methods for rapid separation and concentration of bacteria in food that bypass time-consuming cultural enrichment. J. Food Prot. 66:19351948.
5. Brooks, J. T.,, E. G. Sowers,, J. G. Wells,, K. D. Greene,, P. M. Griffin,, R. M. Hoekstra, and, N. A. Strockbine. 2005. Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983–2002. J. Infect. Dis. 192:14221429.
6. Broude, E. N. 2005. Molecular beacons and other hairpin probes, p. 846850. In J. Fuchs and, M. Podda (ed.), Encyclopedia of Diagnostic Genomics and Proteomics. Marcel Dekker, New York, N.Y.
7. Call, D. R. 2005. Challenges and opportunities for pathogen detection using DNA microarrays. Crit. Rev. Microbiol. 31:9199.
8. Call, D. R.,, F. J. Brockman, and, D. P. Chandler. 2001. Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays. Int. J. Food Microbiol. 67:7180.
9. Centers for Disease Control and Prevention. 2005. Summary of notifiable diseases—United States, 2003. Morb. Mortal. Wkly. Rep. 52:185.
10. Centers for Disease Control and Prevention. 2004. Preliminary FoodNet data on the incidences of infection with pathogens transmitted commonly through foods-selected sites United States, 2003. Morb. Mortal. Wkly. Rep. 53:338343.
11. Chen, J., and, M. W. Griffiths. 1996. Salmonella detection in eggs using lux+ bacteriophages. J. Food Prot. 59:908914.
12. Cunningham, M. J., and, D. D. Dao. 2005. Microarray-fabricating, p. 819823. In J. Fuchs and, M. Podda (ed.), Encyclopedia of Diagnostic Genomics and Proteomics. Marcel Dekker, New York, N.Y.
13. De Angelis, D. A. 2005. Fluorescence resonance energy transfer (FRET), p. 491495. In J. Fuchs and, M. Podda (ed.), Encyclopedia of Diagnostic Genomics and Proteomics. Marcel Dekker, New York, N.Y.
14. DeCory, T. R.,, R. A. Durst,, S. J. Zimmerman,, L. A. Garringer,, G. Paluca,, H. H. DeCory, and, R. A. Montagna. 2005. Development of an immunomagnetic bead-immunoliposome fluorescence assay for rapid detection of Escherichia coli O157:H7 in aqueous samples and comparison of the assay with a standard microbiological method. Appl. Environ. Microbiol. 71:18561864.
15. Eklund, M.,, J. P. Nuorti,, P. Ruutu, and, A. Siitonen. 2005. Shiga toxigenic Escherichia coli (STEC) infections in Finland during 1998–2002: a population-based surveillance study. Epidemiol. Infect. 133:845852.
16. El Marrakchi, A.,, N. Boum’handi, and, A. Hamama. 2005. Performance of a new chromogenic plating medium for the isolation of Listeria monocytogenes from marine environments. Lett. Appl. Microbiol. 40:8791.
17. Exner, M. M. 2005. Multiplex real-time PCR, p. 855859. In J. Fuchs and, M. Podda (ed.), Encyclopedia of Diagnostic Genomics and Proteomics. Marcel Dekker, New York, N.Y.
18. Favrin, S. J.,, A. J. Sabah, and, M. W. Griffiths. 2001. Development and optimization of a novel immunomagnetic separation-bacteriophage assay for detection of Salmonella enterica serovar Enteritidis in broth. Appl. Environ. Microbiol. 67:217224.
19. Feng, P. 2001. Development and impact of rapid methods for detection of food-borne pathogens, p. 775796. In M. P. Doyle,, L. R. Beuchat, and, T. J. Montville (ed.). Food Microbiology: Fundamentals and Frontiers, 2nd ed. ASM Press, Washington, D.C.
20. Feng, P., and, P. A. Hartman. 1982. Fluorogenic assays for immediate confirmation of Escherichia coli. Appl. Environ. Microbiol. 43:13201329.
21. Fu, Z.,, S. Rogelj, and, T. L. Kieft. 2005. Rapid detection of Escherichia coli O157:H7 by immunomagnetic separation and real-time PCR. Int. J. Food Microbiol. 97:4757.
22. Fukushima, H.,, Y. Tsunomori, and, R. Seki. 2003. Duplex real-time SYBR Green PCR assays for the detection of 17 species of food- or waterborne pathogens in stools. J. Clin. Microbiol. 41:51345146.
23. Gallagher, R., and, J. Perkel. 2005. Seven cheers for technology. Scientist 19:6.
24. Gasanov, U.,, D. Hughes, and, P. M. Hansbro. 2005. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiol. Rev. 29:851875.
25. Gehring, A. G.,, P. L. Irwin,, S. A. Reed,, S. I. Tu,, P. E. Andreotti,, H. Akhavan-Tafti, and, R. S. Handley. 2004. Enzyme-linked immunomagnetic chemiluminescent detection of Escherichia coli O157:H7. J. Immunol. Methods 293:97106.
26. Geng, T.,, M. T. Morgan, and, A. K. Bhunia. 2004. Detection of low levels of Listeria monocytogenes by using a fiberoptic immunosensor. Appl. Environ. Microbiol. 70:61386146.
27. Gutteridge, C. S., and, M. L. Arnott. 1989. Rapid methods: an over the horizon view, p. 297319. In M. R. Adams and, C. F. A. Hope (ed.), Rapid Methods in Food Microbiology: Progress in Industrial Microbiology. Elsevier, New York, N.Y.
28. Harding, A. 2005. BLAST. Scientist 19:2125.
29. Harlander, S. 1989. Food biotechnology: yesterday, today and tomorrow. Food Technol. 43:196206.
30. Hoorfar, J.,, N. Cook,, B. Malorny,, M. Wagner,, D. DeMedici,, A. Abdulmawjood, and, P. Fach. 2003. Making internal amplification control mandatory for diagnostic PCR. J. Clin. Microbiol. 41:5835.
31. Hsu, C. F.,, T. Y. Tsai, and, T. M. Pan. 2005. Use of the duplex TaqMan PCR system for detection of Shiga-like toxin-producing Escherichia coli O157. J. Clin. Microbiol. 43:26682673.
32. Jackson, G. J., and, I. K. Wachsmuth. 1998. The US Food and Drug Administration’s selection and validation of tests for foodborne microbes and microbial toxins. Food Control 7:3739.
33. Jean, J.,, D. H. D’Souza, and, L. A. Jaykus. 2004. Multiplex nucleic acid sequence-based amplification for simultaneous detection of several enteric viruses in model ready-to-eat foods. Appl. Environ. Microbiol. 70:66036610.
34. Jinneman, K. C.,, K. J. Yoshitomi, and, S. D. Weagant. 2003. Multiplex real-time PCR method to identify Shiga toxin genes stx1 and stx2 and Escherichia coli O157:H7/H–serotype. Appl. Environ. Microbiol. 69:63276333.
35. Keramas, G.,, D. D. Bang,, M. Lund,, M. Madsen,, H. Bunkenborg,, P. Telleman, and, C. B. Christensen. 2004. Use of culture, PCR analysis and DNA microarray for detection of Campylobacter jejuni and Campylobacter coli from chicken feces. J. Clin. Microbiol. 42:39853991.
36. Klotz, M.,, S. Opper,, K. Heeg, and, S. Zimmermann. 2003. Detection of Staphylococcus aureus enterotoxins A to D by real-time fluorescence PCR assay. J. Clin. Microbiol. 41:46834687.
37. Koo, K., and, L. A. Jaykus. 2003. Detection of Listeria monocytogenes from a model food by fluorescence resonance energy transfer-based PCR with an asymmetric fluorogenic probe set. Appl. Environ. Microbiol. 69:10821088.
38. Kramer, M. F., and, D. V. Lim. 2004. A rapid and automated fiber optic-based biosensor assay for the detection of Salmonella in spent irrigation water used in the sprouting of sprout seeds. J. Food Prot. 67:4652.
39. Krupp, G., and, U. Spengler. 2005. Polymerase chain reaction, p. 10521059. In J. Fuchs and, M. Podda (ed.), Encyclopedia of Diagnostic Genomics and Proteomics. Marcel Dekker, New York, N.Y.
40. Kubista, M., and, N. Zoric. 2005. Real-time PCR platforms, p. 11261130. In J. Fuchs and, M. Podda (ed.), Encyclopedia of Diagnostic Genomics and Proteomics. Marcel Dekker, New York, N.Y.
41. Lantz, P.-G.,, B. Hahn-Hagerdal, and, P. Radstrom. 1994. Sample preparation methods in PCR-based detection of food pathogens. Trends Food Sci. Technol. 5:384389.
42. Lemarchand, K.,, L. Masson, and, R. Brousseau. 2004. Molecular biology and DNA microarray technology for microbial quality monitoring of water. Crit. Rev. Microbiol. 30:145172.
43. Leonard, P.,, S. Hearty,, J. Quinn, and, R. O’Kennedy. 2004. A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens. Bioelectron. 19:13311335.
44. McKillip, J. L., and, M. Drake. 2000. Molecular beacon polymerase chain reaction detection of Escherichia coli O157:H7 in milk. J. Food Prot. 63:855859.
45. Mercanoglu, B., and, M. W. Griffiths. 2005. Combination of immunomagnetic separation with real-time PCR for rapid detection of Salmonella in milk, ground beef, and alfalfa sprouts. J. Food Prot. 68:557561.
46. Monday, S. R., and, G. A. Bohach. 1999. Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J. Clin. Microbiol. 37:34113414.
47. Monday, S. R.,, S. A. Minnich, and, P. C. H. Feng. 2004. A 12-base-pair deletion in the flagellar master control gene flhC causes non-motility of the pathogenic German sorbitol-fermenting Escherichia coli O157:H–strains. J. Bacteriol. 186:23192327.
48. Monday, S. R.,, T. S. Whittam, and, P. Feng. 2001. Genetic and evolutionary analysis of insertions in the gusA gene, which caused the absence of glucuronidase activity in Escherichia coli O157:H7. J. Infect. Dis. 184:918921.
49. Nazarowec-White, M., and, J. M. Farber. 1997. Enterobacter sakazakii: a review. Int. J. Food Microbiol. 34:103113.
50. Odumeru, J. A.,, M. Stele,, L. Fruhner,, C. Larkin,, J. Jiang,, E. Mann, and, W. B. McNab. 1999. Evaluation of accuracy and repeatability of identification of food-borne pathogens by automated bacterial identification systems. J. Clin. Microbiol. 37:944949.
51. Oh, B. K.,, Y. K. Kim,, K. W. Park,, W. H. Lee, and, J. W. Choi. 2004. Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosens. Bio-electron. 19:14971504.
52. Oh, B. K.,, W. Lee,, B. S. Chun,, Y. M. Bae,, W. H. Lee, and, J. W. Choi. 2005. The fabrication of protein chip based on surface plasmon resonance for detection of pathogens. Biosens. Bioelectron. 20:18471850.
53. O’Hara, C. M.,, E. G. Sowers,, C. A. Bopp,, S. B. Duda, and, N. A. Strockbine. 2003. Accuracy of six commercially available systems for identification of members of the family Vibrionaceae. J. Clin. Microbiol. 41:56545659.
54. Panicker, G.,, D. R. Call,, M. J. Krug, and, A. K. Bej. 2004. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays. Appl. Environ. Microbiol. 70:74367444.
55. Park, C. H.,, H. J. Kim,, D. L. Hixon, and, A. Bubert. 2003. Evaluation of the Duopath verotoxin test for detection of shiga toxins in cultures of human stools. J. Clin. Microbiol. 41:26502653.
56. Perez, J. M.,, P. Cavalli,, C. Roure,, R. Renac,, Y. Gille, and, A. M. Freydiere. 2003. Comparison of four chromogenic media and Hektoen agar for detection and presumptive identification of Salmonella strains in human stools. J.Clin. Microbiol. 41:11301134.
57. Rider, T. H.,, M. S. Petrovick,, F. E. Nargi,, J. D. Harper,, E. D. Schwoebel,, R. H. Mathews,, D. J. Blanchard,, L. T. Bortolin,, A. M. Young,, J. Chen, and, M. A. Hollis. 2003. A B cell-based sensor for rapid identification of pathogens. Science 301:213215.
58. Rossen, L.,, P. Norskov,, K. Holmstrom, and, O. F. Rasmussen. 1992. Inhibition of PCR by components of food samples, and DNA-extraction solutions. Int. J. Food Microbiol. 17:3745.
59. Rybolt, M. L.,, R. W. Wills,, J. A. Byrd,, T. P. Doler, and, R. H. Bailey. 2004. Comparison of four Salmonella isolation techniques in four different inoculated matrices. Poult. Sci. 83:11121116.
60. Sapsford, K. E.,, C. R. Taitt,, N. Loo, and, F. S. Ligler. 2005. Biosensor detection of botulinum toxoid A and staphylococcal enterotoxin B in food. Appl. Environ. Microbiol. 71:55905592.
61. Smith, P. A.,, D. Mellors,, A. Holroyd, and, C. Gray. 2001. A new chromogenic medium for the isolation of Listeria spp. Lett. Appl. Microbiol. 32:7882.
62. Stevens, K. A., and, L. A. Jaykus. 2004. Bacterial separation and concentration from complex sample matrices: a review. Crit. Rev. Microbiol. 30:724.
63. Straub, T. M.,, B. P. Dockendorff,, M. D. Quinonez-Diaz,, C. O. Valdez,, J. L. Shutthanandan,, B. J. Tarasevich,, J. W. Grate, and, C. J. Bruckner-Lea. 2005. Automated methods for multiplexed pathogen detection. J. Microbiol. Methods 62:303316.
64. Su, X. L., and, Y. Li. 2004. Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal. Chem. 76:48064810.
65. Su, X. L., and, Y. Li. 2004. A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7. Biosens. Bioelectron. 19:563574.
66. Taitt, C. R.,, J. P. Golden,, Y. S. Shubin,, L. C. Shriver-Lake,, K. E. Sapsford,, A. Rasooly, and, F. S. Ligler. 2004. A portable array biosensor for detecting multiple analytes in complex samples. Microb. Ecol. 47:175185.
67. Teel, L. D.,, B. R. Steinberg,, N. E. Aronson, and, A. D. O’Brien. 2003. Shiga toxin-producing Escherichia coli-associated kidney failure in a 40-year-old patient and late diagnosis by novel bacteriologic and toxin detection methods. J. Clin. Microbiol. 41:34383440.
68. Vaneechoute, M., and, J. Van Eldere. 1997. The possibilities and limitations of nucleic acid amplification technology in diagnostic microbiology. J. Med. Microbiol. 46:188194.
69. Wang, R. F.,, W. W. Cao, and, C. E. Cerniglia. 1997. A universal protocol for PCR detection of 13 species of foodborne pathogens in foods. J. Appl. Microbiol. 83:727736.
70. Wilson, W. J.,, C. L. Strout,, T. Z. DeSantis,, J. L. Stilwell,, A. V. Carrano, and, G. L. Andersen. 2002. Sequence- specific identification of 18 pathogenic microorganisms using microarray technology. Mol. Cell. Probes 16:119127.
71. Yoo, S. Y.,, K. C. Keum,, S. Y. Yoo,, J. Y. Choi,, K. H. Chang,, N. C. Yoo,, W. M. Yoo,, J. M. Kim,, D. Lee, and, S. Y. Lee. 2004. Development of DNA microarray for pathogen detection. Biotechnol. Bioprocess Eng. 9:9399.
72. Zhao, C. S.,, P. F. McDermott,, C. M. Schroeder,, D. G. White, and, J. H. Meng. 2005. A DNA microarray for identification of virulence and antimicrobial resistance genes in Salmonella and Escherichia coli. Mol. Cell. Probes 19:195201.

Tables

Generic image for table
Table 43.1

Partial list of miniaturized and automated identification kits for bacteria

Citation: Feng P. 2007. Rapid Methods for the Detection of Foodborne Pathogens: Current and Next-Generation Technologies, p 911-934. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch43
Generic image for table
Table 43.2

Partial list of commercially available assays and specialty substrate media for detection of foodborne bacteria

Citation: Feng P. 2007. Rapid Methods for the Detection of Foodborne Pathogens: Current and Next-Generation Technologies, p 911-934. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch43
Generic image for table
Table 43.3

Partial list of commercially available nucleic acid-based assays for detection of foodborne bacterial pathogens

Citation: Feng P. 2007. Rapid Methods for the Detection of Foodborne Pathogens: Current and Next-Generation Technologies, p 911-934. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch43
Generic image for table
Table 43.4

Partial list of commercially available antibody-based assays for the detection of foodborne pathogens

Citation: Feng P. 2007. Rapid Methods for the Detection of Foodborne Pathogens: Current and Next-Generation Technologies, p 911-934. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch43
Generic image for table
Table 43.5

Partial listing of rapid methods for the detection of bacterial toxins

Citation: Feng P. 2007. Rapid Methods for the Detection of Foodborne Pathogens: Current and Next-Generation Technologies, p 911-934. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch43
Generic image for table
Table 43.6

Approximate detection sensitivity of various formats

Citation: Feng P. 2007. Rapid Methods for the Detection of Foodborne Pathogens: Current and Next-Generation Technologies, p 911-934. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch43

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error