1887

Chapter 45 : Progress in Microbiological Modeling and Risk Assessment

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Progress in Microbiological Modeling and Risk Assessment, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap45-1.gif /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap45-2.gif

Abstract:

This chapter deals with advances in both microbiological modeling and risk assessment. The abundance of data acquired has led to major advances in the ability to study food safety microbiology in a quantitative manner. The importance of environmental contamination, recontamination of heat-processed foods, and the numerous potential pathways for cross contamination has long been recognized; however, few investigators have attempted to quantify or model cross contamination. Numerous nonlinear and multiple-phase models have been used to describe inactivation kinetics, with the Weibull model being used by an increasing number of modelers. Risk managers determined that grouping by moisture level was most appropriate because the classification of cheeses for regulatory purposes is by moisture level. The risk management process also includes managing communication and transparency by creating outside expert panels, conducting public meetings, requesting independent reviews of the finished risk assessment, and disseminating the results in appropriate forums. Various techniques can be used with the risk assessment to determine which of the many parameters make the greatest contribution to the average value, the variation, or the uncertainty of the output distributions. The application of risk assessment techniques to better link microbiological criteria to public health goals is an area that is actively being pursued by regulatory agencies, international intergovernmental organizations and the food industry.

Citation: Whiting R, Buchanan R. 2007. Progress in Microbiological Modeling and Risk Assessment, p 953-969. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch45

Key Concept Ranking

Risk Assessment
0.52359384
Risk Analysis Framework
0.522155
Lactic Acid Bacteria
0.43180087
Risk Management
0.4058593
0.52359384
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Untitled
Untitled

Citation: Whiting R, Buchanan R. 2007. Progress in Microbiological Modeling and Risk Assessment, p 953-969. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch45
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 45.1
Figure 45.1

Cumulative plot of the variation and sensitivity of a risk analysis.

Citation: Whiting R, Buchanan R. 2007. Progress in Microbiological Modeling and Risk Assessment, p 953-969. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch45
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 45.2
Figure 45.2

A food process and application of the FSO paradigm. Trans., transport.

Citation: Whiting R, Buchanan R. 2007. Progress in Microbiological Modeling and Risk Assessment, p 953-969. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch45
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815912.ch45
1. Alavi, S. H.,, V. M. Puri,, S. J. Knabel,, R. H. Mohtar, and, R. C. Whiting. 1999. Development and validation of a dynamic growth model for Listeria monocytogenes in fluid whole milk. J. Food Prot. 62:170176.
2. Amézquita, A.,, C. L. Weller,, L. Wang,, H. Thippareddi, and, D. E. Burson. 2005. Development of an integrated model for heat transfer and dynamic growth of Clostridium perfringens during the cooling of cooked boneless ham. Int. J. Food Microbiol. 101:123144.
3. Baranyi, J., and, M. L. Tamplin. 2004. Combase: a common database on microbial response to food environments. J. Food Prot. 67:19671971.
4. Barker, G. C.,, P. K. Malakar, and, M. W. Peck. 2005. Germination and growth from spores: variability and uncertainty in the assessment of food borne hazards. Int. J. Food Microbiol. 100:6776.
5. Bernaerts, K.,, E. Dens,, K. Vereecken,, A. H. Geeraerd,, A. R. Standaert,, F. Devlieghere,, J. Debevere, and, J. F. van Impe. 2004. Concepts and tools for predictive modeling of microbial dynamics. J. Food Prot. 67:20412052.
6. Buchanan, R. L., and, S. B. Dennis. 2001. Microbial risk assessment—a tool for regulatory decision making. J. Assoc. Food Drug Off. 65:3646.
7. Buchanan, R. L.,, S. B. Dennis, and, M. Miliotis. 2004. Initiating and managing risk assessments within a risk analysis framework: FDA/CFSAN’s practical approach. J. Food Prot. 67:20582062.
8. Buzurl, S., and, H. Alpas. 2004. Modeling the synergistic effect of high pressure and heat on inactivation kinetics of Listeria innocua: a preliminary study. FEMS Microbiol. Lett. 238:2936.
9. Carrington, C. D.,, S. B. Dennis,, R. C. Whiting, and, R. L. Buchanan. 2004. Putting a risk assessment model to work: Listeria monocytogenes “what if” scenarios. J. Assoc. Food Drug Off. 68:519.
10. Chen, Y.,, K. M. Jackson,, F. P. Chea, and, D. W. Schaffner. 2001. Quantification and variability analysis of bacterial cross-contamination rates in common food service tasks. J. Food Prot. 64:7280.
11. Chen, Y.,, W. H. Ross,, M. J. Gray,, M. Wiedmann,, R. C. Whiting, and, V. N. Scott. 2006. Attributing risk to Listeria monocytogenes subgroups: dose response in relation to genetic lineages. J. Food Prot. 69:335344.
12. Codex Alimentarius Commission. 2003. Basic Texts on Food Hygiene, 3rd ed., p. 4552. Secretariat of the Joint Food and Agriculture Organization-World Health Organization Food Standards Programme, Food and Agriculture Organization, Rome, Italy.
13. Codex Alimentarius Commission. 2003. Basic Texts on Food Hygiene, 3rd ed., p. 5362. Secretariat of the Joint Food and Agriculture Organization-World Health Organization Food Standards Programme, Food and Agriculture Organization, Rome, Italy.
14. Codex Alimentarius Commission. 2005. Codex Alimentarius Procedural Manual, 15th ed., p. 101107. Secretariat of the Joint Food and Agriculture Organization-World Health Organization Food Standards Programme, Food and Agriculture Organization, Rome, Italy.
15. Cole, M. B., and, R. B. Tompkin. 2005. Microbiological performance objectives and criteria, p. 673695. In J. N. Sofos (ed.), Improving the Safety of Fresh Meat. Wood-head Publishing, Cambridge, United Kingdom.
16. Collado, J.,, A. Fernández,, L. M. Cunha,, M. J. Ocio, and, A. Martínez. 2003. Improved model based on the Weibull distribution to describe the combined effect of pH and temperature on the heat resistance of Bacillus cereus in carrot juice. J. Food Prot. 66:978984.
17. Cornu, M.,, A. Beaufort,, S. Rudelle,, L. Laloux,, H. Bergis,, N. Miconnet,, T. Serot, and, M. L. Delignette-Muller. 2006. Effects of temperature, water-phase salt, and phenolic contents on Listeria monocytogenes growth rates on cold-smoked salmon and the evaluation of secondary models. Int. J. Food Microbiol. 106:159168.
18. Corradini, M. G.,, M. D. Normand,, A. Nussinovitch,, J. Horowitz, and, M. Peleg. 2001. Estimating the frequency of high microbial counts in commercial food products using various distribution functions. J. Food Prot. 64:674681.
19. Couvert, O.,, S. Gaillard,, N. Savy,, P. Mafart, and, I. Leguérinel. 2005. Survival curves of heated bacterial spores: effect of environmental factors on Weibull parameters. Int. J. Food Microbiol. 101:7381.
20. Dalgaard, P.,, P. Buch, and, S. Silberg. 2002. Seafood spoilage predictor—development and distribution of a product specific application software. Int. J. Food Microbiol. 73:343349.
21. Davidson, V. J., and, J. Ryks. 2003. Comparison of Monte Carlo and fuzzy math simulation methods for quantitative microbial risk assessment. J. Food Prot. 66:19001910.
22. de Jesús, A. J., and, R. C. Whiting. 2002. Thermal inactivation, growth, and survival studies of Listeria monocytogenes strains belonging to three distinct genotypic lineages. J. Food Prot. 66:16111617.
23. Delignette-Muller, M. L.,, F. Baty,, M. Cornu, and, H. Bergis. 2005. Modelling the effect of a temperature shift on the lag phase duration of Listeria monocytogenes. Int. J. Food Microbiol. 100:7784.
24. Delignette-Muller, M. L.,, M. Cornu,, R. Pouillot, and, J.-B. Denis. 2006. Use of Bayesian modeling in risk assessment: application to growth of Listeria monocytogenes and food flora in cold-smoked salmon. Int. J. Food Microbiol. 106:195208.
25. Delignette-Muller, M. L., and, L. Rosso. 2000. Biological variability and exposure assessment. Int. J. Food Microbiol. 58:203212.
26. den Aantrekker, E. D.,, R. M. Boom,, M. H. Zwietering, and, M. van Schothorst. 2003. Quantifying recontamination through factory environments—a review. Int. J. Food Microbiol. 80:117130.
27. Dens, E. J.,, K. Bernaerts,, A. R. Standaert,, J.-U. Kreft, and, J. F. van Impe. 2005. Cell division theory and individual-based modeling of microbial lag, part II. Modeling lag phenomena induced by temperature shifts. Int. J. Food Microbiol. 101:319332.
28. Dens, E. J.,, K. Bernaerts,, A. R. Standaert, and, J. F. van Impe. 2005. Cell division theory and individual-based modeling of microbial lag, part I. The theory of cell division. Int. J. Food Microbiol. 101:303318.
29. Dens, E. J., and, J. F. van Impe. 2001. On the need for another type of predictive model in structured foods. Int. J. Food Microbiol. 64:247260.
30. Denys, S.,, J. G. Pieters, and, K. Dewettinck. 2005. Computational fluid dynamics analysis for process impact assessment during thermal pasteurization of intact eggs. J. Food Prot. 68:366374.
31. de Swarte, C., and, R. A. Donker. 2005. Towards an FSO/ALOP based food safety policy. Food Control 16:825830.
32. Edelson-Mammel, S. G., and, R. L. Buchanan. 2004. Thermal inactivation of Enterobacter sakazakii in rehydrated infant formula. J. Food Prot. 67:6063.
33. Edelson-Mammel, S. G.,, R. C. Whiting,, S. W. Joseph, and, R. L. Buchanan. 2005. Effect of prior growth conditions on the thermal inactivation of 13 strains of Listeria monocytogenes in two heating menstrua. J. Food Prot. 68:168172.
34. Food and Agriculture Organization-World Health Organization. 1997. FAO Food and Nutrition Paper, no. 65. Risk Management and Food Safety: Report of a Joint FAO/WHO Consultation. Food and Agriculture Organization, Rome, Italy.
35. Food and Agriculture Organization-World Health Organization. 2002. Principles and Guidelines for Incorporating Microbiological Risk Assessment in the Development of Food Safety Standards: Guidelines and Related Texts. Report of a Joint FAO/WHO Consultation, Kiel, Germany. ISBN 92 5 1048452. Food and Agriculture Organization, Rome, Italy.
36. Food and Agriculture Organization-World Health Organization. 2002. Microbiological Risk Assessment Series, no. 2. Risk Assessment of Salmonella in Eggs and Broiler Chickens. Food and Agriculture Organization, Rome, Italy.
37. Food and Agriculture Organization-World Health Organization. 2003. Microbiological Risk Assessment Series, no. 3. Hazard Characterization for Pathogens in Food and Water. Food and Agriculture Organization, Rome, Italy.
38. Food and Agriculture Organization-World Health Organization. 2004. Microbiological Risk Assessment Series, no. 5. Risk Assessment of Listeria monocytogenes in Ready-To-Eat Foods. ISBN 92 5 105127 5. Food and Agriculture Organization, Rome, Italy.
39. Food and Agriculture Organization-World Health Organization. 2004. Microbiological Risk Assessment Series, no. 6. Enterobacter sakazakii and Other Microorganisms in Powdered Infant Formula. Food and Agriculture Organization, Rome, Italy.
40. Food and Drug Administration. 19 July 2005, posting date. Quantitative Risk Assessment on the Public Health Impact of Pathogenic Vibrio parahaemolyticus in Raw Oysters. [Online.] Food and Drug Administration, Washington, D.C. www.cfsan.fda.gov/∼dms/vpra-toc.html.
41. Food and Drug Administration-Food Safety and Inspection Service. October 2003, posting date. Updated 10 October 2005. Quantitative Assessment of Relative Risk to Public Health from Foodborne Listeria monocytogenes among Selected Categories of Ready-To-Eat foods. [Online.] Food and Drug Administration, Washington, D.C. www.foodsafety.gov/∼dms/lmr2-toc.html.
42. Francois, K.,, F. Devlieghere,, K. Smet,, A. R. Standaert,, A. H. Geeraerd,, J. F. van Impe, and, J. Debevere. 2005. Modelling the individual cell lag phase: effect of temperature and pH on the individual cell lag distribution of Listeria monocytogenes. Int. J. Food Microbiol. 100:4153.
43. Gaylor, D. W. 2005. Risk/benefit assessments of human diseases: optimum dose for intervention. Risk Anal. 25:161168.
44. Geeraerd, A. H.,, C. H. Herremans, and, J. F. van Impe. 2000. Structural model requirements to describe microbial inactivation during a mild heat treatment. Int. J. Food Microbiol. 59:185209.
45. Geeraerd, A. H.,, V. P. Valdramidis,, F. Devlieghere,, H. Bernaert,, J. Debevere, and, J. F. van Impe. 2004. Development of a novel approach for secondary modeling in predictive microbiology: incorporation of microbiological knowledge in black box polynomial modeling. Int. J. Food Microbiol. 91:229244.
46. Giménez, B., and, P. Dalgaard. 2004. Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage microorganisms in cold-smoked salmon. J. Appl. Microbiol. 96:96109.
47. Gorris, L. G. M. 2005. Food safety objective: an integral part of food chain management. Food Control 16:801809.
48. Grijspeerdt, K., and, K. De Reu. 2005. Practical application of dynamic temperature profiles to estimate the parameters of the square root model. Int. J. Food Microbiol. 101:8392.
49. Haas, C. N.,, A. Thayyar-Madabusi,, J. B. Rose, and, C. P. Gerba. 2000. Development of a dose-response relationship for Escherichia coli O157:H7. Int. J. Food Microbiol. 56:153159.
50. Hassani, M.,, I. Álvarez,, J. Raso,, S. Condón, and, R. Pagán. 2005. Comparing predicting models for heat inactivation of Listeria monocytogenes and Pseudomonas aeruginosa at different pH. Int. J. Food Microbiol. 100:213222.
51. Havelaar, A. H.,, M. J. Nauta, and, J. T. Jansen. 2004. Fine-tuning food safety objectives and risk assessment. Int. J. Food Microbiol. 93:1129.
52. Heldman, D. R., and, R. L. Newsome. 2003. Kinetics models for microbial survival during processing. Food Technol. 57(8): 4046, 100.
53. Holcomb, D. L.,, M. A. Smith,, G. O. Ware,, Y.-C. Hung,, R. E. Brackett, and, M. P. Doyle. 1999. Comparison of six dose-response models for use with food-borne pathogens. Risk Anal. 19:10911100.
54. Hoornstra, E., and, S. Notermans. 2001. Quantitative microbiological risk assessment. Int. J. Food Microbiol. 66:2129.
55. Horton, L. R. 2001. Risk analysis and the law: international law, the World Trade Organization, Codex Alimentarius and national legislation. Food Addit. Contam. 18:10571067.
56. Huang, L. 2003. Dynamic computer simulation of Clostridium perfringens growth in cooked ground beef. Int. J. Food Microbiol. 87:217227.
57. Institute of Medicine, National Research Council. 2003. Scientific Criteria To Ensure Safe Food, p. 401. ISBN 0-309-50920-3. The National Academies Press, Washington, D.C.
58. Ivanek, R.,, Y. T. Gröhn,, L. W. Tauer, and, M. Wiedmann. 2004. The cost and benefit of Listeria monocytogenes food safety measures. Crit. Rev. Food Sci. Nutr. 44:513523.
59. Ivanek, R.,, Y. T. Gröhn,, M. Wiedmann, and, M. T. Wells. 2004. Mathematical model of Listeria monocytogenes cross-contamination in a fish processing plant. J. Food Prot. 67:26882697.
60. Jones, R. C.,, S. I. Gerber,, P. S. Diaz,, L. L. Williams,, S. B. Dennis,, E. S. Parish, and, W. S. Paul. 2004. Intensive investigation of bacterial foodborne disease outbreaks: proposed guidelines and tools for the collection of dose-response data by local health departments. J. Food Prot. 67:616623.
61. Juneja, V. K.,, H. M. Marks, and, L. Huang. 2003. Growth and heat resistance kinetic variation among various isolates of Salmonella and its application to risk assessment. Risk Anal. 23:199213.
62. Kilimann, K. V.,, C. Hartmann,, A. Delagado,, R. F. Vogel, and, M. G. Gänzle. 2005. A fuzzy logic-based model for the multistage high-pressure inactivation of Lactococcus lactis ssp. Cremoris MG 1363. Int. J. Food Microbiol. 98:89105.
63. Koseki, S., and, S. Isobe. 2005. Growth of Listeria monocytogenes on iceberg lettuce and solid media. Int. J. Food Microbiol. 101:217225.
64. Kothary, M. H., and, U. S. Babu. 2001. Infective dose of foodborne pathogens in volunteers: a review. J. Food Safety 21:4973.
65. Koutsoumanis, K. P.,, P. A. Kendall, and, J. N. Sofos. 2004. A comparative study on growth limits of Listeria monocytogenes as affected by temperature, pH and aw when grown in suspension or on a solid surface. Food Microbiol. 21:415422.
66. Kusumaningrum, H. D.,, E. D. van Asselt,, R. R. Beumer, and, M. H. Zwietering. 2004. A quantitative analysis of cross-contamination of Salmonella and Campylobacter spp. via domestic kitchen surfaces. J. Food Prot. 67:18921903.
67. Kutalik, Z.,, M. Razaz,, A. Elfwing,, A. Ballagi, and, J. Baranyi. 2005. Stochastic modeling of individual cell growth using flow chamber microscopy images. Int. J. Food Microbiol. 105:177190.
68. Lammerding, A. M., and, R. C. McKellar. 2004. Predictive microbiology in quantitative risk assessment, p. 263284. In R. C. McKellar and, X. Lu (ed.), Modeling Microbial Responses in Food. CRC Press, Boca Raton, Fla.
69. Latimer, H. K.,, L. Jaykus,, R. A. Morales,, P. Cowen, and, D. Crawford-Brown. 2001. A weighted composite dose-response model for human salmonellosis. Risk Anal. 21:295305.
70. Legan, J. D.,, D. L. Seman,, A. L. Milkowski,, J. A. Hirschey, and, M. H. Vandeven. 2004. Modeling the growth boundary of Listeria monocytogenes in ready-to-eat cooked meat products as a function of the product salt, moisture, potassium lactate, and sodium diacetate concentrations. J. Food Prot. 67:21952204.
71. Le Marc, Y.,, C. Pin, and, J. Baranyi. 2005. Methods to determine the growth domain in a multidimensional environmental space. Int. J. Food Microbiol. 100:312.
72. Lyytikäinen, O.,, T. Autio,, R. Maijala,, P. Ruutu,, T. Honkanen-Buzalski,, M. Miettinen,, M. Hatakka,, J. Mikkola,, V.-J. Anttila,, T. Johansson, and, L. Rantala. 2000. An outbreak of Listeria monocytogenes serotype 3a infections from butter in Finland. J. Infect. Dis. 181:18381841.
73. Malakar, P. K.,, G. C. Barker, and, M. W. Peck. 2004. Modeling the prevalence of Bacillus cereus spores during the production of a cooked chilled vegetable product. J. Food Prot. 67:939946.
74. Martens, D. E.,, C. Báal,, P. Malakar,, M. H. Zwietering, and, K. van’t Reit. 1999. Modelling the interactions between Lactobacillus curvatus and Enterobacter cloacae. I. Individual growth kinetics. Int. J. Food Microbiol. 51:5365.
75. McKellar, R. C., and, A. Hawke. 2006. Assessment of distributions for fitting lag times of individual cells in bacterial populations. Int. J. Food Microbiol. 106:169175.
76. McKellar, R. C., and, X. Lu. 2004. Modeling Microbial Responses in Food, p. 343. CRC Press, Boca Raton, Fla.
77. McKellar, R. C., and, X. Lu. 2005. Development of a global stochastic model relating the distribution of individual cell and population physiological states. Int. J. Food Microbiol. 100:3340.
78. McKellar, R. C.,, X. Lu, and, P. J. Delaquis. 2002. A probability model describing the interface between survival and death of Escherichia coli O157:H7 in a mayonnaise model system. Food Microbiol. 19:235247.
79. McMeekin, T. A.,, J. Olley,, D. A. Ratkowsky, and, T. Ross. 2002. Predictive microbiology: towards the interface and beyond. Int. J. Food Microbiol. 73:395407.
80. McMeekin, T. A.,, K. Presser,, D. Ratkowsky,, T. Ross,, M. Salter, and, S. Tienungoon. 2000. Quantifying the hurdle concept by modeling the bacterial growth/no growth interface. Int. J. Food Microbiol. 55:9398.
81. Métris, A.,, Y. Le Marc,, A. Elfwing,, A. Ballagi, and, J. Baranyi. 2005. Modelling the variability of lag times and the first generation times of single cells of E. coli. Int. J. Food Microbiol. 100:1319.
82. Miconnet, N.,, A. H. Geeraerd,, J. F. van Impe,, L. Rosso, and, M. Cornu. 2005. Reflections of the use of robust and least-squares non-linear regression to model challenge tests conducted in/on food products. Int. J. Food Microbiol. 104:161177.
83. Moon, H.,, J. J. Chen,, D. W. Gaylor, and, R. L. Kodell. 2004. A comparison of microbial dose-response models fitted to human data. Regul. Toxicol. Pharmacol. 40:177184.
84. Nauta, M. J. 2000. Separation of uncertainty and variability in quantitative microbial risk assessment models. Int. J. Food Microbiol. 57:918.
85. Nauta, M. J. 2002. Modelling bacterial growth in quantitative microbial risk assessment: is it possible? Int. J. Food Microbiol. 73:297304.
86. Oscar, T. 2004. Dose-response model for 13 strains of Salmonella. Risk Anal. 24:4149.
87. Patil, S. R., and, H. C. Frey. 2004. Comparison of sensitivity analysis methods based on applications to a food safety risk assessment model. Risk Anal. 24:573585.
88. Peleg, M. 2000. Microbial survival curves—the reality of flat “shoulders” and absolute thermal death times. Food Res. Int. 33:531538.
89. Peleg, M., and, J. B. Cole. 1998. Reinterpretation of microbial survival curves. Crit. Rev. Food Sci. 38:353380.
90. Peleg, M., and, C. M. Penchina. 2000. Modeling microbial survival during exposure to a lethal agent with varying intensity. Crit. Rev. Food Sci. 40:159172.
91. Pin, C.,, J. P. Sutherland, and, J. Baranyi. 1999. Validating predictive models of food spoilage organisms. J. Appl. Microbiol. 87:491499.
92. Poschet, F.,, A. H. Geeraerd,, N. Scheerlinck,, B. M. Nicolaï, and, J. F. van Impe. 2003. Monte Carlo analysis as a tool to incorporate variation on experimental data in predictive microbiology. Food Microbiol. 20:285295.
93. Poschet, F.,, K. M. Vereecken,, A. H. Geeraerd,, B. M. Nicolaï, and, J. F. van Impe. 2005. Analysis of a novel class of predictive microbial growth models and application to coculture growth. Int. J. Food Microbiol. 100:107124.
94. Powell, D. A. 2000. Food safety and the consumer—perils of poor risk communication. Can. J. Anim. Sci. 80:393404.
95. Powell, M. R.,, E. Ebel,, W. Schlosser,, M. Walderhaug, and, J. Kause. 2000. Dose-response envelope for Escherichia coli O157:H7. Quant. Microbiol. 2:141163.
96. Ratkowsky, D. A. 2002. Some examples of, and some problems with, the use of nonlinear logistic regression in predictive food microbiology. Int. J. Food Microbiol. 73:119125.
97. Reij, M. W.,, E. D. den Aantrekker, andILSI Europe Risk Analysis in Microbiology Task Force. 2004. Recontamination as a source of pathogens in processed foods. Int. J. Food Microbiol. 91:111.
98. Robertson, L. J.,, J. D. Greig,, B. Gjerde, and, A. Fazil. 2005. The potential for acquiring cryptosporidiosis or giardiosis from consumption of mung bean sprouts in Norway: a preliminary step-wise risk assessment. Int. J. Food Microbiol. 98:291300.
99. Rodrigo, D.,, G. V. Barbosa-Cánovas,, A. Martínez, and, M. Rodrigo. 2003. Weibull distribution function based on an empirical mathematical model for inactivation of Escherichia coli by pulsed electric fields. J. Food Prot. 66:10071012.
100. Ross, T., and, J. Sumner. 2002. A simple, spreadsheet-based, food safety risk assessment tool. Int. J. Food Microbiol. 77:3953.
101. Serra, J. A.,, E. Domenech,, I. Escriche, and, S. Martorell. 1999. Risk assessment and critical control points from the production perspective. Int. J. Food Microbiol. 46:926.
102. Stecchini, M. L.,, M. Del Torre, and, E. Venir. 2004. Growth of Listeria monocytogenes as influenced by viscosity and water activity. Int. J. Food Microbiol. 96:181187.
103. Stewart, C. M.,, M. B. Cole,, J. D. Legan,, L. Slade,, M. H. Vandeven, and, D. W. Schaffner. 2001. Modeling the growth boundary of Staphylococcus aureus for risk assessment purposes. J. Food Prot. 64:5157.
104. Strachan, N. J. C.,, M. P. Doyle,, F. Kasuga,, O. Rotariu, and, I. D. Ogden. 2005. Dose response modeling of Escherichia coli O157 incorporating data from foodborne and environmental outbreaks. Int. J. Food Microbiol. 103:3547.
105. Stringer, M. 2005. Food safety objectives—role in microbiological food safety management. Food Control 16:775794.
106. Sumner, J., and, T. Ross. 2002. A semi-quantitative seafood safety risk assessment. Int. J. Food Microbiol. 77:5559.
107. Swinnen, I. A. M.,, K. Bernaerts,, E. J. J. Dens,, A. H. Geeraerd, and, J. F. van Impe. 2004. Predictive modelling of the microbial lag phase: a review. Int. J. Food Microbiol. 94:137159.
108. Swinnen, I. A. M.,, K. Bernaerts,, K. Gysemans, and, J. F. van Impe. 2005. Quantifying microbial lag phenomena due to a sudden rise in temperature: asystematic macroscopic study. Int. J. Food Microbiol. 100:8596.
109. Tamplin, M. L. 2005. Modeling pathogen behavior in foods, p. 113120. In P. M. Fratamico,, A. K. Bhunia, and, J. L. Smith (ed.), Foodborne Pathogens: Microbiology and Molecular Biology. Academic Press, Wymondham, United Kingdom.
110. Teunis, P. F. M., and, A. H. Havelaar. 2002. Risk assessment for protozoan parasites. Int. Biodeterior. Biodegradation 50:185193.
111. Tienungoon, S.,, D. A. Ratkowsky,, T. A. McMeekin, and, T. Ross. 2000. Growth limits of Listeria monocytogenes as a function of temperature, pH, NaCl, and lactic acid. Appl. Environ. Microbiol. 66:49794987.
112. Valdramidis, V. P.,, N. Belaubre,, R. Zuniga,, A. M. Foster,, M. Havet,, A. H. Geeraerd,, M. J. Swain,, K. Bernaerts,, J. F. van Impe, and, A. Kondjoyan. 2005. Development of predictive modeling approaches for surface temperature and associated microbiological inactivation during hot dry air decontamination. Int. J. Food Microbiol. 100:261274.
113. Valdramidis, V. P.,, A. H. Geeraerd,, K. Bernaerts,, F. Devlieghere,, J. Debevere, and, J. F. van Impe. 2004. Bulletin of the IDF, no. 392. Accurate Modeling of Non-Loglinear Survival Curves, p. 97110. International Dairy Federation, Brussels, Belgium.
114. Van der Fels-Klerx, H. J.,, R. M. Cooke,, M. N. Nauta,, L. H. Goossens, and, A. H. Havelaar. 2005. A structured expert judgment study for a model of Campylobacter transmission during broiler-chicken processing. Risk Anal. 25:109124.
115. van Gerwen, S. J. C.,, M. C. te Giffel,, K. van’t Riet,, R. R. Beumer, and, M. H. Zwietering. 2000. Stepwise quantitative risk assessment as a tool for characterization of microbiological food safety. J. Appl. Microbiol. 88:938951.
116. van Impe, J. F.,, F. Poschet,, A. H. Geeraerd, and, K. M. Vereecken. 2005. Towards a novel class of predictive microbial growth models. Int. J. Food Microbiol. 100:97105.
117. van Schothorst, M. 2005. A proposed framework for the use of FSOs. Food Control 16:811816.
118. Vialette, M.,, A. Pinon,, E. Chasseignaux, and, M. Lange. 2003. Growth kinetics comparison of clinical and seafood Listeria monocytogenes isolates in acid and osmotic environment. Int. J. Food Microbiol. 82:121131.
119. Vose, D. 2000. Risk Analysis, 2nd ed. Wiley & Sons, New York, N.Y.
120. Voysey, P. A., and, M. Brown. 2000. Microbiological risk assessment: a new approach to food safety control. Int. J. Food Microbiol. 58:173179.
121. Walls, I., and, R. L. Buchanan. 2005. Use of food safety objectives as a tool for reducing foodborne listeriosis. Food Control 16:795799.
122. Whiting, R. C., and, L. K. Bagi. 2002. Modeling the lag phase of Listeria monocytogenes. Int. J. Food Microbiol. 73:291295.
123. Whiting, R. C., and, R. L. Buchanan. 2001. Predictive modeling and risk assessment, p. 813831. In M. P. Doyle,, L. R. Beuchat, and, T. J. Montville (ed.), Food Microbiology: Fundamentals and Frontiers, 2nd ed. ASM Press, Washington, D.C.
124. Whiting, R. C., and, M. H. Golden. 2002. Variation among Escherichia coli O157:H7 strains relative to their growth, survival, thermal inactivation, and toxin production in broth. Int. J. Food Microbiol. 75:127133.
125. Whiting, R. C.,, A. Hogue,, W. D. Schlosser,, E. D. Ebel,, R. Morales,, A. Baker, and, R. McDowell. 2000. A risk assessment for Salmonella Enteritidis in shell eggs. J. Food Sci. 65:864869.
126. Williams, R. A., and, K. M. Thompson. 2004. Integrated analysis: combining risk and economic assessments while preserving the separation of powers. Risk Anal. 24:16131623.
127. Williams, T. L.,, S. R. Monday,, S. Edelson-Mammel,, R. L. Buchanan, and, S. M. Musser. 2005. A top-down proteomics approach for differentiating thermal resistant strains of Enterobacter sakazakii. Proteomics 5:41614169.
128. Wilson, P. D. G.,, T. F. Brocklehurst,, S. Arino,, D. Thuault,, M. Jakobsen,, M. Lange,, J. Farkas,, J. W. T. Wimpenny, and, J. F. van Impe. 2002. Modelling microbial growth in structured foods: towards a unified approach. Int. J. Food Microbiol. 73:275289.
129. Zwietering, M. H., and, S. J. C. van Gerwen. 2000. Sensitivity analysis in quantitative microbial risk assessment. Int. J. Food Microbiol. 58:213221.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error