Chapter 1 : and Other spp.

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

and Other spp., Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815936/9781555814595_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555815936/9781555814595_Chap01-2.gif


spp. are gram-positive, endospore-forming facultatively anaerobic bacteria. The resistance of their spores to adverse conditions has resulted in widespread distribution of the organism. The bacteria of the genus are usually free living, that is, not host adapted, and their spores are widely distributed throughout nature. The spores of are ellipsoidal and central to subterminal and do not distend the sporangia. Early in the growth cycle vegetative cells are gram positive, but cells may become gram variable when in late log or stationary phase. Colonies on agar media have a dull or frosted appearance. Two distinct types of illness have been attributed to the consumption of foods contaminated with : the diarrheal syndrome and the emetic syndrome. As well as causing enteric illness, has been responsible for postoperative infections, especially in immunocompromised patients. Early experiments relying on monkey feeding trials identified the cause of the emetic syndrome as a toxin because cell-free supernatants produced the same symptoms as cell cultures. Germination of spores requires the presence of purine ribosides and glycine or a neutral l-amino acid. Fourier transform infrared spectroscopy can provide a way to differentiate bacterial genera and species through unique Fourier transform infrared vibrational combination bands produced from active components of bacterial cells. Control against food poisoning should be directed at preventing germination of spores and minimizing growth of vegetative cells.

Citation: Griffiths M. 2010. and Other spp., p 1-19. In Juneja V, Sofos J (ed), Pathogens and Toxins in Foods. ASM Press, Washington, DC. doi: 10.1128/9781555815936.ch1

Key Concept Ranking

Fourier Transform Infrared Spectroscopy
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Agata, N.,, M. Mori,, M. Ohta,, S. Suwan,, I. Ohtani, and, M. Isobe. 1994. A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in Hep-2 cells. FEMS Microbiol. Lett. 121:3134.
2. Agata, N.,, M. Ohta,, Y. Arakawa, and, M. Mori. 1995. The bceT gene of Bacillus cereus encodes an enterotoxic protein. Microbiology 141:983988.
3. Agata, N.,, M. Ohta, and, K. Yokoyama. 2002. Production of Bacillus cereus emetic toxin (cereulide) in various foods. Int. J. Food Microbiol. 73:2327.
4. Ahmed, R.,, P. Sankarmistry,, S. Jackson,, H. W. Ackermann, and, S. S. Kasatiya. 1995. Bacillus cereus phage typing as an epidemiologic tool in outbreaks of food poisoning. J. Clin. Microbiol. 33:636640.
5. Al-Holy, M. A.,, M. Lin,, A. G. Cavinato, and, B. A. Rasco. 2006. The use of Fourier transform infrared spectroscopy to differentiate Escherichia coli 0157:H7 from other bacteria inoculated into apple juice. Food Microbiol. 23:162168.
6. Altayar, M.,, and A. D. Sutherland. 2006. Bacillus cereus is common in the environment but emetic toxin producing isolates are rare. J. Appl. Microbiol. 100:714.
7. Andersson, A.,, P. E. Granum, and, U. Ronner. 1998a. The adhesion of Bacillus cereus spores to epithelial cells might be an additional virulence mechanism. Int. J. Food Microbiol. 39:9399.
8. Andersson, A.,, U. Ronner, and, P. E. Granum. 1995. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int. J. Food Microbiol. 28:145155.
9. Andersson, A.,, B. Svensson,, A. Christiansson, and, U. Ronner. 1999. Comparison between automatic ribotyping and random amplified polymorphic DNA analysis of Bacillus cereus isolates from the dairy industry. Int. J. Food Microbiol. 47:147151.
10. Andersson, M. A.,, R. Mikkola,, J. Helin,, M. C. Andersson, and, M. Salkinoja-Salonen. 1998b. A novel sensitive bioassay for detection of Bacillus cereus emetic toxin and related depsipeptide ionophores. Appl. Environ. Microbiol. 64:13381343.
11. Andersson, M. A.,, P. Hakulinen,, U. Honkalampi-Hamalainen,, D. Hoornstra,, J. C. Lhuguenot,, J. Maki-Paakkanen,, M. Savolainen,, I. Severin,, A. L. Stammati,, L. Turco,, A. Weber,, A. von Wright,, F. Zucco, and, M. Salkinoja-Salonen. 2007. Toxicological profile of cereulide, the Bacillus cereus emetic toxin, in functional assays with human, animal and bacterial cells. Toxicon 49:351367.
12. Andersson, M. A.,, E. L. Jaaskelainen,, R. Shaheen,, T. Pirhonen,, L. M. Wijnands, and, M. S. Salkinoja-Salonen. 2004. Sperm bioassay for rapid detection of cereulide-producing Bacillus cereus in food and related environments. Int. J. Food Microbiol. 94:175183.
13. Anonymous. 3 March 2008, access date. Outbreak surveillance data. Centers for Disease Control and Prevention, Washington, DC. http://www.cdc.gov/foodborneoutbreaks/outbreak.data.htm.
14. Arnesen, L. P. S.,, K. O’Sullivan, and, P. E. Granum. 2007. Food poisoning potential of Bacillus cereus strains from Norwegian dairies. Int. J. Food Microbiol. 116:292296.
15. Asano, S. I.,, Y. Nukumizu,, H. Bando,, T. Iizuka, and, T. Yamamoto. 1997. Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 63:10541057.
16. Baker, J. M.,, and M. W. Griffiths. 1995. Evidence for increased thermostability of Bacillus cereus enterotoxin in milk. J. Food Prot. 58:443445.
17. Baker, J. M.,, and M. W. Griffiths. 1993. Predictive modeling of psychrotrophic Bacillus cereus. J. Food Prot. 56:684688.
18. Banerjee, M.,, and P. K. Sarkar. 2004. Growth and enterotoxin production by sporeforming bacterial pathogens from spices. Food Control 15:491496.
19. Banerjee, P.,, D. Lenz,, J. P. Robinson,, J. L. Rickus, and, A. K. Bhunia. 2008. A novel and simple cell-based detection system with a collagen-encapsulated B-lymphocyte cell line as a biosensor for rapid detection of pathogens and toxins. Lab. Invest. 88:196206.
20. Baron, F.,, M. F. Cochet,, N. Grosset,, M. N. Madec,, R. Briandet,, S. Dessaigne,, S. Chevalier,, M. Gautier, and, S. Jan. 2007. Isolation and characterization of a psychrotolerant toxin producer, Bacillus weihenstephanensis, in liquid egg products. J. Food Prot. 70:27822791.
21. Beattie, S. H.,, and A. G. Williams. 2002. Growth and diarrhoeagenic enterotoxin formation by strains of Bacillus cereus in vitro in controlled fermentations and in situ in food products and a model food system. Food Microbiol. 19:329340.
22. Becker, H.,, G. Schaller,, W. von Wiese, and, G. Terplan. 1994. Bacillus cereus in infant foods and dried milk products. Int. J. Food Microbiol. 23:115.
23. Beecher, D. J.,, and J. D. Macmillan. 1990. A novel bicomponent hemolysin from Bacillus cereus. Infect. Immun. 58:22202227.
24. Beecher, D. J.,, J. S. Pulido,, N. P. Barney, and, A. C. L. Wong. 1995. Extracellular virulence factors in Bacillus cereus endophthalmitis: methods and implication of involvement of hemolysin BL. Infect. Immun. 63:632639.
25. Beecher, D. J.,, and A. C. L. Wong. 1994. Improved purification and characterization of hemolysin BL, a hemolytic dermonecrotic vascular permeability factor from Bacillus cereus. Infect. Immun. 62:980986.
26. Beecher, D. J.,, and A. C. L. Wong. 2000. Tripartite haemolysin BL: isolation and characterization of two distinct homologous sets of components from a single Bacillus cereus isolate. Microbiology 146:13711380.
27. Beecher, D. J.,, and A. C. L. Wong. 1997. Tripartite hemolysin BL from Bacillus cereus. Hemolytic analysis of component interaction and model for its characteristic paradoxical zone phenomenon. J. Biol. Chem. 272:233239.
28. Bhatnagar, R.,, and S. Batra. 2001. Anthrax toxin. Crit. Rev. Microbiol. 27:167200.
29. Black, E. P.,, P. Setlow,, A. D. Hocking,, C. M. Stewart,, A. L. Kelly, and, D. G. Hoover. 2007. Response of spores to high-pressure processing. Compr. Rev. Food Sci. Food Saf. 6:103119.
30. Brillard, J.,, and D. Lereclus. 2004. Comparison of cytotoxin cytK promoters from Bacillus cereus strain ATCC 14579 and from a B. cereus food-poisoning strain. Microbiology 150:26992705.
31. Browne, N.,, and B. C. A. Dowds. 2002. Acid stress in the food pathogen Bacillus cereus. J. Appl. Microbiol. 92:404414.
32. Browne, N.,, and B. C. A. Dowds. 2001. Heat and salt stress in the food pathogen Bacillus cereus. J. Appl. Microbiol. 91:10851094.
33. Byrne, B.,, G. Dunne, and, D. J. Bolton. 2006. Thermal inactivation of Bacillus cereus and Clostridium perfringens vegetative cells and spores in pork luncheon roll. Food Microbiol. 23:803808.
34. Campbell, G. A.,, and R. Mutharasan. 2007. Method of measuring Bacillus anthracis spores in the presence of copious amounts of Bacillus thuringiensis and Bacillus cereus. Anal. Chem. 79:11451152.
35. Cardazzo, B.,, E. Negrisolo,, L. Carraro,, L. Alberghini,, T. Patarnello, and, V. Giaccone. 2008. Multiple-locus sequence typing and analysis of toxin genes in Bacillus cereus food-borne isolates. Appl. Environ. Microbiol. 74:850860.
36. Carlin, F.,, M. Fricker,, A. Pielaat,, S. Heisterkamp,, R. Shaheen,, M. S. Salonen,, B. Svensson,, C. Nguyen-The, and, M. Ehling-Schulz. 2006. Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group. Int. J. Food Microbiol. 109:132138.
37. Chang, J. M.,, and T. H. Chen. 2003. Bacterial foodborne outbreaks in central Taiwan, 1991–2000. J. Food Drug Anal. 11:5359.
38. Charni, N.,, C. Perissol,, J. Le Petit, and, N. Rugani. 2000. Production and characterization of monoclonal antibodies against vegetative cells of Bacillus cereus. Appl. Environ. Microbiol. 66:22782281.
39. Choma, C.,, and P. E. Granum. 2002. The enterotoxin T (BcET) from Bacillus cereus can probably not contribute to food poisoning. FEMS Microbiol. Lett. 217:115119.
40. Christiansson, A.,, K. Ekelund, and, H. Ogura. 1997. Membrane filtration method for enumeration and isolation of spores of Bacillus cereus from milk. Int. Dairy J. 7:743748.
41. Christiansson, A.,, A. S. Naidu,, I. Nilsson,, T. Wadstrom, and, H. E. Pettersson. 1989. Toxin production by Bacillus cereus dairy isolates in milk at low temperatures. Appl. Environ. Microbiol. 55:25952600.
42. Clavel, T.,, F. Carlin,, C. Dargaignaratz,, D. Lairon,, C. Nguyen-The, and, P. Schmitt. 2007. Effects of porcine bile on survival of Bacillus cereus vegetative cells and haemolysin BL enterotoxin production in reconstituted human small intestine media. J. Appl. Microbiol. 103:15681575.
43. Clavel, T.,, F. Carlin,, D. Lairon,, C. Nguyen-The, and, P. Schmitt. 2004. Survival of Bacillus cereus spores and vegetative cells in acid media simulating human stomach. J. Appl. Microbiol. 97:214219.
44. Collado, J.,, A. Fernandez,, L. M. Cunha,, M. J. Ocio, and, A. Martinez. 2003. Improved model based on the Weibull distribution to describe the combined effect of pH and temperature on the heat resistance of Bacillus cereus in carrot juice. J. Food Prot. 66:978984.
45. Collado, J.,, A. Fernandez,, M. Rodrigo, and, A. Martinez. 2006. Modelling the effect of a heat shock and germinant concentration on spore germination of a wild strain of Bacillus cereus. Int. J. Food Microbiol. 106:8589.
46. Cooper, R. M.,, and J. L. McKillip. 2006. Enterotoxigenic Bacillus spp. DNA fingerprint revealed in naturally contaminated nonfat dry milk powder using rep-PCR. J. Basic Microbiol. 46:358364.
47. Cortezzo, D. E.,, B. Setlow, and, P. Setlow. 2004. Analysis of the action of compounds that inhibit the germination of spores of Bacillus species. J. Appl. Microbiol. 96:725741.
48. Cronin, U. P.,, and M. G. Wilkinson. 2008. Bacillus cereus endospores exhibit a heterogeneous response to heat treatment and low-temperature storage. Food Microbiol. 25:235243.
49. Cruz, J.,, and T. J. Montville. 2008. Influence of nisin on the resistance of Bacillus anthracis sterne spores to heat and hydrostatic pressure. J. Food Prot. 71:196199.
50. Damgaard, P. H.,, C. S. Jacobsen, and, J. Sorensen. 1996a. Development and application of a primer set for specific detection of Bacillus thuringiensis and Bacillus cereus in soil using magnetic capture hybridization and PCR amplification. Syst. Appl. Microbiol. 19:436441.
51. Damgaard, P. H.,, H. D. Larsen,, B. W. Hansen,, J. Bresciani, and, K. Jorgensen. 1996b. Enterotoxin-producing strains of Bacillus thuringiensis isolated from food. Lett. Appl. Microbiol. 23:146150.
52. Day, T. L.,, S. R. Tatani,, S. Notermans, and, R. W. Bennett. 1994. A comparison of ELISA and RPLA for detection of Bacillus cereus diarrhoeal enterotoxin. J. Appl. Bacteriol. 77:913.
53. De Lara, J.,, P. S. Fernandez,, P. M. Periago, and, A. Palop. 2002. Irradiation of spores of Bacillus cereus and Bacillus subtilis with electron beams. Innovat. Food Sci. Emerg. Techn. 3:379384.
54. Del Torre, M.,, M. Della Corte, and, M. L. Stecchini. 2001. Prevalence and behaviour of Bacillus cereus in a REPFED of Italian origin. Int. J. Food Microbiol. 63:199207.
55. Devasconcellos, F. J. M.,, and L. Rabinovitch. 1995. A new formula for an alternative culture-medium, without antibiotics, for isolation and presumptive quantification of Bacillus cereus in foods. J. Food Prot. 58:235238.
56. Dierick, K.,, E. Van Coillie,, I. Swiecicka,, G. Meyfroidt,, H. Devlieger,, A. Meulemans,, G. Hoedemaekers,, L. Fourie,, M. Heyndrickx, and, J. Mahillon. 2005. Fatal family outbreak of Bacillus cereus-associated food poisoning. J. Clin. Microbiol. 43:42774279.
57. Dietrich, R.,, C. Fella,, S. Strich, and, E. Martlbauer. 1999. Production and characterization of monoclonal antibodies against the hemolysin BL enterotoxin complex produced by Bacillus cereus. Appl. Environ. Microbiol. 65:44704474.
58. Dietrich, R.,, M. Moravek,, C. Burk,, P. E. Granum, and, E. Martlbauer. 2005. Production and characterization of antibodies against each of the three subunits of the Bacillus cereus nonhemolytic enterotoxin complex. Appl. Environ. Microbiol. 71:82148220.
59. Drobniewski, F. A. 1993. Bacillus cereus and related species. Clin. Microbiol. Rev. 6:324338.
60. Duc, L. H.,, T. C. Dong,, N. A. Logan,, A. D. Sutherland,, J. Taylor, and, S. M. Cutting. 2005. Cases of emesis associated with bacterial contamination of an infant breakfast cereal product. Int. J. Food Microbiol. 102:245251.
61. Dufrenne, J.,, M. Bijwaard,, M. Tegiffel,, R. Beumer, and, S. Notermans. 1995. Characteristics of some psychrotrophic Bacillus cereus isolates. Int. J. Food Microbiol. 27:175183.
62. Dufrenne, J.,, P. Soentoro,, S. Tatini,, T. Day, and, S. Notermans. 1994. Characteristics of Bacillus cereus related to safe food production. Int. J. Food Microbiol. 23:99109.
63. Duport, C.,, A. Zigha,, E. Rosenfeld, and, P. Schmitt. 2006. Control of enterotoxin gene expression in Bacillus cereus F4430/73 involves the redox-sensitive ResDE signal transduction system. J. Bacteriol. 188:66406651.
64. Durak, M. Z.,, H. I. Fromm,, J. R. Huck,, R. N. Zadoks, and, K. J. Boor. 2006. Development of molecular typing methods for Bacillus spp. and Paenibacillus spp. isolated from fluid milk products. J. Food Sci. 71:M50M56.
65. Ehling-Schulz, M.,, M. Fricker,, H. Grallert,, P. Rieck,, M. Wagner, and, S. Scherer. 2006. Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol. 6:20.
66. Ehling-Schulz, M.,, B. Svensson,, M. H. Guinebretiere,, T. Lindback,, M. Andersson,, A. Schulz,, M. Fricker,, A. Christiansson,, P. E. Granum,, E. Martlbauer,, C. Nguyen-The,, M. Salkinoja-Salonen, and, S. Scherer. 2005a. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 151:183197.
67. Ehling-Schulz, M.,, N. Vukov,, A. Schulz,, R. Shaheen,, M. Andersson,, E. Martlbauer, and, S. Scherer. 2005b. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71:105113.
68. Eneroth, A.,, B. Svensson,, G. Molin, and, A. Christiansson. 2001. Contamination of pasteurized milk by Bacillus cereus in the filling machine. J. Dairy Res. 68:189196.
69. Erickson, M. C.,, and J. L. Kornacki. 2003. Bacillus anthracis: current knowledge in relation to contamination of food. J. Food Prot. 66:691699.
70. Ernst, C.,, J. Schulenburg,, P. Jakob,, S. Dahms,, A. M. Lopez,, G. Nychas,, D. Werber, and, G. Klein. 2006. Efficacy of amphoteric surfactant- and peracetic acid-based disinfectants on spores of Bacillus cereus in vitro and on food premises of the German armed forces. J. Food Prot. 69:16051610.
71. Evans, J. A.,, S. L. Russell,, C. James, and, J. E. L. Corry. 2004. Microbial contamination of food refrigeration equipment. J. Food Eng. 62:225232.
72. Fagerlund, A.,, T. Lindback,, A. K. Storset,, P. E. Granum, and, S. P. Hardy. 2008. Bacillus cereus Nhe is a pore-forming toxin with structural and functional properties similar to the ClyA (HlyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia. Microbiology 154:693704.
73. Fagerlund, A.,, O. Ween,, T. Lund,, S. P. Hardy, and, P. E. Granum. 2004. Genetic and functional analysis of the cytK family of genes in Bacillus cereus. Microbiology 150:26892697.
74. Faille, C.,, F. Fontaine, and, T. Benezech. 2001. Potential occurrence of adhering living Bacillus spores in milk product processing lines. J. Appl. Microbiol. 90:892900.
75. Faille, C.,, C. Jullien,, F. Fontaine,, M. N. Bellon-Fontaine,, C. Slomianny, and, T. Benezech. 2002. Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity. Can. J. Microbiol. 48:728738.
76. Faille, C.,, J. M. Membre,, J. P. Tissier,, M. N. Bellon-Fontaine,, B. Carpentier,, M. A. Laroche, and, T. Benezech. 2000. Influence of physicochemical properties on the hygienic status of stainless steel with various finishes. Biofouling 15:261274.
77. Faille, C.,, G. Tauveron,, C. L. Gentil-Lelievre, and, C. Slomianny. 2007. Occurrence of Bacillus cereus spores with a damaged exosporium: consequences on the spore adhesion on surfaces of food processing lines. J. Food Prot. 70:23462353.
78. Fang, T. J.,, C. Y. Chen, and, W. Y. Kuo. 1999. Microbiological quality and incidence of Staphylococcus aureus and Bacillus cereus in vegetarian food products. Food Microbiol. 16:385391.
79. Feijoo, S. C.,, L. N. Cotton,, C. E. Watson, and, J. H. Martin. 1997a. Effect of storage temperatures and ingredients on growth of Bacillus cereus in coffee creamers. J. Dairy Sci. 80:15461553.
80. Feijoo, S. C.,, W. W. Hayes,, C. E. Watson, and, J. H. Martin. 1997b. Effects of Microfluidizer technology on Bacillus licheniformis spores in ice cream mix. J. Dairy Sci. 80:21842187.
81. Fermanian, C.,, C. Lapeyre,, J. M. Fremy, and, M. Claisse. 1997. Diarrhoeal toxin production at low temperature by selected strains of Bacillus cereus. J. Dairy Res. 64:551559.
82. Fernandez, A.,, J. Collado,, L. M. Cunha,, M. J. Ocio, and, A. Martinez. 2002. Empirical model building based on Weibull distribution to describe the joint effect of pH and temperature on the thermal resistance of Bacillus cereus in vegetable substrate. Int. J. Food Microbiol. 77:147153.
83. Fernandez, A.,, M. J. Ocio,, P. S. Fernandez,, M. Rodrigo, and, A. Martinez. 1999. Application of nonlinear regression analysis to the estimation of kinetic parameters for two enterotoxigenic strains of Bacillus cereus spores. Food Microbiol. 16:607613.
84. Finlay, W. J. J.,, N. A. Logan, and, A. D. Sutherland. 1997. Semiautomated metabolic staining assay for Bacillus cereus emetic toxin. Appl. Environ. Microbiol. 65:18111812.
85. Fletcher, P.,, and N. A. Logan. 1999. Improved cytotoxicity assay for Bacillus cereus diarrhoeal enterotoxin. Lett. Appl. Microbiol. 28:394400.
86. Foegeding, P. M.,, and E. D. Berry. 1997. Cold temperature growth of clinical and food isolates of Bacillus cereus. J. Food Prot. 60:12561258.
87. Francis, K. P.,, R. Mayr,, F. von Stetten,, G. S. A. B. Stewart, and, S. Scherer. 1998. Discrimination of psychrotrophic and mesophilic strains of the Bacillus cereus group by PCR targeting of major cold shock protein genes. Appl. Environ. Microbiol. 64:35253529.
88. Frederiksen, K.,, H. Rosenquist,, K. Jorgensen, and, A. Wilcks. 2006. Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis-based insecticides on fresh fruits and vegetables. Appl. Environ. Microbiol. 72:34353440.
89. Fricker, M.,, U. Messelhausser,, U. Busch,, S. Scherer, and, M. Ehling-Schulz. 2007. Diagnostic real-time PCR assays for the detection of emetic Bacillus cereus strains in foods and recent food-borne outbreaks. Appl. Environ. Microbiol. 73:18921898.
90. Fricker, M.,, R. Reissbrodt, and, M. Ehling-Schulz. 2008. Evaluation of standard and new chromogenic selective plating media for isolation and identification of Bacillus cereus. Int. J. Food Microbiol. 121:2734.
91. Fritze, D. 2004. Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology 94:12451248.
92. From, C.,, V. Hormazabal, and, P. E. Granum. 2007a. Food poisoning associated with pumilacidin-producing Bacillus pumilus in rice. Int. J. Food Microbiol. 115:319324.
93. From, C.,, V. Hormazabal,, S. P. Hardy, and, P. E. Granum. 2007b. Cytotoxicity in Bacillus mojavensis is abolished following loss of surfactin synthesis: implications for assessment of toxicity and food poisoning potential. Int. J. Food Microbiol. 117:4349.
94. From, C.,, R. Pukall,, P. Schumann,, V. Hormazabal, and, P. E. Granum. 2005. Toxin-producing ability among Bacillus spp. outside the Bacillus cereus group. Appl. Environ. Microbiol. 71:11781183.
95. Gaillard, S.,, I. Leguerinel,, N. Savy, and, P. Mafart. 2005. Quantifying the combined effects of the heating time, the temperature and the recovery medium pH on the regrowth lag time of Bacillus cereus spores after a heat treatment. Int. J. Food Microbiol. 105:5358.
96. Garcia-Arribas, M. L.,, and J. M. Kramer. 1990. The effect of glucose, starch, and pH on growth, enterotoxin and haemolysin production by strains of Bacillus cereus associated with food poisoning and non-gastrointestinal infection. Int. J. Food Microbiol. 11:2133.
97. Gaviria Rivera, A. M.,, P. E. Granum, and, F. G. Priest. 2000. Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis. FEMS Microbiol. Lett. 190:151155.
98. Girisch, M.,, M. Ries,, M. Zenker,, R. Carbon,, R. Rauch, and, M. Hofbeck. 2003. Intestinal perforations in a premature infant caused by Bacillus cereus. Infection 31:192193.
99. Glatz, B. A.,, and J. M. Goepfert. 1976. Defined conditions for synthesis of Bacillus cereus enterotoxin by fermenter-grown cultures. Appl. Environ. Microbiol. 32:400404.
100. Goepfert, J. M.,, W. M. Spira, and, H. U. Kim. 1972. Bacillus cereus: food poisoning organism. A review. J. Milk Food Technol. 35:213227.
101. Gore, H. M.,, C. A. Wakeman,, R. M. Hull, and, J. L. McKillip. 2003. Real-time molecular beacon NASBA reveals hblC expression from Bacillus spp. in milk. Biochem. Biophys. Res. Comm. 311:386390.
102. Granum, P. E. 1997. Bacillus cereus, p. 327–336. In M. P. Doyle,, L. R. Beuchat,, and T. J. Montville (ed.), Food Microbiology Fundamentals and Frontiers, 1st ed. ASM Press, Washington, DC.
103. Granum, P. E.,, A. Andersson,, C. Gayther,, M. T. Giffel,, H. Larsen,, T. Lund, and, K. O’Sullivan. 1996. Evidence for a further enterotoxin complex produced by Bacillus cereus. FEMS Microbiol. Lett. 141:145149.
104. Granum, P. E.,, S. Brynestad,, K. O’Sullivan, and, H. Nissen. 1993. Enterotoxin from Bacillus cereus - Production and biochemical characterization. Neth. Milk Dairy J. 47:6370.
105. Granum, P. E.,, and T. Lund. 1997. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 157:223228.
106. Granum, P. E.,, K. O’Sullivan, and, T. Lund. 1999. The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol. Lett. 177:225229.
107. Griffiths, M. W. 1990. Toxin production by psychrotrophic Bacillus spp. present in milk. J. Food Prot. 53:790792.
108. Griffiths, M. W.,, and J. D. Phillips. 1990a. Incidence, source and some properties of psychrotrophic Bacillus spp. found in raw and pasteurized milk. J. Soc. Dairy Technol. 43:6266.
109. Griffiths, M. W.,, and J. D. Phillips. 1990b. Strategies to control the outgrowth of spores of psychrotrophic Bacillus in dairy products. II. Use of heat-treatments. Milchwiss. Milk Sci. Int. 45:719721.
110. Griffiths, M. W.,, and H. Schraft. 2002. Bacillus cereus food poisoning, p. 261–270. In D. Cliver (ed.), Foodborne Diseases, 2nd ed. Elsevier Science Ltd., London, England.
111. Guinebretiere, M. H.,, V. Broussolle, and, C. Nguyen-The. 2002. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 40:30533056.
112. Guinebretiere, M. H.,, A. Fagerlund,, P. E. Granum, and, C. Nguyen-The. 2006. Rapid discrimination of cytK-1 and cytK-2 genes in Bacillus cereus strains by a novel duplex PCR system. FEMS Microbiol. Lett. 259:7480.
113. Guinebretiere, M. H.,, H. Girardin,, C. Dargaignaratz,, F. Carlin, and, C. Nguyen-The. 2003. Contamination flows of Bacillus cereus and spore-forming aerobic bacteria in a cooked, pasteurized and chilled zucchini puree processing line. Int. J. Food Microbiol. 82:223232.
114. Haggblom, M. M.,, C. Apetroaie,, M. A. Andersson, and, M. S. Salkinoja-Salonen. 2002. Quantitative analysis of cereulide, the emetic toxin of Bacillus cereus, produced under various conditions. Appl. Environ. Microbiol. 68:24792483.
115. Hansen, B. M.,, P. E. Hoiby,, G. B. Jensen, and, N. B. Hendriksen. 2003. The Bacillus cereus bceT enterotoxin sequence reappraised. FEMS Microbiol. Lett. 223:2124.
116. Hansen, B. M.,, T. D. Leser, and, N. B. Hendriksen. 2001. Polymerase chain reaction assay for the detection of Bacillus cereus group cells. FEMS Microbiol. Lett. 202:209213.
117. Hanson, M. L.,, W. L. Wendorff, and, K. B. Houck. 2005. Effect of heat treatment of milk on activation of Bacillus spores. J. Food Prot. 68:14841486.
118. Hardy, S. P.,, T. Lund, and, P. E. Granum. 2001. CytK toxin of Bacillus cereus forms pores in planar lipid bilayers and is cytotoxic to intestinal epithelia. FEMS Microbiol. Lett. 197:4751.
119. Hatakka, M. 1998a. Microbiological quality of cold meals served by airlines. J. Food Saf. 18:185195.
120. Hatakka, M. 1998b. Microbiological quality of hot meals served by airlines. J. Food Prot. 61:10521056.
121. Hauge, S. 1955. Food poisoning caused by aerobic spore forming bacilli. J. Appl. Bacteriol. 18:591595.
122. Heinrichs, J. H.,, D. J. Beecher,, J. D. Macmillan, and, B. A. Zilinskas. 1993. Molecular-cloning and characterization of the hbla gene encoding the B component of hemolysin BL from Bacillus cereus. J. Bacteriol. 175:67606766.
123. Helgason, E.,, O. A. Okstad,, D. A. Caugant,, H. A. Johansen,, A. Fouet,, M. Mock,, I. Hegna, and, A. B. Kolsto. 2000. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66:26272630.
124. Helgason, E.,, N. J. Tourasse,, R. Meisal,, D. A. Caugant, and, A. B. Kolsto. 2004. Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl. Environ. Microbiol. 70:191201.
125. Helyer, R. J.,, T. Kelley, and, R. C. W. Berkeley. 1997. Pyrolysis mass spectrometry studies on Bacillus anthracis, Bacillus cereus and their close relatives. Zentralb. Bakteriol. 285:319328.
126. Hendriksen, N. B.,, and B. M. Hansen. 2006. Detection of Bacillus thuringiensis kurstaki HD1 on cabbage for human consumption. FEMS Microbiol. Lett. 257:106111.
127. Hill, K. K.,, L. O. Ticknor,, R. T. Okinaka,, M. Asay,, H. Blair,, K. A. Bliss,, M. Laker,, P. E. Pardington,, A. P. Richardson,, M. Tonks,, D. J. Beecher,, J. D. Kemp,, A. B. Kolsto,, A. C. L. Wong,, P. Keim, and, P. J. Jackson. 2004. Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 70:10681080.
128. Hillers, V. N.,, L. Medeiros,, P. Kendall,, G. Chen, and, S. DiMascola. 2003. Consumer food-handling behaviors associated with prevention of 13 foodborne illnesses. J. Food Prot. 66:18931899.
129. Honda, T.,, A. Shiba,, S. Seo,, J. Yamamoto,, J. Matsuyama, and, T. Miwatani. 1991. Identity of hemolysins produced by Bacillus thuringiensis and Bacillus cereus. FEMS Microbiol. Lett. 79:205210.
130. Hoornstra, D.,, O. Dahlman,, E. Jaaeskelainen,, M. A. Andersson,, A. Weber,, B. Aurela,, H. Lindell, and, M. S. Salkinoja-Salonen. 2006. Retention of Bacillus cereus and its toxin, cereulide, in cellulosic fibres. Holzforschung 60:648652.
131. Hornstra, L. M.,, Y. P. de Vries,, W. M. de Vos,, T. Abee, and, M. H. Wells-Bennik. 2005. gerR, a novel ger operon involved in l-alanine- and inosine-initiated germination of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 71:774781.
132. Hsieh, Y. M.,, S. J. Sheu,, Y. L. Chen, and, H. Y. Tsen. 1999. Enterotoxigenic profiles and polymerase chain reaction detection of Bacillus cereus group cells and B. cereus strains from foods and food-borne outbreaks. J. Appl. Microbiol. 87:481490.
133. Huck, J. R.,, N. H. Woodcock,, R. D. Ralyea, and, K. J. Boor. 2007. Molecular subtyping and characterization of psychrotolerant endospore-forming bacteria in two New York State fluid milk processing systems. J. Food Prot. 70:23542364.
134. Hughes, S.,, B. Bartholomew,, J. C. Hardy, and, J. M. Kramer. 1988. Potential application of a HEp-2 cell assay in the investigation of Bacillus cereus emetic syndrome food poisoning. FEMS Microbiol. Lett. 52:711.
135. Jaaskelainen, E. L.,, M. M. Haggblom,, M. A. Andersson, and, M. S. Salkinoja-Salonen. 2004. Atmospheric oxygen and other conditions affecting the production of cereulide by Bacillus cereus in food. Int. J. Food Microbiol. 96:7583.
136. Jaaskelainen, E. L.,, M. M. Haggblom,, M. A. Andersson,, L. Vanne, and, M. S. Salkinoja-Salonen. 2003. Potential of Bacillus cereus for producing an emetic toxin, cereulide, in bakery products: quantitative analysis by chemical and biological methods. J. Food Prot. 66:10471054.
137. Jackson, P. J.,, K. K. Hill,, M. T. Laker,, L. O. Ticknor, and, P. Keim. 1999. Genetic comparison of B. anthracis and its close relatives using AFLP and PCR analysis. J. Appl. Microbiol. 87:263269.
138. Kawamura-Sato, K.,, Y. Hirama,, N. Agata,, H. Ito,, K. Torii,, A. Takeno,, T. Hasegawa,, Y. Shimomura, and, M. Ohta. 2005. Quantitative analysis of cereulide, an emetic toxin of Bacillus cereus, by using rat liver mitochondria. Microbiol. Immunol. 49:2530.
139. Klavenes, A.,, T. Stalheim,, O. Sjovold,, K. Josefsen, and, P. E. Granum. 2002. Attachment of Bacillus cereus spores with and without appendages to stainless steel surfaces. Food Bioprod. Process. 80:312318.
140. Koo, K.,, P. M. Foegeding, and, H. E. Swaisgood. 1998a. Construction and expression of a bifunctional single-chain antibody against Bacillus cereus spores. Appl. Environ. Microbiol. 64:24902496.
141. Koo, K.,, P. M. Foegeding, and, H. E. Swaisgood. 1998b. Development of a streptavidin-conjugated single-chain antibody that binds Bacillus cereus spores. Appl. Environ. Microbiol. 64:24972502.
142. Kotiranta, A.,, K. Lounatmaa, and, M. Haapasalo. 2000. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2:189198.
143. Kramer, J. M.,, and R. J. Gilbert. 1989. Bacillus cereus and other Bacillus species, p. 21–70. In M. P. Doyle (ed.), Foodborne Bacterial Pathogens, Marcel Dekker, New York, NY.
144. Kretzer, J. W.,, R. Lehmann,, M. Schmelcher,, M. Banz,, K. P. Kim,, C. Korn, and, M. J. Loessner. 2007. Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Appl. Environ. Microbiol. 73:19922000.
145. Lasch, P.,, H. Nattermann,, M. Erhard,, M. Stammler,, R. Grunow,, N. Bannert,, B. Appel, and, D. Naumann. 2008. MALDI-TOF mass spectrometry compatible inactivation method for highly pathogenic microbial cells and spores. Anal. Chem. 80:20262034.
146. Lechner, S.,, R. Mayr,, K. P. Francis,, B. M. Pruss,, T. Kaplan,, E. Wiessner-Gunkel,, G. S. A. B. Stewart, and, S. Scherer. 1998. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst. Bacteriol. 48:13731382.
147. Lin, S. F.,, H. Schraft, and, M. W. Griffiths. 1998. Identification of Bacillus cereus by Fourier transform infrared spectroscopy (FTIR). J. Food Prot. 61:921923.
148. Lindback, T.,, A. Fagerlund,, M. S. Rodland, and, P. E. Granum. 2004. Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology 150:39593967.
149. Liu, Y. L.,, B. Elsholz,, S. O. Enfors, and, M. Gabig-Ciminska. 2007. Confirmative electric DNA array-based test for food poisoning Bacillus cereus. J. Microbiol. Methods 70:5564.
150. Love, T. E.,, C. Redmond, and, C. N. Mayers. 2008. Real time detection of anthrax spores using highly specific anti-EA1 recombinant antibodies produced by competitive panning. J. Immunol. Methods 334:110.
151. Lund, T.,, M. L. De Buyser, and, P. E. Granum. 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38:254261.
152. Lund, T.,, and P. E. Granum. 1996. Characterisation of a nonhaemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol. Lett. 141:151156.
153. Lund, T.,, and P. E. Granum. 1997. Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cereus. Microbiology 143:33293336.
154. Lund, T.,, and P. E. Granum. 1999. The 105-kDa protein component of Bacillus cereus non-haemolytic enterotoxin (Nhe) is a metalloprotease with gelatinolytic and collagenolytic activity. FEMS Microbiol. Lett. 178:355361.
155. Madegowda, M.,, S. Eswaramoorthy,, S. K. Burley, and, S. Swaminathan. 2008. X-ray crystal structure of the B component of hemolysin BL from Bacillus cereus. Proteins 71:534540.
156. Mahler, H.,, A. Pasi,, J. M. Kramer,, P. Schulte,, A. C. Scoging,, W. Bar, and, S. Krahenbuhl. 1997. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. New Engl. J. Med. 336:11421148.
157. Mantynen, V.,, and K. Lindstrom. 1998. A rapid PCR-based DNA test for enterotoxic Bacillus cereus. Appl. Environ. Microbiol. 64:16341639.
158. Margot, P.,, M. Whalen,, A. Gholamhuseinian,, P. Piggot, and, D. Karmata. 1998. The lytE gene of Bacillus subtilis 168 encodes a cell wall hydrolase. J. Bacteriol. 180:749752.
159. McGovern, J. P.,, W. Y. Shih,, R. Rest,, M. Purohit,, Y. Pandya, and, W. H. Shih. 2008. Label-free flow-enhanced specific detection of Bacillus anthracis using a piezoelectric microcantilever sensor. Analyst 133:649654.
160. Mead, P. S.,, L. Slutsker,, V. Dietz,, L. F. McCaig,, J. S. Bresee,, C. Shapiro,, P. M. Griffin, and, R. V. Tauxe. 1999. Food related illness and death in the United States. Emerg. Infect. Dis. 5:607625.
161. Meer, R. R.,, J. Baker,, F. W. Bodyfelt, and, M. W. Griffiths. 1991. Psychrotrophic Bacillus spp. in fluid milk products: a review. J. Food Prot. 54:969979.
162. Mikami, T.,, T. Horikawa,, T. Murakami,, T. Matsumoto,, A. Yamakawa,, S. Murayama,, S. Katagiri,, K. Shinagawa, and, M. Suzuki. 1994. An improved method for detecting cytostatic toxin (emetic toxin) of Bacillus cereus and its application to food samples. FEMS Microbiol. Lett. 119:5357.
163. Mikkola, R.,, N. E. L. Saris,, P. A. Grigoriev,, M. A. Andersson, and, M. S. Salkinoja-Salonen. 1999. Ionophoretic properties and mitochondrial effects of cereulide: the emetic toxin of Bacillus cereus. Eur. J. Biochem. 263:112117.
164. Ngamwongsatit, P.,, W. Buasri,, P. Pianariyanon,, C. Pulsrikarn,, M. Ohba,, A. Assavanig, and, W. Panbangred. 2008. Broad distribution of enterotoxin genes (hblCDA, nheABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Int. J. Food Microbiol. 121:352356.
165. Nilsson, J.,, B. Svensson,, K. Ekelund, and, A. Christiansson. 1998. A RAPD-PCR method for large-scale typing of Bacillus cereus. Lett. Appl. Microbiol. 27:168172.
166. Notermans, S.,, and C. A. Batt. 1998. A risk assessment approach for food-borne Bacillus cereus and its toxins. J. Appl. Microbiol. 84:51S61S.
167. Odumeru, J. A.,, M. Steele,, L. Fruhner,, C. Larkin,, J. D. Jiang,, E. Mann, and, W. B. McNab. 1999. Evaluation of accuracy and repeatability of identification of food-borne pathogens by automated bacterial identification systems. J. Clin. Microbiol. 37:944949.
168. Odumeru, J. A.,, A. K. Toner,, C. A. Muckle,, M. W. Griffiths, and, J. A. Lynch. 1997. Detection of Bacillus cereus diarrheal enterotoxin in raw and pasteurized milk. J. Food Prot. 60:13911393.
169. Okstad, O. A.,, M. Gominet,, B. Purnelle,, M. Rose,, D. Lereclus, and, A. B. Kolsto. 1999. Sequence analysis of three Bacillus cereus loci carrying PlcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology 145:31293138.
170. Ouhib, O.,, T. Clavel, and, P. Schmitt. 2006. The production of Bacillus cereus enterotoxins is influenced by carbohydrate and growth rate. Curr. Microbiol. 53:222226.
171. Paananen, A.,, R. Mikkola,, T. Sareneva,, S. Matikainen,, M. Hess,, M. Andersson,, I. Julkunen,, M. S. Salkinoja-Salonen, and, T. Timonen. 2002. Inhibition of human natural killer cell activity by cereulide, an emetic toxin from Bacillus cereus. Clin. Exp. Immunol. 129:420428.
172. Pedersen, P. B.,, M. E. Bjornvad,, M. D. Rasmussen, and, J. N. Petersen. 2002. Cytotoxic potential of industrial strains of Bacillus spp. Regul. Toxicol. Pharmacol. 36:155161.
173. Peng, J. S.,, W. C. Tsai, and, C. C. Chou. 2001. Surface characteristics of Bacillus cereus and its adhesion to stainless steel. Int. J. Food Microbiol. 65:105111.
174. Perani, M.,, A. H. Bishop, and, A. Vaid. 1998. Prevalence of beta-exotoxin, diarrhoeal toxin and specific delta-endotoxin in natural isolates of Bacillus thuringiensis. FEMS Microbiol. Lett. 160:5560.
175. Perkins, D. L.,, C. R. Lovell,, B. V. Bronk,, B. Setlow,, P. Setlow, and, M. L. Myrick. 2005. In (IMS 2005) Proceedings of the 2005 IEEE International Workshop on Measurement Systems for Homeland Security, Contraband Detection and Personal Safety. IEEE, Los Alamitos, CA.
176. Pirttijarvi, T. S.,, L. M. Ahonen,, L. M. Maunuksela, and, M. S. Salkinoja-Salonen. 1998. Bacillus cereus in a whey process. Int. J. Food Microbiol. 44:3141.
177. Rajkovic, A.,, M. Uyttendaele,, S. A. Ombregt,, E. Jaaskelainen,, M. Salkinoja-Salonen, and, J. Debevere. 2006. Influence of type of food on the kinetics and overall production of Bacillus cereus emetic toxin. J. Food Prot. 69:847852.
178. Rajkovic, A.,, M. Uyttendaele,, A. Vermeulen,, M. Andjelkovic,, I. Fitz-James,, P. in’t Veld,, Q. Denon,, R. Verhe, and, J. Debevere. 2008. Heat resistance of Bacillus cereus emetic toxin, cereulide. Lett. Appl. Microbiol. 46:536541.
179. Ripabelli, G.,, J. McLauchlin,, V. Mithani, and, E. J. Threlfall. 2000. Epidemiological typing of Bacillus cereus by amplified fragment length polymorphism. Lett. Appl. Microbiol. 30:358363.
180. Rivera, A. M. G.,, P. E. Granum, and, F. G. Priest. 2000. Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis. FEMS Microbiol. Lett. 190:151155.
181. Ronimus, R. S.,, L. E. Parker, and, H. W. Morgan. 1997. The utilization of RAPD-PCR for identifying thermophilic and mesophilic Bacillus species. FEMS Microbiol. Lett. 147:7579.
182. Ronimus, R. S.,, L. E. Parker,, N. Turner,, S. Poudel,, A. Ruckert, and, H. W. Morgan. 2003. A RAPD-based comparison of thermophilic bacilli from milk powders. Int. J. Food Microbiol. 85:4561.
183. Rowan, N. J.,, and J. G. Anderson. 1998a. Diarrhoeal enterotoxin production by psychrotrophic Bacillus cereus present in reconstituted milk-based infant formulae (MIF). Lett. Appl. Microbiol. 26:161165.
184. Rowan, N. J.,, and J. G. Anderson. 1998b. Growth and enterotoxin production by diarrhoeagenic Bacillus cereus in dietary supplements prepared for hospitalized HIV patients. J. Hosp. Infect. 38:139146.
185. Rowan, N. J.,, K. Deans,, J. G. Anderson,, C. G. Gemmell,, I. S. Hunter, and, T. Chaithong. 2001. Putative virulence factor expression by clinical and food isolates of Bacillus spp. after growth in reconstituted infant milk formulae. Appl. Environ. Microbiol. 67:38733781.
186. Rusul, G.,, and N. H. Yaacob. 1995. Prevalence of Bacillus cereus in selected foods and detection of entertoxin using Tecra-Via and BCET-RPLA. Int. J. Food Microbiol. 25:131139.
187. Ryan, P. A.,, J. D. Macmillan, and, B. A. Zilinskas. 1997. Molecular cloning and characterization of the genes encoding the L(1) and L(2) components of hemolysin BL from Bacillus cereus. J. Bacteriol. 179:25512556.
188. Sakurai, N.,, K. Kolke,, Y. Irie, and, H. Hayashi. 1994. The rice culture filtrate of Bacillus cereus isolated from emetic type food poisoning causes mitochondrial swelling in a HEp-2 cell. Microbiol. Immunol. 38:337343.
189. Salkinoja-Salonen, M. S.,, R. Vuorio,, M. A. Andersson,, P. Kampfer,, M. C. Andersson,, T. Honkanen-Buzalski, and, A. C. Scoging. 1999. Toxigenic strains of Bacillus licheniformis related to food poisoning. Appl. Environ. Microbiol. 65:46374645.
190. Schoeni, J. L.,, and A. C. L. Wong. 2005. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68:636648.
191. Schoeni, J. L.,, and A. C. L. Wong. 1999. Heterogeneity observed in the components of hemolysin BL, an enterotoxin produced by Bacillus cereus. Int. J. Food Microbiol. 53:159167.
192. Schraft, H.,, and M. W. Griffiths. 2006. Bacillus cereus gastroenteritis, p. 563–582. In H. P. Riemann, and D. O. Cliver (ed.), Foodborne Infections and Intoxications, 3rd ed. Academic Press (Elsevier), Amsterdam, The Netherlands.
193. Schraft, H.,, and M. W. Griffiths. 1995. Specific oligonucleotide primers for detection of lecithinase-positive Bacillus spp. by PCR. Appl. Environ. Microbiol. 61:98102.
194. Schraft, H.,, M. Steele,, B. McNab,, J. Odumeru, and, M. W. Griffiths. 1996. Epidemiological typing of Bacillus spp. isolated from food. Appl. Environ. Microbiol. 62:42294232.
195. Shaheen, R.,, M. A. Andersson,, C. Apetroaie,, A. Schulz,, M. Ehling-Schulz,, V. M. Ollilainen, and, M. S. Salkinoja-Salonen. 2006. Potential of selected infant food formulas for production of Bacillus cereus emetic toxin, cereulide. Int. J. Food Microbiol. 107:287294.
196. Shinagawa, K. 1990. Analytical methods for Bacillus cereus and other Bacillus species. Int. J. Food Microbiol. 10:125141.
197. Shinagawa, K.,, H. Konuma,, H. Sekita, and, S. Sugii. 1995. Emesis of rhesus-monkeys induced by intragastric administration with the Hep-2 vacuolation factor (cereulide) produced by Bacillus cereus. FEMS Microbiol. Lett. 130:8790.
198. Shinagawa, K.,, S. Ueno,, H. Konuma,, N. Matsusaka, and, S. Sugii. 1991. Purification and characterization of the vascular permeability factor produced by Bacillus cereus. J. Vet. Med. Sci. 53:281286.
199. Shinagawa, K.,, Y. Ueno,, D. L. Hu,, S. Ueda, and, S. Sugii. 1996. Mouse lethal activity of a HEp-2 vacuolation factor, cereulide, produced by Bacillus cereus isolated from vomiting-type food poisoning. J. Vet. Med. Sci. 58:10271029.
200. Simone, E.,, M. Goosen,, S. H. Notermans, and, M. W. Borgdorff. 1997. Investigations of foodborne diseases by food inspection services in the Netherlands, 1991 to 1994. J. Food Prot. 60:442446.
201. Skerman, V. B. D.,, V. McGowan, and, P. H. A. Sneath. 1980. Approved Lists of Bacterial Names. American Society for Microbiology, Washington, DC.
202. Spira, W. M.,, and J. M. Goepfert. 1972. Bacillus cereus induced fluid accumulation in rabbit ileal loops. Appl. Microbiol. 24:341348.
203. Stalheim, T.,, and P. E. Granum. 2001. Characterization of spore appendages from Bacillus cereus strains. J. Appl. Microbiol. 91:839845.
204. Stenfors, L. P.,, and P. E. Granum. 2001. Psychrotolerant species from the Bacillus cereus group are not necessarily Bacillus weihenstephanensis. FEMS Microbiol. Lett. 197:223228.
205. Stenfors, L. P.,, R. Mayr,, S. Scherer, and, P. E. Granum. 2002. Pathogenic potential of fifty Bacillus weihenstephanensis strains. FEMS Microbiol. Lett. 215:4751.
206. Szabo, R. A.,, J. L. Speirs, and, M. Akhtar. 1991. Cell culture detection and conditions for production of a Bacillus cereus heat-stable toxin. J. Food Prot. 54:272276.
207. Tauveron, G.,, C. Slomianny,, C. Henry, and, C. Faille. 2006. Variability among Bacillus cereus strains in spore surface properties and influence on their ability to contaminate food surface equipment. Int. J. Food Microbiol. 110:254262.
208. Taylor, J. M. W.,, A. D. Sutherland,, K. E. Aidoo, and, N. A. Logan. 2005. Heat-stable toxin production by strains of Bacillus cereus, Bacillus firmus, Bacillus megaterium, Bacillus simplex and Bacillus licheniformis. FEMS Microbiol. Lett. 242:313317.
209. Te Giffel, M. C.,, R. R. Beumer,, P. E. Granum, and, F. M. Rombouts. 1997. Isolation and characterisation of Bacillus cereus from pasteurised milk in household refrigerators in the Netherlands. Int. J. Food Microbiol. 34:307318.
210. Te Giffel, M. C.,, R. R. Beumer,, B. A. Slaghuis, and, F. M. Rombouts. 1995. Occurrence and characterization of (psychrotrophic) Bacillus cereus on farms in the Netherlands. Neth. Milk Dairy J. 49:125138.
211. Te Giffel, M. C.,, A. Wagendorp,, A. Herrewegh, and, F. Driehuis. 2002. Bacterial spores in silage and raw milk. Antonie van Leeuwenhoek 81:625630.
212. Te Giffel, M. C.,, R. R. Beumer,, S. Leijendekkers, and, F. M. Rombouts. 1996. Incidence of Bacillus cereus and Bacillus subtilis in foods in the Netherlands. Food Microbiol. 13:5358.
213. Thorsen, L.,, B. M. Hansen,, K. F. Nielsen,, N. B. Hendriksen,, R. K. Phipps, and, B. B. Budde. 2006. Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl. Environ. Microbiol. 72:51185121.
214. Vaillant, V.,, H. de Valk,, E. Baron,, T. Ancelle,, P. Colin,, M.-C. Delmas,, B. Dufour,, R. Pouillot,, Y. le Strat,, P. Weinbreck,, E. Jougla, and, J. C. Desenclos. 2005. Foodborne infections in France. Foodborne Pathog. Dis. 2:221232.
215. Vaisanen, O. M.,, N. J. Mwaisumo, and, M. S. Salkinoja-Salonen. 1991. Differentiation of dairy strains of the Bacillus cereus group by phage typing, minimum growth temperature, and fatty acid analysis. J. Appl. Bacteriol. 70:315324.
216. Van Netten, P.,, and J. M. Kramer. 1992. Media for the detection and enumeration of Bacillus cereus in foods: a review. Int. J. Food Microbiol. 17:8599.
217. von Stetten, F.,, K. P. Francis,, S. Lechner,, K. Neuhaus, and, S. Scherer. 1998. Rapid discrimination of psychrotolerant and mesophilic strains of the Bacillus cereus group by PCR targeting 16s rDNA. J. Microbiol. Methods 34:99106.
218. Wijnands, L. M.,, J. B. Dufrenne,, F. M. Rombouts,, P. H. In’t Veld, and, F. M. Van Leusden. 2006a. Prevalence of potentially pathogenic Bacillus cereus in food commodities in The Netherlands. J. Food Prot. 69:25872594.
219. Wijnands, L. M.,, J. B. Dufrenne,, M. H. Zwietering, and, F. M. van Leusden. 2006b. Spores from mesophilic Bacillus cereus strains germinate better and grow faster in simulated gastro-intestinal conditions than spores from psychrotrophic strains. Int. J. Food Microbiol. 112:120128.
220. Winder, C. L.,, and R. Goodacre. 2004. Comparison of diffuse-reflectance absorbance and attenuated total reflectance FT-IR for the discrimination of bacteria. Analyst 129:11181122.
221. Yamada, S.,, E. Ohashi,, N. Agata, and, K. Venkateswaran. 1999. Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringinesis, B. mycoides, and B. anthracis and their application to the detection of B. cereus in rice. Appl. Environ. Microbiol. 65:14831490.
222. Yemini, M.,, Y. Levi,, E. Yagil, and, J. Rishpon. 2007. Specific electrochemical phage sensing for Bacillus cereus and Mycobacterium smegmatis. Bioelectrochemistry 70:180184.
223. Yokoyama, K.,, M. Ito,, N. Agata,, M. Isobe,, K. Shibayama,, T. Horii, and, M. Ohta. 1999. Pathological effect of synthetic cereulide, an emetic toxin of Bacillus cereus, is reversible in mice. FEMS Immunol. Med. Microbiol. 24:115120.
224. Yuan, Z. M.,, B. M. Hansen,, L. Andrup, and, J. Eilenberg. 2002. Detection of enterotoxin genes in mosquito-larvicidal Bacillus species. Curr. Microbiol. 45:221225.
225. Zigha, A.,, E. Rosenfeld,, P. Schmitt, and, C. Duport. 2006. Anaerobic cells of Bacillus cereus F4430/73 respond to low oxidoreduction potential by metabolic readjustments and activation of enterotoxin expression. Arch. Microbiol. 185:222233.
226. Zigha, A.,, E. Rosenfeld,, P. Schmitt, and, C. Duport. 2007. The redox regulator fnr is required for fermentative growth and enterotoxin synthesis in Bacillus cereus F4430/73. J. Bacteriol. 189:28132824.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error